Die Berechnung von thermoelastischen Spannungsrelaxationen für Kolben von Verbrennungsmotoren

A. F. Schechowzow; P. P. Gontarowskij; Ju. I. Matjuchin; F. I. Ambramtschuk; W. A. Pylew;

Eine weitere Leistungssteigerung von Verbrennungsmotoren ist kaum möglich, wenn es nicht gelingt, die Lebensdauer der Brennraumteile bei Berücksichtigung der Zunahme der in ihnen auftretenden Temperaturen und Spannungen zu sichern. Dieses Problem läßt sich nur bei möglichst vollständiger Einbeziehung aller Faktoren, die auf die Arbeitsfähigkeit der Bauteile wirken, lösen. Untersuchungen an Materialien für Brennraumteile von Hochleistungsmotoren zeigten, daß im Bereich der Arbeitstemperaturen und -spannungen Kriech- und Relaxationserscheinungen auftreten [1], was zu verschiedenartigen Verfestigungen des Materials und zur Abnahme der Dauerfestigkeit der erwähnten Bauteile führen kann. Zur Abschätzung der Faktoren, die Auswirkungen auf die Lebensdauer des Kolbens haben, wurden Untersuchungen zur Kinetik des Spannungs-Deformationszustandes für den Dieselmotor 4 4H 12/14 während des Kriechprozesses mit Hilfe des Programmsystems [2] durchgeführt. Dieses ist für die Lösung von axialsymmetrischen Aufgaben des thermischen Kriechens geeignet. Die Linearisierung der Anfangs-Randwertaufgabe erfolgte für jeden Zeitschritt.

Zur Lösung der Randwertaufgabe wurde die Finite-Elemente-Methode (FEM) verwendet. Diese gestattet die Berücksichtigung komplizierter Geometrie, beliebiger Randbedingungen sowie der Abhängigkeit der thermomechanischen Eigenschaften des Kolbenwerkstoffs von der Temperatur.

Die Ergebnisse der Wärmeleitungsaufgabe werden zur Ermittlung des thermoelastischen Zustands des Kolbens unter Berücksichtigung der Kriechdeformationen verwendet. Dabei gibt es die Möglichkeit für mehrere Zeitschritte der Wärmeleitungsaufgabe einen Schritt für die Lösung der Aufgabe über das thermische Kriechen zu realisieren. Dies ist insbesondere für Übergangsprozesse notwendig, wenn die Zeitschritte klein sind und die Kriechdeformationen nicht wesentlich werden. Nach Übergang zum stationären Bereich bleibt das Temperaturfeld konstant und die Einbeziehung der Wärmeleitungsaufgabe wird damit gegenstandslos. Für diesen Bereich werden die Zeitschritte wesentlich vergrößert und es wird die Lösung der Aufgabe über das thermische Kriechen zur Bestimmung der Kinetik des Spannungszustandes mit der Zeit ermittelt.

Bei der Lösung der nichtlinearen stationären Wärmeleitungsaufgabe ist es notwendig. einen Iterationsprozeß zur Konkretisierung der Werkstoffeigenschaften in Abhängigkeit von der ermittelten Temperatur zu realisieren. Bei der Lösung der instationären Aufgabe ändert sich das Temperaturfeld von Schritt zu Schritt unwesentlich und bei der Ermittlung der thermophysikalischen Werkstoffeigenschaften reicht es aus, die Temperatur des vorhergehenden Schrittes zu verwenden.

Obwohl das Programmsystem [2] größere Möglichkeiten als die in der vorliegenden Arbeit verwendeten hat, werden hier nur kurz die mathematischen Beziehungen der Kontinuumsmechanik angeführt, die in Beziehung zum hier betrachteten Problem stehen. Der Zeitschritt $\Delta t_i = t_{i+1} - t_i$ bei der Lösung der Aufgabe über das thermische Kriechen wird so ausgewählt, daß in den Grenzen dieses Intervalls die Änderung des Spannungs-Deformationszustandes des Kolbens verhältnismäßig gering ist. Zur Ermittlung der Verschiebungszuwüchse in den Knoten der finiten Elemente für jeden Zeitschritt wird das Lagrangesche Variationsprinzip in den Zuwüchsen [3] verwendet, was im Falle des axialsymmetrischen Spannungszustandes wie folgt aufgeschrieben werden kann

