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One-Dimensional Turbulence Simulations for Reactive Flows in Open and
Closed Systems

T. Starick, J. A. Medina M., H. Schmidt

The One-Dimensional Turbulence (ODT) model is applied to reactive flows in open and closed systems represented
by a lifted jet flame in a vitiated coflow, and a constant volume autoignition configuration, respectively. ODT is a
one-dimensional model for turbulent flow simulations, which uses a stochastic formulation to represent the effects
of turbulent advection. Diffusion and reaction effects along the ODT domain are considered by deterministic
evolution equations.
This work is an effort to verify the applicability and efficiency of the model for open and closed systems. In the
open system case, ODT results are compared against experimental results of a lifted methane/air jet flame detailed
in the work of Cabra et al. (2005). In the closed system case, a periodic, constant volume domain is used to
investigate the sensitivity of the ignition evolution to initial temperature and composition inhomogeneities of a
lean n-heptane/air mixture. In the latter context, ODT results are compared to DNS results from Luong et al.
(2015). The results for the jet and constant volume configuration show a reasonable match with the experimental
and DNS data, considering the reduced order of the model and the underlying assumptions for each case. At the
jet configuration, a dependence of the flame evolution on the turbulence intensity parameter can be seen. For the
closed system, initial temperature and composition inhomogeneities allow a mitigation of the undesirable rapid
pressure rise due to locally different ignition delay times.

1 Introduction

The topic of low temperature homogeneous premixed combustion has led to the development and optimisation of
Homogeneous Charge Compression Ignition (HCCI) engines. These combine the benefits of spark and compres-
sion ignition engines. They are, however, confronted with the problem of simultaneous reaction of homogeneous
mixture zones entailing a rapid pressure rise, which results in pressure ringing, engine knocking, or even the de-
struction of the engine block. Stratification is, therefore, an aspect that needs to be considered in the design to
avoid a rapid pressure rise (Luong et al., 2015). Computationally, this has been studied by means of the effects of
disturbances or inhomogeneities in reactive mixtures and temperature distributions by Yoo et al. (2011) and Luong
et al. (2015).

The topic of flame extinction and flame stabilisation has also central importance, and it has been traditionally
addressed experimentally and theoretically by the study of simplified jet flames. Lifted jet flames are a special
category of jet flames, where the stabilised flame is lifted from the burner by increasing the fuel or air coflow
velocity (Lyons, 2007). These flames may allow, e.g., the minimisation of the damage provoked by the flame to
the burner construction materials. Past studies of Cabra et al. (2005) have confirmed autoignition as a mechanism
for flame stabilisation in lifted flames.

There are clear limitations for fully accurate computational investigations of these phenomena. The most reliable
approaches, Direct Numerical Simulations (DNS), are prohibitively expensive, since they require the complete
resolution of all scales of interactions between turbulence and chemistry (Yoo et al., 2011; Yu and Bai, 2013; Luong
et al., 2015). In contrast, 1-D models are still attractive for research due to the broad physical insight that they might
offer at the expense of their relatively cheap computational cost. In an effort to resolve all relevant scales, yet still
be able to achieve realistic Reynolds number flows in numerical simulations, Alan Kerstein formulated the One-
Dimensional Turbulence (ODT) model (Kerstein, 1999). ODT is an efficient alternative in comparison to DNS,
and an alternative in comparison to Reynolds-Averaged Navier-Stokes (RANS) and Large-Eddy Simulation (LES)
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approaches, as demonstrated by several investigations done so far by Kerstein et al. (2001); Ashurst and Kerstein
(2005); Lignell et al. (2013); Jozefik et al. (2015); Fragner and Schmidt (2017) and Medina M. et al. (2018).

In this study, a broad, yet brief overview of the ODT modelling framework for open and closed combustion systems
is presented. Lignell et al. (2013) presented a comprehensive overview of all possible applications of ODT. The
latter study, however, missed the topic of constant volume modelling completely. Initially homogeneous, yet
disturbed, temperature and composition fields are evaluated with a recent ODT formulation in a constant volume,
periodic configuration (Medina M. et al., 2018). Results for a lifted jet flame in a vitiated coflow, following a more
traditional ODT formulation are shown as well (Echekki et al., 2001; Lignell et al., 2013).

