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Abstract:Based on the asymptotic homogenization method, the local problems related to two-phase periodic fibrous dielectric
composites with isotropic and complex constituents are solved. A hexagonal periodicity distribution of the fibers is considered.
Explicit formulas for the real and imaginary parts of the effective dielectric properties are derived. Such formulas can be
computed for any desired precision related to a truncation order of an infinite system of algebraic linear equations. Two simple
analytical expressions are specified for the first two truncation orders. Comparisons with results via other approaches show a good
concordance. Hexagonal periodic lattices of acoustic scatterers are useful structures for acoustic applications.
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1 Introduction

The effective conductivity tensor of two-dimensional complex dielectric composites consisting of a hexagonal periodic array of
circular inclusions embedded in a matrix is studied, where both matrix and inclusions have complex dielectric properties. Perfect
contact conditions at the interface between the matrix and the inclusions are considered. This problem is of interest, for instance,
in acoustic applications, see e.g. Guild et al. (2014).
The solution is based on the asymptotic homogenization technique combined with series expansions of elliptic functions. A similar
procedure has been used in recent works. For instance, Godin (2012) solved rigorously the problem for two-dimensional real
dielectric composites using series expansions of Weierstrass’ function and its derivatives depending on unknown real coefficients.
Then, the problem is reduced to an infinite system and found its solution as a convergent power series allowing to obtain analytical
formulas of the effective conductivity tensor for different lattice of inclusions. An analogous procedure was followed in Godin
(2013) for the determination of the effective complex permittivity of a similar two-dimensional composite but with complex
properties of the constituents. In that case the method of undetermined coefficients was used with complex coefficients allowing
the derivation of efficient formulas for the effective properties. Unlike the real case a non-monotonic behavior of the real and
imaginary parts of the effective tensor as function of area fraction of the inclusions is shown. This procedure has been extended
to investigate the macroscopic behavior of periodic tubular structures in Godin (2016) and the propagation of electromagnetic
waves through a two-dimensional composite material containing a periodic rectangular array of circular inclusions by Godin and
Vainberg (2019). These studies have been found relevance in some applications. For instance, the results of Godin (2013) have
been applied in Guild et al. (2014) to acoustics showing a good agreement with experimental data and inertial enhancement. In
Ren et al. (2016), the results of Godin (2013) were used for calculating eddy current losses in soft complex magnetic composites.
Recently, in Bravo-Castillero et al. (2018) the study of the effective behavior of complex dielectric composites was done by the
homogenization of the equivalent system of equations with real coefficients. Closed-form formulas for the effective coefficients
were obtained for a square periodic distribution of the inclusions which were employed to study gain-enhancement and loss
enhancement properties of the homogenized material. This procedure offers independent models to compute the real and imaginary
parts of the effective complex dielectric conductivity. In this work, based on the methodology in Bravo-Castillero et al. (2018),
the effective tensor of two-dimensional complex dielectric is determined for the case of a hexagonal periodic distribution of the
inclusions.
The work is organized as follows. After the Introduction, section 2 is devoted to the statement of the problem. A summary of the
homogenization process, and the models for the local problems and the effective coefficients is presented in section 3. In section 4,
the solution of the local problems is described and the formulas for the real and imaginary part of the effective tensor are derived.
In section 5, some numerical examples are discussed. Finally, some concluding remarks are given in section 6.