$$\int_{S} \int (\Delta \sigma_{\mathbf{r}} \delta \Delta \epsilon_{\mathbf{r}} + \Delta \sigma_{\Theta} \delta \Delta \epsilon_{\Theta} + \Delta \sigma_{\mathbf{z}} \delta \Delta \epsilon_{\mathbf{z}} + \Delta \tau_{\mathbf{rz}} \delta \Delta \gamma_{\mathbf{rz}}) \mathbf{r} \, d\mathbf{s} - \int_{L_{\mathbf{r}}} \Delta \mathbf{p}_{\mathbf{r}} \delta \Delta \mathbf{u}_{\mathbf{r}} \mathbf{r} \, d\mathbf{L} - \int_{L_{\mathbf{z}}} \Delta \mathbf{p}_{\mathbf{z}} \delta \Delta \mathbf{u}_{\mathbf{z}} \mathbf{r} \, d\mathbf{L} + \qquad (1)$$

$$+ \int_{S} \int (\sigma_{\mathbf{r}} \delta \Delta \epsilon_{\mathbf{r}} + \sigma_{\Theta} \delta \Delta \epsilon_{\Theta} + \sigma_{\mathbf{z}} \delta \Delta \epsilon_{\mathbf{z}} + \tau_{\mathbf{rz}} \delta \Delta \gamma_{\mathbf{rz}}) \mathbf{r} \, d\mathbf{s} - \\ - \int_{L_{\mathbf{r}}} \mathbf{p}_{\mathbf{r}} \delta \Delta \mathbf{u}_{\mathbf{r}} \mathbf{r} \, d\mathbf{L} - \int_{L_{\mathbf{z}}} \mathbf{p}_{\mathbf{z}} \delta \Delta \mathbf{u}_{\mathbf{z}} \mathbf{r} \, d\mathbf{L} .$$

Hierbei bedeuten: $\Delta \sigma_{r}$, $\Delta \sigma_{\Theta}$, $\Delta \sigma_{z}$, $\Delta \tau_{rz}$ – Zuwüchse der Radial-. der Umfangs-, der Axial- und der Tangentialspannungen im Schritt Δt_{i} ; Δu_{r} , Δu_{z} – Zuwüchse der Verschiebungen der Punkte des Körpers in Richtung der Achsen r und z, Δp_{r} , Δp_{z} – Zuwüchse der Flächenbelastungen in radialer und axialer Richtung: $\Delta \epsilon_{r}$, $\Delta \epsilon_{\Theta}$, $\Delta \epsilon_{z}$. $\Delta \gamma_{rz}$ – die Zuwüchse der Radial-. der Umfangs-, der Axial- und der Schubdeformationen: σ_{r} , σ_{Θ} , σ_{z} , τ_{rz} – die Werte der Spannungstensorkomponenten am Ende des vorhergehenden Schritts (d. h. zum Zeitpunkt t = t_i); p_r, p_z – die Werte der Flächenbelastungen am Ende des vorhergehenden Schritts.

Die Deformationszuwüchse setzen sich aus den Zuwüchsen der elastischen Deformationen, den Zuwüchsen der Kriechdeformationen und den Zuwüchsen der thermischen Deformationen (jeweils durch obere Indizes e, c und T gekennzeichnet) zusammen

$$\Delta \epsilon_{j} = \Delta \epsilon_{j}^{e} + \Delta \epsilon_{j}^{c} + \Delta \epsilon_{j}^{T}, \qquad j = r, \Theta, z;$$

185

$$\Delta \gamma_{rz} = \Delta \gamma_{rz}^{e} + \Delta \gamma_{rz}^{c} . \qquad (2)$$