2 ODT Model Formulation

2.1 Turbulent Advection and Eddy Event Implementation in ODT

The characteristic signature from ODT is the triplet map transformation (Kerstein, 1999). The implementation of
a triplet map (eddy event) is a representation of the turbulent advection effects in an incompressible flow. This is a
mere kinematic representation of the flow, and thus the analysis of the effects of a triplet map should be discussed
within the framework of the momentum equation in an incompressible regime (divergence-free velocity field given
by uj , for j = 1, 2, 3). Starting from the momentum equation, it is possible to decompose the advection term into
linear and non-linear contributions. The pressure can also be considered as a scalar field resulting from the sum of
linear and non-linear contributions. Considering only linear effects, the momentum equation for incompressible
flows in ODT, assuming the 1-D line direction asy, results in,

∂uj

∂t
= ν

∂2uj

∂y2
+ Ej + Γ . (1)

A source termΓ has been added to the original ODT momentum equation as described in Kerstein et al. (2001).
This symbolises the linear effects of mean advection or a mean forcing pressure gradient. This convention was
chosen to represent the source term treatment in ODT (Lignell et al., 2013; Fragner and Schmidt, 2017). In Eq. (1),
t is the time,ν = μ/ρ is the kinematic viscosity (μ is the dynamic viscosity andρ the density) andEj represent
changes induced by the triplet map and pressure scrambling operations in ODT detailed in the work of Kerstein
et al. (2001).

In general, the triplet map implementation causes a change in a scalar profile along the line direction, according to
the transformation rule,

ψ(y) → ψ[f(y)]. (2)

Here,ψ is any scalar quantity defined in the ODT line at a positiony and subsequently mapped to a positionf(y)
by the transformation rule (Kerstein, 1999). The transformation rule is measure preserving, which for constant
density and a scalar velocity component implies conservation of

∫
u0dy,

∫
u1dy,

∫
u2dy; i.e., the transformation

implies conservation of mass (length), momentum and energy along the line. Treating the velocity as a vector
requires the use of a Kernel function, which redistributes the available kinetic energy among velocity components
(Kerstein et al., 2001). Since it is clear that for this work, the previous conception of ODT with constant density
is rather limited, the expansion for the variable density formulation, introduced by Ashurst and Kerstein (2005), is
used for the mapping of the velocity fielduj , namely

uj(y) → uj [f(y)] + bjK(y) + cjJ(y). (3)

Here,K(y) andJ(y) are kernel functions, as described in Ashurst and Kerstein (2005), whilebj andcj are the
respective kernel coefficients for each velocity component. The reader should note that, although the introduction
of two kernels for the velocity mapping in Eq. (3) allows redistribution of available kinetic energy in a variable
density line, the fundamental conception of the map as a measure preserving transformation is more readily appli-
cable for solenoidal flows (Lignell et al., 2013) (and in fact, it is formulated by Ashurst and Kerstein (2005) for
flows with negligible compressibility effects). It is therefore convenient to introduce a splitting of the velocity field
into its solenoidal and irrotational components. The solenoidal component (rotational part) is readily handled by
the eddy event conception in ODT, while the irrotational componentutot,j can be decomposed into a deformation
componentuD,j (deformation) and a linear advection componentuA,j, (net advection)as described in Medina M. et al.
(2018).

utot,j = uA,j (net advection)+ uD,j (deformation) (4)
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The net advection ofuj in Eq. (4) refers to the sum of mean and turbulent advection. This is the starting point
for the formulation of the set of governing equations in the applicable ODT model.uj is governed by a quasi-
incompressible momentum evolution, whileuD,j arises exclusively from the variable-density (compression and
expansion) effects along the line (uD,2 = uD anduD,1 = uD,3 = 0) (Medina M. et al., 2018).

In ODT, eddy events are sampled from a joint Probability Density Function (PDF)P (l, y0, t) of eddy sizesl
and positionsy0 at a given timet (Kerstein, 1999). The reconstruction of the PDF at every instant of time is
prohibitively expensive, since it requires evaluating all possible potential eddies with any sizel at any position
y0. A discrete approximation of the PDF is used instead, constructed by a combination of the rejection method
and the thinning method (Kerstein, 1999). The sampling conforms then with a defined, statistical Poisson process.
Generally speaking, an acceptance probability of the eddyPa(l, y0, t) is obtained by the expression,

λ(l, y0, t)
f(l)g(y0)

Δtsampling = Pa(l, y0, t). (5)