2 Statement of the Problem

Let Ω ⊂ R2 be a two-dimensional domain with infinitely smooth boundary ∂Ω. The components of the complex dielectric
permittivity tensor of a two-phase fibrous reinforced composite (FRC) occupying Ω are (αε + iβε)δjl ( j, l = 1, 2) where i2 = −1, δ
? E-mail address: julian@mym.iimas.unam.mx doi: 10.24352/UB.OVGU-2019-020 2019 | All rights reserved.

http://www.ovgu.de/techmech
mailto:julian@mym.iimas.unam.mx
https://dx.doi.org/10.24352/UB.OVGU-2019-020


D. Yañez-Olmos, J. Bravo-Castillero, R. Guinovart-Díaz, A. Ramírez-Torres, R. Rodríguez-Ramos and F.J. Sabina Tech. Mech., Vol. 39, Is. 2, (2019), 220–228

is the Kronecker’s delta, ε is a small geometric parameter that characterizes the periodicity and αε and βε are the real and imaginary
part, respectively. The usual global or slow coordinates x ∈ Ω and local or fast coordinates y with y = x/ε are introduced. A
hexagonal array of the periodic cell Y in global coordinates is considered so that it covers the domain Ω = Ωε1 ∪Ω

ε
2 ∪ Γ

ε where
Γε ≡ ∂Ωε2 and Ωε1 ∩Ω

ε
2 = ∅; Ω

ε
1 represents the matrix or connected set, Ωε2 denotes the fibers or disconnected set (an ε-periodic

distribution of circles of radius Rε) and Γε is the interface between Ωε1 and Ωε2 . The boundary ∂Ω is chosen so that it does not
intersect any fiber of Ωε2 (Fig. 1). Fig 1 also shows a blow-up of the periodic hexagonal cell cross-section Y ⊂ R2 referred as
y-coordinates with an embedded circle of radius R and boundary Γ. Therein, Y1 denotes the matrix or connected set and Y2 the
fiber or disconnected set. The regions Ωε1 and Ωε2 are occupied with two homogeneous materials with different electric permittivity
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Fig. 1: (Left) Domain Ω with boundary ∂Ω. (Centre) A blow-up domain contained in Ω showing a FRC type of geometry in
global coordinates. (Right) Hexagonal cell in y-coordinates.

properties and the jl-components of the electric permittivity tensor are given by

αε + iβε =

α(1) + iβ(1) in Ωε1,

α(2) + iβ(2) in Ωε2 .
(1)

The complex electric potential uε = ϕε + iψε in Ω is sought as ε tends to zero so that Maxwell’s equation in the quasi-static
approximation in absence of free conduction currents are satisfied in Ωε1 and Ωε2 together with continuity of electric potential and
normal component of electric displacement field across the interface Γε . The Dirichlet condition “uε = ũ1 + iũ2” is given on ∂Ω.
The related boundary value problem with complex coefficients is equivalent to the following system of two-coupled real partial
differential equations

∂

∂xj

(
Aε

jl

∂Uε

∂xl

)
= 0 in Ω \ Γε, (2a)

nUεo = 0 on Γε, (2b)�(
Aε

jl

∂Uε

∂xl

)
nj

�
= 0 on Γε, (2c)

Uε = Ũ on ∂Ω, (2d)

where Uε = (ϕε, ψε)T , Ũ = (ũ1, ũ2)
T and 0 = (0, 0)T is the null vector of R2. The superscript T means transposition and the

components of the 2 × 2 symmetric matrix-valued Aε are given by

Aε
11 = αε, Aε

12 = A
ε
21 = −β

ε, Aε
22 = −α

ε, (3)

where Einstein repeated indexes summation convention is adopted. The j-th component of unit normal vector to Γε, denoted
with nj , is taken in the direction from Ωε1 to Ωε2 . The notation n.o is used to denote the jump of the enclosed function across the
interface Γε in the direction of the normal n.

3 Homogenization, Effective Coefficients and Local Problems

Following Bravo-Castillero et al. (2018) a formal asymptotic solution of (2a)–(2d) can be constructed up to O(ε2) as follows

Uε (x) = U(0)(x) + εNk(y)
∂U(0)(x)
∂xk

, (4)

with

U(0)(x) =
(
ϕ(0)(x), ψ(0)(x)

)T and Nk(y) =
(
wk(y) gk(y)
ζk(y) ξk(y)

)
,
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where the 2 × 2 matrices Nk are Y-periodic solutions of the local problems

∂

∂yj

(
A jl (y)