Die Zuwüchse der elastischen Deformationen für isotropes Material lauten entsprechend dem Hookeschen Gesetz

$$\Delta \epsilon_{j}^{e} = \sum_{k} A_{jk} (T_{i+1}) \Delta \sigma_{k} + \sum_{k} \Delta A_{jk} \sigma_{k}, j, k = r, \Theta, z;$$

$$\Delta \gamma_{rz}^{e} = \Delta \tau_{rz} / G (T_{i+1}) + \tau_{rz} / [1/G (T_{i+1}) - 1/G (T_{i})]^{(3)}$$
mit

$$\begin{split} &A_{jj} (T_{i+1}) = E(T_{i+1}) [1 - \nu(T_{i+1})] / \{ [1 + \nu(T_{i+1})] [1 - 2\nu(T_{i+1})] \} \\ &A_{jk} (T_{i+1}) = E(T_{i+1}) \nu(T_{i+1}) / \{ [1 + \nu(T_{i+1})] [1 - 2\nu(T_{i+1})] \}; \\ &\Delta A_{jk} = A_{jk} (T_{i+1}) - A_{jk} (T_i) , \end{split}$$

wobei E der Elastizitätsmodul (Youngscher Modul), ν der Poissonsche Koeffizient, G der Schubmodul und T_{i+1} . T_i die den Zeitpunkten t_{i+1} und t_i entsprechenden Temperaturen sind. Weiterhin gilt

$$\Delta \epsilon_{\mathbf{r}}^{\mathbf{T}} = \Delta \epsilon_{\Theta}^{\mathbf{T}} = \Delta \epsilon_{\mathbf{z}}^{\mathbf{T}} = \alpha (\mathbf{T}_{i+1}) \mathbf{T}_{i+1} - \alpha (\mathbf{T}_i) \mathbf{T}_i \qquad (4)$$

mit α als linearen Wärmeausdehnungskoeffizienten des Werkstoffs.

Den Zusammenhang zwischen den Deformationszuwüchsen und den Verschiebungszuwüchsen erhält man aus den Cauchyschen Beziehungen

$$\Delta \epsilon_{\mathbf{r}} = \partial \Delta \mathbf{u}_{\mathbf{r}} / \partial \mathbf{r} : \Delta \epsilon_{\Theta} = \Delta \mathbf{u}_{\mathbf{r}} / \mathbf{r} ; \Delta \epsilon_{\mathbf{z}} = \partial \Delta \mathbf{u}_{\mathbf{z}} / \partial \mathbf{z} ;$$

$$\Delta \gamma_{\mathbf{r}\mathbf{z}} = \partial \Delta \mathbf{u}_{\mathbf{r}} / \partial \mathbf{z} + \partial \Delta \mathbf{u}_{\mathbf{z}} / \partial \mathbf{r} .$$
 (5)

Die Zuwüchse für die Kriechdeformationen im Schritt Δt_i werden aus Beziehungen ermittelt. die die anfängliche und die sich im Laufe des Deformationsprozesses einstellende Anisotropie des Werkstoffs berücksichtigen [4]

$$\Delta \epsilon_{\mathbf{r}}^{\mathbf{c}} = \lambda \frac{(\mathbf{a}_{zz} + \mathbf{a}_{\Theta\Theta})\mathbf{s}_{\mathbf{r}}^{'} - \mathbf{a}_{zz}\mathbf{s}_{\Theta}^{'} - \mathbf{a}_{\Theta\Theta}\mathbf{s}_{z}^{'}}{2\mathbf{s}_{o}} \Delta \mathbf{t}_{\mathbf{i}};$$

$$\Delta \epsilon_{\Theta}^{\mathbf{c}} = \lambda \frac{-\mathbf{a}_{zz}\mathbf{s}_{\mathbf{r}}^{'} + (\mathbf{a}_{\mathbf{rr}} + \mathbf{a}_{zz})\mathbf{s}_{\Theta}^{'} - \mathbf{a}_{\mathbf{rr}}\mathbf{s}_{z}^{'}}{2\mathbf{s}_{o}} \Delta \mathbf{t}_{\mathbf{i}};$$