Eq. (5) is able to correctly approximate the eddy sampling fromP (l, y0, t), as long as the sampling time interval
Δtsampling is sufficiently small (Δtsampling << 1). λ(l, y0, t) is an eddy rate in ODT, whilef(l) andg(y0) are
assumed PDFs for the eddy size and position, as in Lignell et al. (2013).λ(l, y0, t) can be modelled based on a
dimensional analysis relating energetic contributions to the inverse of an eddy turnover timeτ , as in Jozefik et al.
(2015) and Medina M. et al. (2018),

λ(l, y0, t) =
C

l2τ
=

C

l2

[
2K0

ρ0
(Ekin − ZEvp + Epe)

]1/2

. (6)

Eq. (6) models the eddy turnover time in ODT in terms of the available (kinetic) energyEkin, an energetic viscous
penaltyEvp, and a potential energy termEpe. The latter is added in order to influence the eddy selection due to
the variable density line (Jozefik et al., 2015; Medina M. et al., 2018).C andZ are model parameters, which are
normally calibrated for a specific flow configuration. The termsK0 = l−3(

∫ y0+l

y0
K2dy) andρ0 =

∫ y0+l

y0
ρK2dy,

are used with the definitions of the different energies,

Ekin − ZEvp + Epe = [K0 (Q1 + Q2 + Q3)] − Z

[
1
2

(
μ2

eddy

ρeddyl

)]

+

[

K0

∫ y0+l

y0

∂uD

∂t
K (ρ − ρeddy) dy

]

.

(7)
Here,Q1, Q2 andQ3 are the available energies per velocity component, as in Ashurst and Kerstein (2005).μeddy

andρeddy are line averages of the dynamic viscosity and density (averages over the eddy length).

After an eddy is implemented, a deterministic catch up takes place up to the physical time at which the eddy
was deemed to be implemented. This is the instant of timet at which the eddy was accepted according to the
sampling based onPa(l, y0, t). The deterministic catch up mechanism consists of a time-advancement of the 1-D
diffusion/reaction evolution equations in ODT, starting at the instant of time corresponding to the last eddy imple-
mentation, up to the timet. Therefore, time advances constantly due to the incrementsΔtsampling. The numerical
solution as a whole advances effectively with every performed catch up. The deterministic 1-D diffusion/reaction
evolution equations in ODT are detailed in the next section.

2.2 ODT Diffusion/Reaction Evolution for Closed Systems (Constant Volume Configuration)

This section gives an overview of the diffusion/reaction evolution equations for closed systems used in ODT. For a
detailed description of the numerical advancement for the ODT diffusion/reaction evolution equations, the reader
is referred to AppendixI.

The diffusion/reaction evolution equations in ODT can be derived from the application of the Reynolds Transport
Theorem (RTT) to the intensive quantities (ε) of mass, momentum and energy. For reference, the Lagrangian
formulation of the equations, using a zero Mach number limit approximation, is obtained and explained in Lignell
et al. (2013). Here, the equations obtained from Lignell et al. (2013) are only mentioned and written in an equiva-
lent differential form. Momentum conservation in the ODT line, considering that the cell interfaces move with the
mass average velocity (noε property fluxes across the cells), implies, for the quasi-incompressible treatment of the
velocityuj ,

ρ
duj

dt
=

∂

∂y

(

μ
∂uj

∂y

)

. (8)

164



Here,d/dt symbolises the Lagrangian time derivative. Similarly, diffusion and reaction evolution of species mass
fractionsYk (k ∈ {1, 2, ...N}), is given by,

ρ
dYk

dt
=

∂

∂y

(

ρDk
∂Yk

∂y
+

ρDkYk

M

∂M

∂y

)

+ ẇk. (9)

In Eq. (9), Dk is thekth species mixture-averaged diffusion coefficient,M is the mean molecular weight of
the mixture andẇk is thekth species reaction rate. The Hirschfelder and Curtis’ approximation for the species
diffusion velocities is considered here, i.e.Vk = −Dk

(
Y −1

k ∂Yk/∂y + M−1∂M/∂y
)
.

The evolution equation for the enthalpy of the mixtureh is,

ρ
dh

dt
=

dP

dt
+

∂

∂y

(

λ
∂T

∂y

)

−
∂

∂y

[
N∑

k=1

(hkρVkYk)

]

. (10)

In Eq. (10),P is the leading order thermodynamic pressure,λ is the thermal conductivity,T is the temperature of
the mixture andhk is thekth species specific enthalpy.

As in Medina M. et al. (2018), the divergence condition for the deformation velocity allows the calculation of
the temporal rate of change of the thermodynamic pressure (applying an integration over the ODT line). It also
allows the calculation of the dilatation of the cells, which is required to enforce mass conservation, once the new
thermochemical state is known (local divergence of each cell).

