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Application of the Classical Beam Theory for Studying 
Lengthwise Fracture of Functionally Graded Beams 
 
 
V. Rizov, H. Altenbach  
 
 
The present paper deals with analysis of lengthwise cracks in linear-elastic functionally graded beam 
configurations. A general approach for deriving of the strain energy release rate is developed by applying the 
classical beam theory. A crack located arbitrary along the beam thickness is considered, i.e. the crack arms 
have different thicknesses. The approach holds for beams which are functionally graded in the thickness 
direction (the modulus of elasticity can be distributed arbitrary along the thickness of the beam). The approach 
is applied to analyze the strain energy release rate for a lengthwise crack in a functionally graded cantilever 
beam. The beam is loaded by one concentrated force applied at the free end of the upper crack arm. An 
exponential law is used to describe the continuous variation of the modulus of elasticity along the beam 
thickness. The solution to the strain energy release rate in the cantilever beam is verified by applying the J-
integral approach. The solution is verified further by using the compliance method for deriving the strain energy 
release rate. The effects of crack location along the beam thickness, crack length and material gradient on the 
strain energy release rate in the functionally graded cantilever beam are analyzed by applying the solution 
derived.     
 
 
 
1 Introduction 
 
The quick development of engineering demands an extensive use of high performance structural materials such 
as functionally graded materials. The novel inhomogeneous composites known as functionally graded materials 
are composed of two or more constituent materials. The basic idea of the functionally graded materials is that by 
allowing a gradual variation of the composition of the constituent materials in one or more spatial directions, the 
material properties are modified to meet different material performance requirements in different parts of a 
structural member (Gasik, 2010; Jha et al., 2013; Knoppers et al., 2003; Mahamood and Akinlabi, 2017; 
Miyamoto et al., 1999; Nemat-Allal et al., 2011; Wu et al., 2014; Zhang et al., 2011). Thus, it is not surprising 
that application of functionally graded materials as advanced structural materials in the practical engineering has 
increased significantly for the last three decades.  
 
Understanding the fracture behaviour is very important for the structural applications of functionally graded 
materials (Carpinteri and Pugno, 2006; Dolgov, 2005; Dolgov, 2016; Erdogan, 1995; Paulino, 2002; Rizov, 
2017; Rizov, 2018; Tilbrook et al., 2005; Upadhyay and Simha, 2007; Uslu Uysal and Güven, 2016). The 
presence of cracks drastically reduces the load-bearing capacity of functionally graded structural members and 
components. Also, the structural integrity and reliability of functionally graded materials and structures 
essentially depend upon their fracture behaviour. Therefore, development of methods for fracture analyses is vital 
for evaluation of operational performance of functionally graded engineering structures. 
   
The present paper aim is to develop an approach for analyzing the lengthwise fracture behaviour of functionally 
graded beams in terms of the strain energy release rate by applying the classical linear-elastic beam theory. 
Analyses of lengthwise fracture are needed since some functionally graded materials can be built-up layer by 
layer (Mahamood and Akinlabi, 2017) which is a premise for appearance of lengthwise cracks between layers. It 
should be mentioned that while the previous publications (Rizov, 2017; Rizov, 2018) are focussed on analyzing 
the strain energy release rate for lengthwise cracks in individual beam configurations, the present paper develops 
a general approach for the strain energy release rate. The beams under consideration are functionally graded in 
the thickness direction (it is assumed that the modulus of elasticity varies continuously along the beam thickness). 
The general approach developed is applicable for a lengthwise crack located arbitrary along the beam thickness. 
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Besides, the law that describes the distribution of the modulus of elasticity in the thickness direction is arbitrary. 
The approach is used to calculate the strain energy release rate for a functionally graded cantilever beam 
configuration containing a lengthwise crack. The J-integral method is applied to verify the solution to the strain 
energy release rates. The solution is verified also by using the compliance method. Parametric investigations are 
performed in order to evaluate the effects of various material and geometrical parameters on the lengthwise 
fracture behaviour. 
 
 
 
2 Deriving of the Strain Energy Release Rate    
 
A portion of a functionally graded beam containing a lengthwise crack is shown in Figure 1. The beam has a 
rectangular cross-section of width, b , and thickness, h2 . The thicknesses of the lower and upper crack arms are 

denoted by 1h  and 2h , respectively.  