$$\Delta \epsilon_{\mathbf{z}}^{\mathbf{c}} = \lambda \frac{-\mathbf{a}_{\Theta\Theta}\mathbf{s}_{\mathbf{r}}^{'} - \mathbf{a}_{\mathbf{rr}}\mathbf{s}_{\Theta}^{'} + (\mathbf{a}_{\Theta\Theta} + \mathbf{a}_{\mathbf{rr}})\mathbf{s}_{z}^{'}}{2\mathbf{s}_{o}} \Delta \mathbf{t}_{\mathbf{i}};$$

$$\Delta \gamma_{\mathbf{rz}}^{\mathbf{c}} = 6 \lambda \mathbf{a}_{\mathbf{rz}}\mathbf{s}_{\mathbf{rz}} \Delta \mathbf{t}_{\mathbf{i}} / (2\mathbf{s}_{\mathbf{o}});$$
(6)

$$\Delta \rho'_{\mathbf{r}} = 2/3 \mathbf{A}_{\mathbf{rr}} (\sigma_{\mathbf{v}}) \Delta \epsilon^{\mathbf{c}}_{\mathbf{r}} - \mu \cdot \frac{(\mathbf{a}_{\mathbf{zz}} + \mathbf{a}_{\Theta\Theta}) \rho'_{\mathbf{r}} - \mathbf{a}_{\mathbf{zz}} \rho'_{\Theta} - \mathbf{a}_{\Theta\Theta} \rho'_{\mathbf{z}}}{\rho_{\mathbf{o}}} \Delta \mathbf{t}_{\mathbf{i}}$$

$$\Delta \rho_{\Theta}^{c} = 2/3 \Lambda_{\Theta\Theta}(\sigma_{v}) \Delta \epsilon_{\Theta}^{c}$$
$$-\mu \frac{-a_{zz} \rho_{r}^{'} + (a_{rr} + a_{zz}) \rho_{\Theta}^{'} - a_{rr} \rho_{z}^{'}}{\rho_{o}} \Delta t_{i} :$$

$$\begin{split} \Delta \rho'_{z} &= 2/3 \text{ A}_{zz} \left(\sigma_{v} \right) \Delta \epsilon_{z}^{c} \\ &- \mu \frac{-a_{\Theta\Theta} \rho'_{r} - a_{rr} \rho'_{\Theta} + \left(a_{\Theta\Theta} + a_{rr} \right) \rho'_{z}}{\rho_{o}} \Delta t_{i} \\ \Delta \rho'_{rz} &= 4/3 \text{ A}_{rz} \left(\sigma_{v} \right) \Delta \gamma'_{rz} - 6 \mu a_{rz} \rho_{rz} \Delta t_{i} / \rho_{o} ; \\ \sigma'_{j} &= s'_{j} + \rho'_{j} , j = r, \Theta, z , \\ \tau_{rz} &= s_{rz} + \rho_{rz} , \end{split}$$

wobei σ'_j , s'_j , ρ'_j die Deviatorkomponenten der vollständigen, der aktiven und der zusätzlichen Spannungen; σ_v – die Vergleichsspannung; A_{jk} (σ_v) Verfestigungsparameter und

$$\lambda = \mathbf{F}/\sigma_v \exp(\mathbf{s_o}); \ \mu = W/(3\sigma_v)\exp(\rho_o)$$

sind. Die Quadrate der Invarianten s_{0} . ρ_{0} . F und W haben folgende Form

$$2 s_{o}^{2} = a_{rr} \overline{s}_{r}^{2} + a_{\Theta\Theta} \overline{s}_{\Theta}^{2} + a_{zz} \overline{s}_{z}^{2} + 6 a_{rz} s_{rz}^{2};$$

$$2 \rho_{o}^{2} = a_{rr} \overline{\rho}_{r}^{2} + a_{\Theta\Theta} \overline{\rho}_{\Theta}^{2} + a_{zz} \overline{\rho}_{2}^{2} + 6 a_{rz} \rho_{rz}^{2};$$

$$2 F^{2} = g_{rr} \overline{\sigma}_{r}^{2} + g_{\Theta\Theta} \overline{\sigma}_{\Theta}^{2} + g_{zz} \overline{\sigma}_{z}^{2} + 6 g_{rz} \tau_{rz}^{2};$$

$$2 W^{2} = w_{rr} \overline{\sigma}_{r}^{2} + w_{\Theta\Theta} \overline{\sigma}_{\Theta}^{2} + w_{zz} \overline{\sigma}_{z}^{2} + 6 w_{rz} \tau_{rz}^{2};$$

mit a_{jk} , g_{jk} , w_{jk} als Materialkonstanten; $\overline{s_j} = s_k - s_l$; $\overline{\rho_j} = \rho_k - \rho_l$; $\overline{\sigma_j} = \sigma_k - \sigma_l$: $j, k, l = r, \Theta, z; j \neq k \neq l$.