∂uD

∂y
= −

1
γP

dP

dt
+ Ψ . (11)

In Eq. (11),γ is the ratio of specific heats andΨ is defined as

Ψ =
1

ρcpT

{
∂

∂y

(

λ
∂T

∂y

)

−
∂

∂y

[
N∑

k=1

(hkρVkYk)

]

+
N∑

k=1

[

hk

(
∂

∂y
(ρVkYk) − ẇk

)]}

−
M

ρ

N∑

k=1

{
1

Mk

[
∂

∂y
(ρVkYk) − ẇk

]}

,

(12)

cp is the specific heat capacity at constant pressure. The equations for species and enthalpy evolution are solved by
means of a Strang-Splitting method (Medina M. et al., 2018). ThedP/dt term used in Eq. (10) is calculated from
the integration of Eq. (11). The resulting pressure at the end of the advancement is calculated by a closed form of
the ideal gas law,

P =
R
(∫ y=L

y=0
ρdy

)

t=0
∫ y=L

y=0

(
T
∑

k
Yk

Mk

)−1

dy
. (13)

Here,L is the length of the 1-D domain andR is the universal gas constant. The quantity in the numerator in Eq.
(13) indicates the initial mass of the line, which remains constant during the simulation. After the pressure update,
the density is calculated by means of the ideal gas law. Momentum is integrated with an implicit Euler method
prior to the pressure and density update, but with the updated temperature derived from the advancement ofh and
Yk. Finally, cell sizes are adjusted to enforce mass conservation, based on the use of the definitionuD = dy/dt in
the local divergence constraint, Eq. (11) (evaluated at the new thermochemical state) (Medina M. et al., 2018).

2.3 ODT Diffusion/Reaction Evolution for Open Systems (Jet Configuration)

The diffusion/reaction equations for the open system configuration are in general the same ones as those derived
for the closed system. For open systems, we havedP/dt = 0 in Eq. (10) and (11). Eq. (13) is also redundant,
since the pressure stays constant.
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The divergence condition is enforced in the open configuration in a slightly different way. It is possible to rewrite
Eq. (11) as

∂uD

∂y
= −

1
ρ

dρ

dt
. (14)

Within the Lagrangian framework of the model, it is possible to approximate numericallydρ/dt. Using a Leapfrog
time approximation and applying the definition of velocityuD = dy/dt, while considering the midpoint time-
levels as the averages of time-levelsn andn + 1, mass conservation is obtained as in Lignell et al. (2013),

(ρΔy)n+1 = (ρΔy)n
. (15)

Eq. (15) corresponds to the integral conservation of mass within a cell. It dictates the corresponding adjustment of
the cell sizes that conforms with mass conservation in an open system. Unlike Eq. (11) for closed systems, using
Eq. (15) may result in changes of the overall 1-D domain length.

In this work, a comparison with stationary spatially developing round jet flames is intended. Following Echekki
et al. (2001), the 1-D domain is advected inz-direction using an instantaneous bulk velocityu(t),

z(t) = z(t0) +
∫ t

t0

u(t′)dt′. (16)

The bulk velocity in Eq. (16) is calculated by the sum of the free-stream (coflow) velocityu∞ and the ratio of the
integrated momentum flux to the integrated massflux,

u(t) = u∞ +

∫∞
−∞ ρ (u − u∞)2 dy
∫∞
−∞ ρ (u − u∞) dy

∣
∣
∣
∣
∣
t

. (17)

Unlike in the closed configuration, the open configuration is solved by means of a first-order explicit Euler ad-
vancement, as in Lignell et al. (2013).

3 Results

3.1 Closed System (Constant Volume Configuration)

Simulations for constant volume autoignition of a lean n-heptane/air mixture were performed with ODT using the
same settings as in the DNS from Luong et al. (2015). The domain extends over 3.2 mm. Periodic boundary
conditions are applied on the ODT line. The initial grid is discretised by a uniform distribution of 1280 cells along
the line. Randomised initial fields for the velocity and scalars were generated based on a Passot-Pouquet spectrum
(Passot and Pouquet, 1987) that conforms with a given mean and RMS fluctuation value, as in Oevermann et al.
(2008) and Medina M. et al. (2018). The same version of the ODT code as in Medina M. et al. (2018) was used
for the simulations and applies an adaptive solver that enables local temporal changes in the resolution, in order to
accurately capture all scales along the ODT line (Lignell et al., 2013).