 
Figure 1. Portion of a functionally graded beam with a lengthwise crack ( a∆  is a small increase of the crack 

length, 1h  and 2h  are, respectively, the thicknesses of the lower and upper crack arms). 
 
The bending moment and axial force in the beam cross-section ahead of the crack tip are denoted by M  and 
N , respectively. In order to derive the strain energy release rate, G , a small increase, a∆ , of the crack length 
is assumed. The strain energy release rate is written as 
 

            
A
UG
∆
∆

−= ,                                                                                                                                            (1) 

 
where U∆  is the change of the strain energy, A∆  is the increase of crack area.  Since 
 
           abA ∆=∆ ,                                                                                                                                              (2) 
 
formula (1) is re-written as 
 

           
ab

UG
∆
∆

−= .                                                                                                                                            (3) 

 
The change of the strain energy is expressed as a difference between the strain energy cumulated in the beam 
portion of length, a∆ , before the increase of crack and the strain energy cumulated in the portions of two crack 
arms of length, a∆ , behind the crack tip 
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where 01u , 02u  and 03u  are, respectively, the strain energy densities in the lower and upper crack arms and the 

un-cracked beam portion ahead of the crack tip, 1z , 2z  and 3z  are, respectively, the vertical centroidal axes of 
the cross-sections of lower and upper crack arms and the un-cracked beam portion. By combining of (3) and (4), 
one arrives at the following expression for the strain energy release rate: 
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Figure 2. Cross-section of the lower crack arm ( 11 nn −  is the position of the neutral axis).  

 
The strain energy density in the cross-section of lower crack arm behind the crack tip is written as 
 

            σε
2
1

01 =u ,                                                                                                                                            (6) 

 
where σ  is the normal stress, ε  is the lengthwise strain. The normal stress is obtained by applying the Hooke’s 
law 
 
           εσ E= ,                                                                                                                                                   (7) 
 
where the modulus of elasticity, E , is distributed continuously in the thickness direction 
 
         ( )1zEE = .                                                                                                                                                 (8) 
 
Beams of high length to thickness ratio are considered in the present paper. Therefore, according to the 
Bernoulli’s hypothesis for plane sections the lengthwise strain is distributed linearly along the thickness of the 
lower crack arm 
 
        ( )

1111 nzz −= κε ,                                                                                                                                        (9) 
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where 1κ  is the curvature of the lower crack arm, 

11nz  is the coordinate of the neutral axis (Figure 2). It should 
be mentioned that the neutral axis shifts from the centroid since the material is functionally graded in the 
thickness direction and, also, the beam is under combination of axial force and bending moment.   
   
The curvature and the coordinate of the neutral axis of the lower crack arm are determined from the following 
equations for equilibrium of the cross-section: 
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where 1N  and 1M  are, respectively, the axial force and the bending moment in the cross-section of the lower 
crack arm behind the crack tip. In equations (10) and (11), σ  is determined by the Hooke’s law (7). Equations 
obtained after solving the integrals in (10) and (11) for a particular law for distribution of the modulus of 
elasticity along the beam thickness should be solved with respect to the curvature and the coordinate of the 
neutral axis.  
 
By substituting of (7), (8) and (9) in (6), one obtains the following expression for the strain energy density in the 
lower crack arm: 
 

          ( ) ( )1

2

01 1 1 1 1
1
2 nu E z z zκ = −  .                                                                                                            (12) 

 
Formula (12) is applied also to calculate the strain energy density in the cross-section of the upper crack arm 
behind the crack tip. For this purpose, 1z , 1κ  and 

11nz  are replaced, respectively, with 2z , 2κ  and 
22nz  

where 2κ  and 
22nz  are the curvature of the upper crack arm and the coordinate of neutral axis of the upper 

crack arm. Equilibrium equations (10) and (11) are used to determine 
22nz  and 2κ . For this purpose, 1N , 

1M , σ , 2/1h  and 1z  are replaced, respectively, with 2N , 2M , gσ , 2/2h  and 2z  where 2N  and 

2M  are the axial force and the bending moment in the cross-section of the upper crack arm behind the crack 

tip, gσ  is the normal stress in the upper crack arm. The Hooke’s law (7) is applied to determine gσ  (the 

lengthwise strain is obtained by replacing of 1z , 1κ  and 
11nz with 2z , 2κ  and 

22nz in formula (9)).  
 