Die Materialkonstanten, die in die Gln. (6) eingehen, wurden auf der Grundlage von Auswertungen experimentell ermittelter Kriechkurven erhalten. Solche experimentellen Daten sind in [5] enthalten und in den Tabellen 1 und 2 angeführt. Da die Legierung Al 25 be-

T, °C V, MPa	100	150	200	250	300	330	350
0	1,89 · 107	6 · 10 ⁵	2.104	1.104	5000	1000	900
10	6,9 · 10 ⁶	$2,31 \cdot 10^{5}$	1,15 • 104	2500	1400	700	500
20	3,6 · 10 ⁶	$1,27 \cdot 10^{5}$	7080	700	425	150	190,8
30	3,5 · 10 ⁶	$1,21 \cdot 10^{5}$	4878	270	125	45	44,1
40	3,4 . 106	1,18 · 10 ⁵	4200	196	33	23	10
50	3,3 • 106	1,17 . 105	4070	171	20	16	3.6
60	3,25.106	1,16 • 105	3900	160	16	13	1

Tabelle 2

186

Tabelle 1

T, °C Parameter	100	150	200	250	300	330	350
a • 10 ² , MPa ⁻²	9.4	9.42	3,26	2,14	2.99	4,57	2,985
g • 10 ⁹ . (MPa/h) ²	2,05 · 10 ⁻¹¹	1,52 • 10 ⁻¹¹	1.02 • 10 ⁴	2.91 · 10 ⁻³	2,6 • 10 ⁻²	0,28	5
w • 10 ⁻² , (MPa ² /h) ²	2,07 · 10 ⁻⁶	2,1 • 10 ⁻⁶	1,42 • 10 ⁵	1,76 · 10 ⁻⁴	3.9 • 10 ⁻²	0,2	9,93

Tabelle 3

Kennwert	Wert des Kennwerts bei T in °C					
	100	200	280	350		
K , $Wm^{-1}K^{-1}$ $\alpha \cdot 10^{6} \circ_{C^{-1}}$	138 20,55	140 22.70	145 24,00	350 23,00		
E , GPa	74,3	68,2	59,0	49,0		
ν	0,3	0.3	0,3	0,3		

Anmerkung:

K Wärmeleitzahl

linearer Wärmeausdehnungskoeffizient

E Elastizitätsmodul Querkontraktionszahl

züglich des Kriechens isotrop ist, so erhält man $a_{jk} = a$. $g_{jk} = g$, $w_{jk} = w$, $A_{jk}(\sigma_v) = \Lambda(\sigma_v)$. Die thermomechanischen Charakteristika der Aluminium-Legierung Al 25 sind in Tabelle 3 enthalten.

Als finite Elemente wurden einfachste Elemente in der Form eines beliebigen konvexen Vierecks verwendet. Die Verschiebungszuwüchse innerhalb jedes Elementes S_{ij} kaun man durch die Knotenverschiebungen u_{km} (k = i, i + 1; m = j, j + 1) ausdrücken

$$\Delta \mathbf{u}_{\boldsymbol{\mu}} \left(\mathbf{r}, \mathbf{z} \right) - \sum_{\mathbf{k}=\mathbf{i}}^{\mathbf{i}+1} \sum_{\mathbf{m}=\mathbf{j}}^{\mathbf{j}+1} \Delta \mathbf{u}_{\boldsymbol{k}\mathbf{m}} \varphi_{\mathbf{k}\mathbf{m}} \cdot \boldsymbol{\mu} \quad \mathbf{r}, \mathbf{z}$$
(7)

mit φ_{km} als Formfunktionen des finiten Elements.