Table 1 lists the settings for mean initial temperature and equivalence ratio,T0 andφ0, and fluctuations of tem-
peratureT ′, equivalence ratioφ′ and velocityu′ for the investigated cases. The most energetic length scales for

Table 1: Parameters of the simulation cases 1-4, considering either temperatureT or compositionΦ inhomo-
geneities.

Case
T0 T ′ φ0 φ′ le, lTe, lφe u′ τig

0

(K) (K) (-) (-) (mm) (m/s) (ms)
1 805 15 0.45 - 1.25 0.83 1.5
2 933 15 0.45 - 1.25 0.83 1.5
3 805 - 0.45 0.05 1.25 0.83 1.5
4 933 - 0.45 0.05 1.25 0.83 1.5
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Figure 1: Temporal evolution of the spatially averaged pressure and heat release rate for case 1 and 2. These
consider temperature inhomogeneities ofT ′ = 15 K at initial mean temperatures ofT0 = 805 K (a and c) and
T0 = 933 K (b and d).

temperaturelTe, compositionlφe and velocityle are also presented, as well as the 0-D ignition delay timeτ0
ig,

taken from Luong et al. (2015). The integral length scales are assumed to be equal to the most energetic length
scales for the generation of the initial conditions. The initial pressure in the domain isP0 = 40 atm, as in the DNS.

The chemistry for the n-heptane/air combustion is represented by a 58-species reduced kinematic mechanism from
Yoo et al. (2011), as in the DNS. For the calculation of the thermodynamic and transport properties, the C++
interface of the Cantera software package is applied (Goodwin, 2002). During the reaction step of the splitting,
the stiff chemistry is solved by means of CVODE (Hindmarsh and Serban, 2015) (the reaction component of the
enthalpy is advanced simultaneously with an explicit Euler method).

ODT model parametersC andZ in Eq. (6) are taken asC = 4 andZ = 0.4. For this specific case,C represents
the intensity of the turbulence in ODT, whileZ is a proportionality parameter of order one for the energetic viscous
penalty, as in Kerstein et al. (2001). These values were selected based on a calibration process of the model for
one of the cases studied, and assumed constant for all simulations.

The initial mean temperature values ofT0 = 805 K andT0 = 933 K were deliberately selected. The characteristic
combustion behaviour of n-heptane/air mixtures with an equivalence ratio ofφ0 = 0.45 leads to the same ignition
delay time ofτ0

ig = 1.5 ms forT0 = 805 K andT0 = 933 K in the 0-D simulation (Luong et al., 2015).

Figure 1 shows the temporal evolution of the spatial and ensemble averaged ODT results for heat release rate and
pressure. Results are shown for the first-stage ignition (left) and second-stage ignition (right). For comparison,
0-D and DNS data from Luong et al. (2015) are shown as well. The 0-D results served as a validation of the ODT
code, since they were obtained by a homogeneous initialisation of the 1-D fields and by suppressing all possible
eddy events. For a better visualisation, the 0-D values are sometimes shown with a normalisation factor of 0.5.

The distribution of the initial temperature and composition fields has a large influence on the combustion process
and thus on the ignition delay time. This can be seen in Fig. 1, which considers random initialisations (ODT IC in
the plots) and a sample size ofn = 100 for every case detailed in Table 1.

Due to the stochastic nature of the ODT model, an evaluation of the influence of initial conditions and of the
stochastic turbulent transport implementation was performed separately. In this context, an initial condition was
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Figure 2: Temporal evolution of the spatially averaged pressure and heat release rate for case 3 and 4. These
consider composition inhomogeneities ofΦ′ = 0.05 at initial mean temperatures ofT0 = 805 K (a and c) and
T0 = 933 K (b and d).

selected, which best suited the DNS data in temporal development of pressure and spatially averaged heat release
rate. Several simulations were then performed and ensemble averaged. Despite the same initial conditions, the
simulation results are still subject to fluctuations due to the stochastic eddy event implementation. This can also
be seen in Fig. 1 (ODT SE in the plots).

In general, ODT is able to reproduce results that match the DNS data at the first and second-stage ignition. 0-D
results from Luong et al. (2015) show that slight modifications in the initial mean temperature ofT0 = 805 K have
a greater influence, in comparison toT0 = 933 K, on the ignition delay time. This can be one possible reason for
the wider spread of the dome of heat release rate and the less steep pressure rise of the ensemble averaged ODT
results at case 1 (ODT IC, ODT SE) when comparing with DNS data. The temperature fluctuations cause a delay
in combustion, whereby the pressure rise is mitigated. In case 2, initial temperature fluctuations have less influence
on the combustion process. For the latter case, 0-D, ODT IC, ODT SE and DNS results have similar profiles.