∂Nk(y)
∂yl

+A jk(y)
)
= O in Y \ Γ, (5a)

nNk(y)o = O on Γ, (5b)�(
A jl (y)

∂Nk(y)
∂yl

+A jk(y)
)

nj

�
= O on Γ, (5c)

with 〈Nk(y)〉 = O. In (5a)–(5c), O denotes the 2 × 2 null matrix.
The term U(0) in (4) is the solution of the homogenized problem

Â jk
∂2U(0) (x)
∂xj∂xk

= 0 in Ω, (6a)

U(0) = Ũ in ∂Ω, (6b)

where the effective coefficients Â jl are constants and given by

Â jk =

〈
A jk(y) +A jl(y)

∂Nk(y)
∂yl

〉
. (7)

The angular brackets represent the volume average per unit length over the unit periodic cell, i.e. 〈 f (y)〉 ≡
∫
Y

f (y)dy. The
components of the effective coefficient Â are

Â11 = α̂, Â12 = Â21 = −β̂, Â22 = −α̂. (8)

The effective coefficients α̂ and β̂ can be found by using the following formulas

α̂ =


〈α〉 − nαo

|Y |

∫
Γ
g1dy2 −

nβo
|Y |

∫
Γ
ξ1dy2, for k = 1

〈α〉 + nαo
|Y |

∫
Γ
g2dy1 +

nβo
|Y |

∫
Γ
ξ2dy1, for k = 2

(9a)

β̂ =


〈β〉 −

nβo
|Y |

∫
Γ
g1dy2 +

nαo
|Y |

∫
Γ
ξ1dy2, for k = 1

〈β〉 +
nβo
|Y |

∫
Γ
g2dy1 −

nαo
|Y |

∫
Γ
ξ2dy1, for k = 2

(9b)

where 〈 f 〉 = f1 |Y1 | + f2 |Y2 |, with |Y | = |Y1 | + |Y2 |. The local functions gk and ξk are solutions of the local problems defined as
follows

Problem Ik : Find the Y-periodic functions gk , ξk , such that:

∆gk = 0, ∆ξk = 0, in Y \ Γ, (10a)�
gk
�
= 0,

�
ξk
�
= 0, on Γ, (10b)�(

α
∂ξk

∂yl
+ β

∂gk

∂yl

)
nj

�
= − nαo nk on Γ, (10c)�(

β
∂ξk

∂yl
− α

∂gk

∂yl

)
nj

�
= − nβo nk on Γ, (10d)

with
〈
gk

〉
= 0 and

〈
ξk

〉
= 0. In (10a), ∆ ≡ ∂2

∂y2
1
+ ∂2

∂y2
2
is the two-dimensional Laplace operator in a Cartesian coordinate system.

4 Solution of the Local Problem Ik for Hexagonal Array

In order to solve the problem (10a)–(10d), let us consider a hexagonal lattice of inclusions of radius R (see Fig. 1). Particularly,
doubly-periodic harmonic functions that satisfy the given interface conditions and the null average condition over the hexagonal
cell are sought. Following Guinovart-Díaz et al. (2001), for k = 1, 2, the solutions of the local problems are sought in the form

g1
1 = Re


∞ o∑
q=1

(
a1
qz−q − A1

qzq
) , g1

2 = Re

∞ o∑
q=1

c1
qzq


g2

1 = Im

∞ o∑
q=1

(
a2
qz−q − A2

qzq
) , g2

2 = Im

∞ o∑
q=1

c2
qzq


(11)
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and

ξ1
1 = Re


∞ o∑
q=1

(
b1
qz−q − B1

qzq
) , ξ1

2 = Re

∞ o∑
q=1

d1
qzq


ξ2

1 = Im

∞ o∑
q=1

(
b2
qz−q − B2

qzq
) , ξ2

2 = Im

∞ o∑
q=1

d2
qzq


(12)

where Re and Im indicate the real and imaginary parts, respectively. The superscript o specifies that the sum is carried out over
odd indices, the unknown coefficients ak

q , bkq , ckq and dk
q are real and

Ak
q =

∞ o∑
p=1

pak
pη

k
pq, Bk

q =

∞ o∑
p=1

pbkpη
k
pq, (13)

with

(k = 1) η1
pq =


2π√

3
, p + q = 2

(p + q − 1)!
p!q!