Nach Einsetzen der Gln. (3). (4). (5) und (6) in die Gl. (2) und anschließender Auflösung nach den Spannungzuwüchsen erhält man

$$\Delta \sigma_{j} = \sum_{k} B_{jk} \Delta \epsilon_{k} + C_{j}; j. k = r.\Theta, z:$$

$$\Delta \tau_{rz} = B_{44} \Delta \gamma_{rz} + C_{4}.$$
(8)

Da in den angenommenen Gln. (6) die Kriechdeformationen nicht von den Spannungszuwüchsen abhängen, läßt sich die Invertierung leicht analytisch durchführen und die Koeffizienten B_{jk} sind die entsprechenden Koeffizienten aus dem Hookeschen Gesetz und in C_j gehen die Restdeformationen infolge des Kriechens, die reversiblen Temperaturdeformationen sowie die durch die Änderungen der elastischen Eigenschaften hervorgerufenen Deformationen ein. Nach Einsetzen von (8) in (1) erhält man unter Anwendung der gewöhnlichen FEM-Prozeduren unter Beachtung der Gln. (5) und (7) folgendes System von linearen Gleichungen $\sum_{i} \mathbf{d}_{ij} \Delta \mathbf{u}_{j} = \mathbf{b}_{i} ; i = 1, 2, \dots, N$

mit Δu_j als Zuwüchse der Knotenverschiebungen. Die vollständigen Verschiebungen. Deformationen und Spannungen erhält man durch Aufsummieren.

Für die Lösung der Wärmeleitungsaufgabe wurden die Randbedingungen 3. Art auf der Seite der Wärmezufuhr mit Hilfe von Indikatordiagrammen bei Leerlauf und im Betriebszustand ermittelt. Die Randbedingungen 3. Art auf der Seite der Wärmeabfuhr wurde aufgrund von Empfehlungen der Arbeit [6] ausgewählt. Bei Änderung des Betriebszustands des Motors änderten sich der Wärmeübergangskoeffizient der Arbeitsgase an den Kolben und die Gastemperatur sprunghaft. Auf den Abschnitten der Wärmeabgabe beim Übergang von einem Betriebszustand zu einem anderen änderte sich der Wärmeübergangskoeffizient sprunghaft und die Temperatur nach einem Exponentialgesetz. Der Exponent wurde aus experimentell ermittelten Kurven der Arbeit [7] bestimmt.

Ein Berechnungsschritt bei der Belastung bzw. Entlastung im Anfangsmoment betrug 1 s. Er wurde kontinuierlich in Abhängigkeit vom Übergang in den stationären Zustand vergrößert. Bei der Berechnung des sta-

Bild 1

Temperaturfeld für einen Kolben des Dieselmotors 4yH 12/14 im Betriebszustand (n = 2000 l/min. $p_e = 1,11$ MPa) in C

Bild 2

Thermoelastische Vergleichsspannungen für einen Kolben des Dieselmotors 44H 12/14 im Betriebszustand (n = 2000 l/min, $p_e = 1,11$ MPa) in MPa

tionären Betriebszustands betrug die maximale Schrittweite 1 h.

Auf Bild 1 sind die Verteilung der Isothermen und auf Bild 2 die Linien des gleichen Niveaus der thermoelastischen Vergleichsspannungen σ_v für den symmetrischen Teil eines Meridianschnittes des Kolbens mit dem Brennraum ZNIDI bei normalen Betriebsbedingungen dargestellt. Die höchsten Temperaturen werden an der Flanke der Brennraumseite des Kolbens erreicht. Infol-

Bild 3

Zeitliche Änderungen der thermoelastischen Vergleichsspannungen in charakteristischen Punkten des Kolbens bei der Arbeit des Motors im konstanten Betriebszustand bei Nennleistung in MPa

ge des großen Gradienten des Temperaturfeldes in radialer Richtung in dieser Zone kommt es zu einem recht hohen Vergleichsspannungsniveau, wobei den wesentlichen Beitrag die Umfangsspannungen liefern.