Figure 2 also shows the temporal evolution of the spatially and ensemble averaged ODT results for heat release
rate and pressure during first-stage ignition (left) and second-stage ignition (right). In contrast to Fig. 1, however,
composition inhomogeneities ofφ′ = 0.05 are examined. Again, ODT (ODT IC and SE) is able to produce
results that are in very good agreement with the DNS trend. This applies to both the first-stage ignition and the
second-stage ignition. ODT SE slightly overpredicts and ODT IC slightly underpredicts the DNS results at the
moment of combustion in cases 3 and 4. The comparison with the 0-D simulations shows that the composition
fluctuations lead to an earlier combustion for both investigated initial mean temperatures. The rapid pressure rise
is only slightly mitigated by the composition fluctuations.

Overall, results obtained with ODT show a reasonable match with DNS data. The quality of the results is promis-
ing, considering the short simulation times and the reduced dimensionality application of this ODT model for
constant volume combustion.
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3.2 Open System (Jet Configuration)

The open system case is represented by a lifted methane/air jet flame in a vitiated hydrogen/air coflow. For com-
parison purposes, ODT simulations consider an equivalent setup and the same parameters as the experimental
measurements of Cabra et al. (2005). Table 2 lists the initial conditions for the jet and coflow. Here,Re is the
bulk Reynolds number based ond, the diameter,u is the velocity,T is the temperature andX the mole fraction of
each species. For the initial velocity profile at the nozzle exit, a synthetic profile was used which was created by
superposition of a fully developed turbulent channel flow mean profile with a turbulent Passot-Pouquet spectrum
(Passot and Pouquet, 1987). The coflow was initialised with a uniform radial distribution of the velocity atz/d = 0
(nozzle exit), wherez stands for downstream position (Eq. (16)) andd for the diameter of the jet.

Table 2: Initial conditions for the jet and coflow arelisted.

- Jet Coflow

Re 28, 000 23, 300
d(mm) 4.57 140
u(m/s) 100 5.4
T (K) 320 1350
XO2 0.15 0.12
XN2 0.52 0.73
XH2O 0.0029 0.15
XOH(ppm) 0.0 200
XH2(ppm) 100 100
XCH4 0.33 0.0003

The ODT domain uses homogeneous Neumann boundary conditions and has a length of140 mm, which is a
span close to30 jet diameters. Although the ODT formulation for open systems using a planar and temporal
framework is not novel, the chosen configuration represents nonetheless a challenge for the model, given the
delicate interactions and balance between the mixing of the hot coflow products and the cold unburned jet, together
with the reaction and autoignition of the jet (Cabra et al., 2005).

For the representation of the methane/air chemistry, a 19-species reduced mechanism from Lu and Law (2008)
is used. This mechanism is derived from a 30-species skeletal mechanism for methane/air based on the detailed
GRIMech 3.0 mechanism (Smith et al., 1999).

Figure 3, on the left side, shows a two-dimensional rendering of the temperature evolution of the jet flame for one
realisation. On the right side, an ensemble averaged temperature evolution of the jet flame is presented with a
sample size ofn = 50. Axis y/d corresponds to the one-dimensional domain, while axisz/d is obtained by means
of the temporal-to-spatial translation, Eq.(16). The ODT model parameters were fixed toC = 5 andZ = 50. The
ensemble averaged temperature evolution on the right side shows the familiar structure of a jet diffusion flame.
This supports the validity of the assumption that the streamwise velocity associated with the chemically active
region can be approximated by a bulk velocity, which is advecting the 1D-domain in downstream direction. The
visually determined liftoff height ofz/d ≈ 38 in Figure 3 is in good agreement with the findings of Cabra et al.
(2005).

In Figure 4, the concentration evolution of the OH-species is presented for a single realisation on the left side and
an ensemble average on the right side. The comparison of the ensemble averaged temperature evolution in Figure
3 and OH-concentration evolution in Figure 4 shows that the highest OH-concentrations occur in the regions with
the highest temperatures.