Sp+q, p + q > 2
(k = 2) η2

pq =


−π, p + q = 2

(p + q − 1)!
p!q!

Sp+q, p + q > 2

and Sj are the reticulate sums given by

Sp+q =
∑

n2+m2,0

1
(mω1 + nω2)

p+q ,

where ω1 = 1 and ω2 = e
π
3 i are the periods. As the cross-section of the inclusion is described by a circle of radius R, the interface

in the unit cell is defined by Γ = Reiθ with 0 ≤ θ < 2π, then substituting (11)–(12) into the interface conditions (10b)–(10d), one
obtain the following infinite system of algebraic equations

©­«
I + (−1)k+1 χαWk χ+βαI + (−1)k+1 χ−βαWk

χ+βαI + (−1)k+1 χ−βαWk −
(
I + (−1)k+1 χαWk

) ª®¬
(
Ãk

B̃k

)
= (−1)k+1

(
V1

V2

)
, (14)

where I is the infinite identitymatrix, Ãk = (ãk
1, ã

k
3, . . .)

T , B̃k = (b̃k1, b̃
k
3, . . .)

T , ak
q = ãk

qRq/
√

q, bkq = b̃kqRq/
√

q,V1 = (χαR, 0, . . .)T ,
V2 = (χ−βαR, 0, . . .)T , and

(k = 1) W1 =


2π√

3
R2, p + q = 2

∞ o∑
p=1

√
pqη1

pqRp+q, p + q > 2.
(k = 2) W2 =


−πR2, p + q = 2
∞ o∑
p=1

√
pqη2

pqRp+q, p + q > 2.

Furthermore,

χα =
nαo

α(1) + α(2)
, χ+βα =

β(1) + β(2)

α(1) + α(2)
and χ−βα =

nβo
α(1) + α(2)

. (15)

The matrix Wk, k = 1, 2 is real, symmetric and bounded, and consequently the classical results from the theory of infinite systems
Kantorovich and Krylov can be used to solve (14). In this sense, the infinite linear system can be truncated into an appropriate
order p = q = 2no − 1, with no ∈ N. In this way, (14) is transformed into a linear system of order 2no. Now, the use of (11) and
(12) into (9a) and (9b) leads to,

α̂ = α(1) − (−1)k+1 2π
|Y |

(
α(1)ak

1 + β
(1)bk1

)
, (16a)

β̂ = β(1) − (−1)k+1 2π
|Y |

(
β(1)ak

1 − α
(1)bk1

)
. (16b)

For the particular case of real dielectric composites with isotropic constituents (i.e., for β(1), β(2) = 0 ), the formulas for the effective
coefficients (16a)–(16b) reduce to formulas (3.15)–(3.16), p . 228 in Guinovart-Díaz et al. (2001).
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5 Analytical Formulas, Numerical Examples and Some Comparisons

5.1 Analytical Formulas

Following Bravo-Castillero et al. (2018), the system (14) can also be written as follows(
ηI + (−1)k+1λWk

) (
Ãk

B̃k

)
= (−1)k+1

(
V1

V2

)
, (17)

where

η =

(
1 χ+βα
χ+βα −1

)
, λ =

(
χα χ−βα
χ−βα −χα

)
, I =

(
I Θ

Θ I

)
and Wk =

(
Wk Θ

Θ Wk

)
,

with Θ denoting the infinite null matrix. After multiplication of (11) by λ−1 and noticing that λ−1(V1,V2)T = Re1, where e1 is the
infinite vector (1, 0, 0, . . .)T . Then, equation (17) becomes(