Formula (12) is used also to determine the strain energy density in the beam cross-section ahead of the crack tip 
by replacing of 1z , 1κ  and 

11nz , respectively, with 3z , 3κ  and 
33nz . The curvature, 3κ , and the 

coordinate of the neutral axis, 
33nz , of the beam cross-section ahead of the crack tip are obtained after replacing  

of 1N , 1M , σ , 2/1h  and 1z , respectively, with N , M , rσ , h  and 3z  in equilibrium equations 

(10) and (11). The normal stress, rσ , in the beam cross-section ahead of the crack tip is found by (7). The 

distribution of lengthwise strain is determined by (9). For this purpose, 1z , 1κ  and 
11nz  are replaced with 

3z , 3κ  and 
33nz , respectively.  
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Finally, the strain energy densities in the two crack arms and in the beam cross-section ahead of the crack front 
are substituted in formula (5) to calculate the strain energy release rate. It should be noted that (5) is applicable 
for various functionally graded beam configurations, loading conditions and laws for distribution of the modulus 
of elasticity along the beam thickness. Besides, the lengthwise crack can be located arbitrary along the beam 
thickness.            
 
 
 
3 Numerical Example  
 
This section of the paper presents numerical results obtained by investigating the lengthwise fracture behaviour 
of a functionally graded cantilever beam configuration by applying the approach for analysis of the strain energy 
release rate developed in section 2. 

 
Figure 3. Functionally graded cantilever beam with a lengthwise crack of length, a . 

 
The cantilever beam configuration shown in Figure 3 is considered. A lengthwise crack of length, a , is located 

arbitrary along the beam thickness. Thus, the two crack arms have different thicknesses denoted by 1h  and 2h . 
The length of beam is l . The cross-section of beam is a rectangle of width, b , and thickness, h2 . The beam is 
clamped in its right-hand end. The beam is loaded by one concentrated force, F , applied at the free end of the 
upper crack arm (the angle of orientation of F  is denoted by β ). The lower crack arm is free of stresses. Thus, 
 
            001 =u .                                                                                                                                                 (13) 
 
It is assumed that the modulus of elasticity is distributed continuously along the beam thickness according to the 
following exponential law: 
 

            ( ) h
zhs

eEzE 2
04

4+

= ,                                                                                                                                (14) 
 
where 
 
            hzh ≤≤− 4 .                                                                                                                                       (15) 
 
Axis, 4z , is shown in Figure 3. In (14),  0E  is the value of modulus of elasticity in the upper surface of the 
beam, s  is a material property that controls the material gradient along the beam thickness.    
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The fracture behaviour is analyzed in terms of the strain energy release rate by using formula (5). The strain 
energy density in the cross-section of the upper crack arm behind the crack tip is obtained by applying (12). 
Equations (10) and (11) are used to determine the curvature and the coordinate of the neutral axis. In order to 
carry-out the integration in (10) and (11), the modulus of elasticity has to be presented as a function of 2z . For 
this purpose, (14) is re-written as 
 

             ( ) h
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s

eEzE 2
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= ,                                                                                                                             (16)   
 
where 
 
          2/2/ 222 hzh ≤≤− .                                                                                                                          (17) 
 
After replacing of 1N , 1M , σ , 2/1h  and 1z  with 2N , 2M , gσ , 2/2h  and 2z , and substituting 
of (7), (9) and (16) in (10) and (11), one derives the following equations: 
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where ( )hs 2/=θ , ( )hsh 4/2=h . It follows from Figure 3 that 
 
          βsin2 FN = ,                                                                                                                                        (20)  
 

          ββ sin
2

cos 2
2

hFFaM −= .                                                                                                             (21)   

 
Equations (18) and (19) are solved with respect to 2κ  and 

22nz  by using the MatLab computer program. Then 

the strain energy density in the upper crack arm is obtained by substituting of (16), 2z , 2κ  and 
22nz  in (12).  

 
Equations (18) and (19) are used also to determine 3κ  and 

33nz . For this purpose, 2M , 2κ , 2h  and 
22nz  

are replaced, respectively, with 3M , 3κ , h2  and 
33nz  where ββ sincos3 FhFaM −= , and then 

equations (18) and (19) are solved with respect to 3κ  and 
33nz . The strain energy density in the un-cracked 

beam portion is obtained by substituting of (14), 3z , 3κ  and 
33nz  in (12).    

 
By substituting of 01u , 02u  and 03u  in (5), one derives the following expression for the strain energy release 
rate in the functionally graded cantilever beam configuration (Figure 3): 
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where 2/1 s=η .  
 