Figure 5 presents the Favre-averaged centerline profile of temperature and O2 mass fraction for different values of
theC model parameter. The averaging is based on50 ensemble members for every case simulated with randomised
initial profiles. A detailed previous study of the application of ODT for jet flames has been performed recently by
Abdelsamie et al. (2017). Abdelsamie et al. showed that the model parameterC has a large influence on ignition
prediction and scalar conditional means when comparing ODT results against DNS data.
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Figure 3: Two-dimensional rendering of temperature evolution for a single realisation (left) and ensemble average
(right).

Figure 4: Two-dimensional rendering of OH-concentration evolution for a single realisation (left) and ensemble
average (right).
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Figure 5: Comparison of simulated centerline profiles of Favre-averaged temperature (left) and Favre-averaged
O2 mass fraction (right) against experimental results (Exp.) of Cabra et al. (2005). For the ODT simulations, the
model parameterC was varied.

Results shown in Figure 5 confirm the findings of Abdelsamie et al. (2017) for theC parameter. The initial stage
(up toz/d ≈ 25) characterised by mixing without reaction between jet and coflow is strongly affected by theC
parameter. A highC parameter encourages the mixing and leads to a fast temperature increase at the centerline.
This tends to accelerate the ignition. However, higherC parameters exaggerate the mixing in igniting zones and
lead to a suppression of the ignition. In contrast, lowerC parameters underestimate the mixing. The consequence
of this is an insufficient mixing of the cold jet and hot coflow that results in a later ignition. A moderateC parameter
of C = 5 andZ = 50 gave the best compromise for this study.

4 Conclusions

The application of ODT for simulations of a constant volume configuration and a jet is presented. The constant
volume configuration is aimed at evaluating autoignition of a n-heptane/air mixture with initial temperature and
composition inhomogeneities. The predicted heat release rates and pressure rises for all investigated cases are
found to be in reasonable agreement with the DNS results, considering the reduced order of the model. The model
is able to capture the key combustion characteristics of the examined n-heptane/air autoignition processes.

Despite the required number of ensemble members, which can be calculated in parallel following a Monte Carlo
philosophy, simulation times for one ensemble member were in the order of 24 CPU-hours. These short comput-
ing times, in general, are one of the most attractive aspects of ODT. Although it is not done in detail in this work,
parametric studies for different turbulent Reynolds number regimes and sensitivity analysis for reaction chemistry
can be carried out with ODT, given the advantage of these short computing times. These investigations are cur-
rently not feasible with DNS due to the limitations in computing power (or only possible with great sacrifices
in the reduction of chemical mechanisms). This makes ODT an efficient stand-alone model for constant volume
configurations of reactive flows.

The second application of ODT is a lifted methane/air jet flame in a vitiated coflow. The spatially developing round
jet flame is approximated by a planar temporally evolving jet. This assumption is not completely accurate and can
be investigated in future work with a novel cylindrical ODT formulation from Lignell et al. (2018). Nonetheless,
a good agreement was obtained in terms of centerline temperature evolution. The jet flame results reveal a strong
influence of theC model parameter. TheC parameter influences the mixing at the initial stage, which largely
effects the entire combustion behaviour.
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I Appendix

Numerical procedure for the constant volume configuration

In this appendix, we present additional details regarding the numerical advancement of the ODT equations already
presented in Section 2. Both numerical methods used for the open and closed system have been previously ex-
plained in Lignell et al. (2013) and Medina M. et al. (2018). There are, however, some subtleties regarding the
closed system implementation that may interest the reader. The reader is advised that the entire discussion in this
appendix is focused on the numerical advancement of the ODT diffusion/reaction evolution equations presented
in Section 2.2. The handling of the turbulent advection and eddy event implementation in Section 2.1 is out of the
discussion, since the same strategy as in any previous ODT publication is applied.

Lignell et al. (2013) presented a Lagrangian ODT implementation using a Finite Volume Method (FVM) for com-
bustion systems. Although this implementation is very appealing and fully conservative, it encounters theoretical
obstacles for its application to closed systems. Especially, the compromise to displace the discrete volume inter-
faces in order to account for conservation of mass in the Lagrangian framework is challenging. This treatment
conspires directly with the suppositions of a closed system with a fixed and constant volume. As noted in Lignell
et al. (2013), a first order approximation of the continuity equation is,

∫

Ω̂

ρdV = 0 → ρiΔyi = Ci. (18)