Ãk
no

B̃k
no

)
= (−1)k+1(θIno + (−1)k+1Wk

no
)−1ReT2no, (18)

or equivalently

(
Ãk

no
B̃k
no

)
= (−1)k+1

(
θ11Ino + (−1)k+1Wk

no
θ12Ino

−θ12Ino θ11Ino + (−1)k+1Wk
no

)−1

ReT2no, (19)

where the sub-index no represents the truncation order of the vectors Ãk , B̃k , e1, and the matrices I andWk . The matrix θ = λ−1η
has the form

θ =

(
θ11 θ12
−θ12 θ11

)
, (20)

and its components are

θ11 =
χα + χ

−
βα χ

+
βα

(χα)2 + (χ
−
βα)

2 and θ12 =
χα χ

+
βα − χ

−
βα

(χα)2 + (χ
−
βα)

2 . (21)

Using the finite system (19), we find the unknowns Ãk
no

and B̃k
no

for different orders of truncation, which are then substituted into
the effective coefficients expressions (16a)–(16b). In this way, formula (19) is helpful in finding closed-forms for the effective
coefficients.

1. If no = 1, equation (19) takes the form

(
ãk

1

b̃k1

)
= (−1)k+1

(
θ11 + (−1)k+1Wk

11 θ12

−θ12 θ11 + (−1)k+1Wk
11

)−1 (
R

0

)
, (22)

where Wk
pq denote the elements of Wk . Then,

ãk
1 = (−1)k+1 (θ11 + (−1)k+1Wk

11)R

(θ11 + (−1)k+1Wk
11)

2 + θ2
12
, (23a)

b̃k1 = (−1)k+1 θ12R
(θ11 + (−1)k+1Wk

11)
2 + θ2

12
. (23b)

Substitution of equations (23a)–(23b) in the expressions for the effective coefficients (16a)–(16b) yields

α̂ = α(1) −
2(α(1)θ11 + β

(1)θ12)Y2 + 2α(1)Y2
2

(θ11 + Y2)2 + θ
2
12

, (24a)

β̂ = β(1) −
2(β(1)θ11 − α

(1)θ12)Y2 + 2β(1)Y2
2

(θ11 + Y2)2 + θ
2
12

, (24b)

where Vγ is the volume fraction of the phase γ. Particularly, Y1 + Y2 =
√

3
2 with Y2 = πR2.

224



D. Yañez-Olmos, J. Bravo-Castillero, R. Guinovart-Díaz, A. Ramírez-Torres, R. Rodríguez-Ramos and F.J. Sabina Tech. Mech., Vol. 39, Is. 2, (2019), 220–228

2. If no = 2, equation (19) takes the form

©­­­«
ãk

1
ãk

3
b̃k1
b̃k3

ª®®®¬ = (−1)k+1
©­­­«
θ11 + (−1)k+1w11 0 θ12 0

0 θ11 + (−1)k+1w33 0 θ12
−θ12 0 θ11 + (−1)k+1w11 0

0 −θ12 0 θ11 + (−1)k+1w33

ª®®®¬
−1 ©­­­«

R
0
0
0

ª®®®¬ . (25)

To find ã1
1, ã1

3, b̃1
1 and b̃1

3, the above linear system (25) must be solved. Then, the coefficients ã1
1 and b̃1

1 are substituted into the
effective coefficients expressions (16a)–(16b).