Das Maximum des Vergleichsspannungsniveaus liegt in einer Größenordnung von 60 MPa. Dieses liegt im Bereich der Mitte der Unterseite des Kolbenbodens. Jedoch ist das Temperaturniveau hier wesentlich niedriger. daher ist das Widerstandsvermögen des Werkstoffs gegenüber diesen Spannungen wesentlich höher. Das hohe Niveau der Spannungskomponenten $\sigma_r = \sigma_{\Theta} = -60$ MPa in

10

Bild 4

Thermoelastische Vergleichsspannungen des Kolbens nach der Arbeit des Motors im Betriebszustand im Verlaufe von 5 h (a) und Vergleichsrestspannungen nach vollständigem Anhalten des Motors (b) in MPa

dieser Zone ist durch den Charakter des Temperaturfeldes (die Temperaturen nehmen in Richtung des Außenradius bzw. des Kolbenmantels ab) aber auch durch die Geometrie des Kolbenbodens bedingt.

Wie aus Bild 3 zu ersehen ist, relaxieren die Spannungen schnell. In 5 hverringern sich die Spannungen im Punkt 1 von 52.6 MPa auf 15.1 MPa, d. h. um 71.3 %. Den stärksten Spannungsabfall gibt es in der ersten halben Arbeitsstunde des Motors in den Punkten, in denen die Spannungen und die Temperatur genügend hoch sind, so daß sich Kriechdeformationen einstellen können. Eine wichtige Erkenntnis ist, daß die Dynamik der Spannungsänderungen im jedem Punkt des Kolbenbodens nicht nur von den Anfangswerten der Spannungen und der Temperatur abhängt, sondern auch vom Charakter der Spannungsumlagerungen im gesamten Volumen. So verringert sich im Punkt 5 die Vergleichsspannung nicht, sondern erhöht sich. Dies ist ein Zeichen dafür, daß dieses Gebiet zusätzlich belastet wird.

Auf Bild 4 sind Linien der gleichen Vergleichsspannungsniveaus nach 5 h Betriebszeit des Motors im normalen Betriebszustand dargestellt sowie das Restspannungsfeld σ_v , das dem vollständigen Anhalten und Abkühlen des Motors entspricht. Es ist zu erkennen, daß die Intensität der Restspannungen am Rand der Brennkammer den Wert von 45.8 MPa erreicht, wobei den Hauptanteil die Umfangsspannungen ($\sigma_{\Theta_{max}} = 46$ MPa) liefern. Diese sind Zug-pannungen. Diese Fakten können als Erklärung der Ursachen für das Auftreten von Rissen am Rand des Brennraums dienen, wobei zu berücksichtigen ist, daß diese Spannungen sich mit Spannungen, die durch den Gasdruck hervorgerufen werden, addieren.

Im Zentrum des Bodens, wo das Sapnnungsniveau ein Maximum hat, ist die Spannungsrelaxation nur unwesentlich, da hier das Temperaturniveau gering ist.

Wie die Berechnungen zeigten, hören die Kriechprozesse praktisch sofort auf, wenn die Last vom Motor genommen wird und dieser in den Zustand des Leerlaufs übergeht. Dies ist eine Folge der schnellen Abnahme der Temperatur und der thermoelastischen Spannungen. Auf Bild 5 sind das Temperaturfeld und auf Bild 6 die thermoelastischen Vergleichsspannungen für den Kolben während des Leerlaufs nach halbstündiger Arbeit des Motors im Bereich der Nennleistung. Nach Belastung kommt es zu einer sehr starken Zunahme der Kriechdeformationen (vergl. Bild 7), was durch eine wesentliche Spannungszunahme bedingt ist. So ändert sich beispielsweise während der 8 Minuten Entlastung und Belastung die plastischen Vergleichsdeformationen an der Flanke der Brennraumseite des Kolbens um $\Delta \epsilon_v^c = 0.24 \cdot 10^{-4}$. während bei der Arbeit im konstanten Betriebszustand mit Nennleistung dieser Wert nur 0.09 · 10⁻⁴ beträgt. d. h. dreimal so gering ist. Es ist zu erkennen, daß für den Fall, daß der Motor bei wechselnden Betriebszuständen arbeitet, die Zunahme der Kriechdeformationen wesentlich stärker verläuft. Dies wird durch die Spannungszunahme im Bereich der Flanke der Brennraumseite des Kolbens beim Übergang vom Leerlauf zum Betriebszustand verursacht.