Here,Ω̂ is a moving Lagrangian Control Volume (CV),ρ is the local density andCi is a cell-wise constant. The
volume elements in the 1-D domain are symbolised by the size of the discrete cellsΔyi. Eq. (18) allows the
dilatation or contraction of the volume elements, and thus, of the overall Lagrangian system, in order to ensure
conservation of mass. This equation conserves the mass of each cell, however, changes the volume of the cells.
Summing up all volume elements results in a net volume change. This is done for open systems. This could also be
applicable in closed systems with fixed volume, where mass and volume can both be conserved if a mean constant
density is achieved. In such case, the calculation of the pressure that would satisfy Eq. (18) would be, in the opinion
of the authors, iterative in its essence. Since the main purpose of ODT as a turbulence model is to facilitate access
to turbulence states which cannot be reached by DNS, we opt to discard an iterative method for the advancement
of the governing equations, and therefore choose a non-conservative formulation for the deterministic catch up of
eddies in ODT. We explain this implementation in terms of Finite Difference (FD) equations, which are, in 1-D,
conveniently equivalent to the discrete FVM representation.

Let us start the discussion defining the total time derivative for intensive quantities (ψ) in a Lagrangian system,
dψ/dt = (∂ψ/∂t) + utot,j(∂ψ/∂xj). Such a derivative is viewed in an Eulerian framework in terms of the partial
rate of change and the advection ofψ. As discussed in Section 2.1, we can formally split the velocityutot,j into
its advective and dilatational part, in analogy to a Helmholtz decomposition. Neglecting the mean advection of the
system, and considering turbulent advection only by the instantaneous eddy events in ODT, it is clear that the only
effects that need to be incorporated in the total time derivative, besides the local Eulerian rate of change ofψ, are
the dilatation effects byuD,j = uD. Due to our 1-D treatment, these dilatation effects are entirely given by the
velocity divergence condition in Eq. (11). We can now relate the velocity divergence condition, and the velocity
itself, to the Lagrangian interface displacement,

uD =
dy

dt
. (19)

Therefore, we can rewrite the divergence condition using a Central Difference Scheme (CDS) as,

dy
dt

∣
∣
∣
i+1/2

− dy
dt

∣
∣
∣
i−1/2

Δyi
= −

1
γiP

dP

dt
+ Ψi . (20)

In order to formulate a consistent discretisation, both Left-Hand Side (LHS) and Right-Hand Side (RHS) must be
frozen at the same time level. The RHS of Eq. (20) is that one of Eq. (11) and includes the time-derivative of
the pressuredP/dt, which must also be calculated at the corresponding time level. Below, we list the algorithmic
solution steps of the ODT equations for the closed system configuration.

1. Start with some initial conditions for the densityρ, pressureP , enthalpyh, compositionYk and ODT veloc-
itiesuj .
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2. Calculate the correspondingdP/dt at the fixed volume initial state (integrating Eq. (11) in Section 2.2),

dP

dt
= −

[

(uD,y=L − uD,y=0) −
∫ y=L

y=0

Ψidy

]
P

∫ y=L

y=0
1
γ dy

. (21)

3. Advance the local Eulerian rate of change for the chemistry (h, Yk) and the kinematics (uj). In this work, a
Strang-Splitting method for the diffusion and reaction operators is used as in Medina M. et al. (2018). This
is done in order to tackle stiff chemistry problems. In principle, a forward Euler time integration would also
be possible.

4. Calculate the resulting pressure at the new thermochemical state. As suggested by Motheau and Abraham
(2016), we use an integral expression for the pressure, which is derived from mass conservation and the
condition of constant mean density in the system (Eq. (13) in Section 2.2). This is still a resulting pressure
in an Eulerian reference frame, thus, the discrete cell volumes are still frozen at this point.

5. Calculate the resulting local density using the new pressure, by means of the ideal gas law.

6. Determine the displacement of the Lagrangian cell interfaces by Eq. (20). Note thatdP/dt must be recal-
culated here. In this case, by using a first-order approximation in time, the resulting cell volumes are given
as

Δyi
n+1 = Δyi

n + Δt

[

Δy∗

(

−
1

γ∗
i P ∗

dP

dt

∗

+ Ψ∗
i

)]

. (22)

7. The last step conforms with a first-order Lie-Splitting treatment for the Lagrangian total time derivative; i.e.
all local rates of change are first calculated on a fixed-volume basis (analogous to an Eulerian treatment),
and afterwards, dilatation effects are taken into account at the end of the time-step. The star marker∗ in the
RHS of Eq. (22) indicates the Eulerian state after the time advancement (Δy∗ = Δyn).

Although it would also be possible to calculate open systems with the above mentioned procedure considering
dP/dt = 0, we use instead the fully conservative approach suggested by Lignell et al. (2013) in this work.
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