The solution to the strain energy release rate (22) is verified by applying the J-integral method (Broek, 1986). 
The J-integral is solved along the integration contour, Γ , shown in Figure 3. The J-integral solution is written as 
 
         

32 ΓΓ += JJJ ,                                                                                                                                         (23) 
 
where 

2Γ
J  and 

3Γ
J  are, respectively, the J-integral values in segments, 2Γ  and 3Γ , of the integration contour 

( 2Γ  and 3Γ  coincide with cross-sections of the upper crack arm and the un-cracked beam portion, respectively).  
 
The J-integral in segment, 2Γ , is written as  
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where 

2Γ
α  is the angle between the outwards normal vector to the contour of integration in segment, 2Γ , and the 

crack direction, 
2Γxp  and 

2Γyp  are the components of the stress vector, u and v are the components of the 

displacement vector with respect to the coordinate system xy, and 
2Γ

ds  is a differential element along the 
contour of integration. The components of (24) are written as 
 
           ggx Ep εσ −=−=

Γ2
,                                                                                                                           (25) 
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           gx
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           1cos

2
−=Γα .                                                                                                                                        (29)   

 
In (25) and (28), the longitudinal strain, gε , is determined by replacing of 1z , 1κ  and 

11nz with 2z , 2κ  

and 
22nz  in formula (9) where the coordinate, 2z , varies in the interval ]2/;2/[ 22 hh− .   

 
By substituting of 02u , (25) – (29) in (24), one derives 
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The solution of the J-integral in segment, 3Γ , of the integration contour (Figure 3) is obtained also by (30). For 

this purpose, 2h , 2κ , η  and 
22nz  are replaced with h2 , 3κ , 1η  and 

33nz , respectively. Also, the sign 

of (30) is set to „minus” because the integration contour is directed upwards in segment, 3Γ .   
 
 It should be noted that the J-integral solution obtained by substituting of 

2Γ
J  and 

3Γ
J  in (23) is exact match 

of the solution to the strain energy release rate (22). This fact is a verification of the analysis developed in the 
present paper.   
 
The solution to the strain energy release rate (22) is verified further by applying the compliance method. 
According to this method, the strain energy release rate is expressed as 
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where C  is the compliance. For the cantilever beam configuration shown in Figure 3 the compliance is written 
as 
 

          
F
wC= ,                                                                                                                                                    (32) 

 
where w  is the projection of the displacement of the application point of the force, F , on the direction of F . 
By applying the integrals of Maxwell-Mohr, w  is obtained as 
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where the lengthwise axis, 4x , is shown in Figure 3. By substituting of (32) and (33) in (31), one derives 
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where 2κ  and 3κ  are determined from equations (18) and (19).  
 
The strain energy release rates obtained by (34) are exact matches of these calculated by (22) which is a 
conformation for the correctness of the present analysis.  
 
Influence of different factors such as the crack location along the beam thickness, orientatrion of F , material 
gradient and crack length on the lengthwise fracture behaviour of the functionally graded cantilever beam is 
evaluated. For this purpose, calculations of the strain energy release rate are performed by applying solution (22). 
The strain energy release rates obtained are presented in non-dimensional form by using the formula 

( )bEGGN 0/= . The calculations are carried-out assuming that 10=F  N,  005.0=b  m and 100.0=l  
m.  
 



 237 

The inluence of the orientation of F  on the fracture is investigated. For this purpose, the strain energy release 

rate is calculated assuming that oo 900 ≤≤ β . The strain energy release rate is plotted in non-dimensional form 
against β  in Figure 4 at three bh /2  ratios. Figure 4 shows that the strain energy release rate decreases with 
increasing of β . The increase of bh /2  ratio leads also to decrease of the strain energy release rate (Figure 4).    

 
Figure 4. The strain energy release rate in non-dimensional form plotted against β  (curve 1 - at 6.0/2 =bh ,  

curve 2 - at 8.0/2 =bh  and curve 3 - at 0.1/2 =bh ). 
 
The effects of the crack location along the beam thickness and the crack length on the fracture behaviour are 
analyzed.  

 
Figure 5. The strain energy release rate in non-dimensional form plotted against la /  ratio (curve 1 - at 

3.02/2 =hh ,  curve 2 - at 5.02/2 =hh  and curve 3 - at 7.02/2 =hh ). 
 