5.2 Numerical Examples

Now, we compare the effective coefficients (16a)–(16b) for successive truncation orders no = 1, 2, 3, 4. In particular, we fix

κ(1) = 1 − 5i κ(2) = 30 − 0.3i,

and denote by Vp =
π
4 the percolation limit where the cylinders are in contact. Fig 2 and 3 displays the real and imaginary

parts of the effective complex dielectric coefficient κ̂ as a function of the inclusion volume fraction Vo. It is observed that the
first approximation is a very good estimation of the complex effective dielectric coefficient for Vo < 0.7. Besides, the effective
coefficients for a truncation order at no = 3 and 4 are quite similar. This agreement shows that the second order approximation is
good enough for higher orders of approximations. Therefore, in what follows, we restrict our analysis to first, second and third
approximation orders of the effective coefficients.
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Fig. 2: The real part of the complex effective dielectric coefficient κ̂ as a function of the volume fraction Y2 shown for successive
truncation orders no = 1, 2, 3, 4.
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Fig. 3: The imaginary part of the complex effective dielectric coefficient κ̂ as a function of the volume fraction Y2 shown for
successive truncation orders no = 1, 2, 3, 4.
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5.3 Comparisons

We compare our results with those obtained in Godin (2013) for

κ(1) = 2 − 0.3i and κ(2) = 1 − 8i.

The approximation to the real (imaginary) part of the complex effective coefficient reported in Godin (2013), are determined by

α̂ = Re (ε∗) and β̂ = Im (ε∗) , (26)

where

ε∗ = κ(1)
1 + αλ f
1 − αλ f

,

and

α =
κ(2) − κ(1)

κ(2) + κ(1)
, f =

2
√

3
πR2 =

2
√

3
Y2, λ = 1 + 5α2S2

3 R12 + α2
(
25α2S4

3 + 11S2
6

)
R24 +O

(
R36

)
and while the only non-zero real lattice sums are S3k, k = 1, 2, ..., here

S3 =
∑

n2+m2,0

1(
m + ne

π
3 i

)6 ≈ 5.86303 S6 =
∑

n2+m2,0

1(
m + ne

π
3 i

)12 ≈ 6.00964.

As it was pointed out in the previous section, it is sufficient to work up to a truncation order of no = 3. Fig 4 and 5 show the
comparison between the results using the present approach and those from Godin (2013). In particular, we note that the second
order approximation of the effective coefficients agrees with the result in Godin (2013), whereas the results using a first order
truncation is close to the data reported in Godin (2013). These comparisons assure the use of the obtained short formulas arising
from (19) to investigate the complex effective dielectric coefficient.
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Fig. 4: Comparison of the real part of the complex effective dielectric coefficient κ̂ depending on the volume fraction Y2 calculated
using (16a)–(16b) truncated at no = 1, 2, 3. Also plotted the results from Godin (2013).
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Fig. 5: Comparison of the imaginary part of the complex effective dielectric coefficient κ̂ depending on the volume fraction Y2
calculated using (16a)–(16b) truncated at no = 1, 2, 3. Also plotted the results from Godin (2013).

6 Concluding Remarks

A system of two equations with real periodic and rapidly oscillating coefficients (2a)–(2d) is studied via asymptotic homogenization
for predict the macroscopic behavior of two-phase fibrous dielectric composites wherein the constituents exhibit complex dielectric
isotropy. Series expansions of complex potentials with unknown real coefficients (11)–(12) are used to solve the local problems
(10a)–(10d) for a hexagonal periodic distribution of the fibers. The unknown coefficients are solutions of an infinity system of
linear algebraic equations (14). An explicit solution (19) of the infinite system was derived for any truncation order. Formula (19)
is useful in finding closed-forms expressions for the effective coefficients. Therefore, two simple analytical formulas (24a)–(24b)
and (25) are specified for the two first truncation order. Numerical examples illustrated a very good concordance of such formulas
with those reported in Godin (2013). These results could be useful for acoustic applications wherein hexagonal periodic lattices of
acoustic scatterers structures are present Guild et al. (2014). Besides, these formulas can be used for estimating gain and loss
enhancement properties of active and passive composites in certain volume fraction intervals as in Bravo-Castillero et al. (2018).
Besides it is interesting to mention that results display for either the real part of the effective dielectric coefficient a monotonic
behavior and the imaginary part a non-monotonic one, or the opposite. Some examples show gain- or loss-enhancement properties.
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