Abschließend kann festgestellt werden, daß die Berücksichtigung der Kriechdeformationen wesentlich das Bild des Sapnnungs-Deformationszu-tandes des Kolbens bei stationären Betriebszuständen, aber insbesondere bei instationären Betriebszuständen verbessern hilft. Es sind sicher auch Korrekturen für die Kinetik des Spannungs-Deformationszustandes, der durch die Belastung infolge des Gasdruckes hervorgerufen wird, zu erwarten. Diese Belastungen führen zu einer nichtaxialsymmetrischen Spannungsverteilung, welche sich schnell mit der Zeit ändert. Sie lassen sich jedoch nicht im Rahmen dieser

Bild 5

Temperaturfeld für den Kolben nach der Arbeit des Motors im Betriebszustand im Verlaufe von 0.5 h und vollständiger Lastwegnahme bis um Leerlauf in MPa

Bild 6

Thermische Vergleichsspannungen für den Kolben nach der Arbiet des Motors im Betriebszustand im Verlaufe von 0,5 h und vollständiger Lastwegnahme bis zum Leerlauf in MPa

Anfahren (Abfahren) des Motors

Arbeit berücksichtigen. Die Spannungen infolge der Gasdruckbelastungen, die gemeinsam mit Temperaturspannungen auftreten, können jedoch wesentlich die Dauerfestigkeit des Kolbens bestimmen, da es zu einer Zunahme von Ermüdungsschädigungen kommt. Diese lassen sich jedoch kaum richtig ohne die Einbeziehung von Kriecherscheinungen abschätzen. Es muß auch darauf hingeweisen werden, daß es zu einer Zunahme der Schwierigkeiten kommt, da erstens die Dimension der Aufgabe sich von zwei auf drei erhöht (womit eine wesentliche Erhöhung des Rechenaufwandes auftritt) und zweitens auch der Zufallscharakter des Betriebszustandes beachtet werden muß.

Die Berechnung der Kinetik des Temperaturfeldes und des Spannungs-Deformationszustandes des Kolbens wurden auf einer EDVA ES-1045 realisiert, was zu mehreren Stunden Rechenzeit führte.

Литература:

- [1] Чайнов. Н. Д.. Шеховцов. А. Ф., Абрамчук, Ф. И., Букеткин, Б. В., Вишневский, И. В., Пылев, В. А.: Особенность нагржения и ползучесть материалов деталей образующих камеры сгорания форсированных транспортных дизелей. – В кн.: Двигатели внутреннего сгорания. – 1978. № 46. – с 19 – 25.
- [2] Гонтаровский. П. П., Найденов. Я. Б., Шиманский, В. К.: Решение двухмерных нестационарных задач теплопластичности с учетом геометрической нелинейности методом конечных элементов. – В: Проблемы машиностроения. – 1987, вып. 31. – с. 11 – 15.
- [3] Васидзу. К.: Вариационные методы в теории упругости и пластичности. Москва: Мир, 1978. – 542 с.
- [4] Ползучесть элементов машиностроительных конструкций / Под ред. А. Н. Подгорного. – Киев: Наукова думка, 1984. – 262 с.

- [5] Шеховцов, А. Ф., Абрамчук, Ф. И., Пылев, В. А.: Ползучесть и релаксация при растяжении алюминиевого поршневого сплава АЛ 25. – В: Двигателестроение. – 1986, № 11. – с. 45 – 47.
 [6] Костин А. К. Парионов, В. В. Михайлов, П. И.
- [6] Костин, А. К., Ларионов, В. В., Михайлов, Л. И.: Теплонапряженность двигателей внутреннего сторания / Справочное пособие. – Ленинград: Машиностроение, 1979. – 222 с.
- [7] Абрамчук, Ф. И.: Исследование нестационарной теплопроводности поршня быстроходного форсированного тракторного двигателя. – Дис. . . канд. техн. наук, 1978. – 236 с.