The crack location along the beam thickness is characterized by hh 2/2  ratio. The ratio, la / , characterizes the 

crack length. The strain energy release rate is calculated at three hh 2/2  ratios for various la /  ratios.  The 
effects of crack location and the crack thickness on the lengthwise fracture are illustrated in Figure 5 where the 
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strain energy release rate in non-dimensional form is plotted against la /  ratio at three hh 2/2  ratios for 
2.0=s  and 0=β . The curves in Figure 5 indicate that the strain energy release rate increases with increasing 

of la /  ratio. Concerning the effect of crack location along the beam thickness, Figure 5 shows that the strain 
energy release rate decreases with increasing hh 2/2  ratio (this behaviour is due to the increase of the stiffness 

of the upper crack arm with increasing of hh 2/2  ratio).  

 
Figure 6. The strain energy release rate in non-dimensional form plotted against s (curve 1 - at 6=F  N, curve 2 

- at 8=F  N and curve 3 - at 10=F  N). 
 
The effect of the material gradient along the beam thickness on the fracture is analyzed too. The material gradient 
is characterized by the parameter, s .  

 
Figure 7. The strain energy release rate in non-dimensional form plotted against hl 2/  ratio (curve 1 – by 

applying the classical beam theory, curve 2 – by applying the asymptotically exact beam theory). 
 

The strain energy release rate is calculated at various s  for three values of the external force, F . Figure 6 
shows the strain energy release rate plotted in non-dimensional form against s  at three values of F  for 
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3.02/2 =hh . One can observe in Figure 6 that the strain energy release rate decreases with increasing of s . 
This behaviour is attributed to the increase of the beam stiffness. The increase of the external force leads also to 
increase of the strain energy release rate (Figure 6).  
 
The strain energy release rate is calculated also by applying the asymptotically exact beam theory (Le, 2017) and 
the results obtained are compared with the strain energy release rate derived by solution (22) that is based on the 
classical beam theory which uses the Bernoulli’s hypothesis. The functionally graded linear-elastic cantilever 
beam configuration shown in Figure 3 is considered. In order to evaluate the effects of the length to thickness 
ratio of the beam on the lengthwise fracture behaviour, the strain energy release rate calculated by formula (22) 
and the exact asymptotic beam theory is plotted in non-dimensional form against hl 2/  ratio in Figure 7. The 
curves in Figure 7 indicate that the strain energy release rate increases with increasing of hl 2/  ratio. Also, it is 
evident from Figure 7 that the strain energy release rate derived by using the classical beam theory is in a very 
good agreement with the results obtained by applying the asymptotically exact beam theory at 52/ ≥hl .  
   

 
 

4 Conclusions 
 
A lengthwise fracture in functionally graded beams is analyzed in terms of the strain energy release rate. The 
beams under consideration are functionally graded in the thickness direction (the modulus of elasticity varies 
continuously along the beam thickness). It is assumed that the material has linear-elastic behaviour. A general 
approach for analysis of the strain energy release rate is developed by applying the classical linear-elastic beam 
theory. The approach is applicable for a crack that is located arbitrary along the beam thickness (the two crack 
arms have different thicknesses). Thus, the approach can be used to investigate the effect of the crack location on 
the strain energy release rate for lengthwise cracks in functionally graded beam configurations. Also, the 
approach is applicable for arbitrary distribution of the modulus of elasticity in the thickness direction of the 
beam. The strain energy release rate for a lengthwise crack in a functionally graded cantilever beam is analyzed 
by using the general approach. The cantilever beam is loaded by one force applied at the free end of the upper 
crack arm. The crack is located arbitrary along the beam thickness. The continuous variation of the modulus of 
elasticity along the beam thickness is described by applying an exponential law. The J-integral approach is used 
to verify the solution to the strain energy release rate in the cantilever beam. A further check of the solution is 
carried-out by applying the compliance method. The influence of the crack location along the beam thickness, the 
orientation of F , the crack length and the material gradient on the strain energy release rate in the cantilever 
beam is analyzed by using the solution. The calculations show that the strain energy release rate decreaeses with 
increasing of β . The increase of bh /2  ratio leads also to decrease of the strain energy release rate. The 
analysis reveals that the strain energy release rate decreases with increasing the thickness of the upper crack arm. 
It is found that increase of the crack length leads to increase of the strain energy release rate. The material 
gradient in the thickness direction is characterized by the parameter, s . The investigation shows that the strain 
energy release rate decreases with increasing of s . 
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