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for Unsteady Tidal Flow and Salinity Intrusion in River Network
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1. Introduction

The nature of environmental behavior is complex and a
superfical analysis of a problem may leave the solution
with many uncertainties, so reducing project realiabi-
lity. The mathematical modelling approach in flow and
water quality modelling in river networks is neccessary
for more precise answers to such problems. If the ma-
thematical modelling has to be used as a predictive tool
in water resources management, first of all it must accu-
rately reproduce natural processes an an approxima-
te forecast future behavior. Accuracy is based on avai-
lable field data and on the manner to simulate the na-
tural processes.

The salinity intrusion process including advection and
dispersion has been dealt with in some models [1] —
[3], but most of them are only descriptive.

The purpose of this study is to develop a descriptive
and predictive model for unsteady tidal flow that simu-
lates the hydraulic and substance transport response
of a one-dimensional river network which made up for
connected branches and loops.

2. Governing equations

The tidal hydrodynamic and salt balance equations are
the tool in this study to predict the salinity intrusion
in river networks. The continuity and longitudinal
momentum equations constitute the tidal hydrody-
namic model, while the conservation of salt represents
the salinity intrusion model. The basic assumptions
made in the derivation of the equations are:

a) The river is fairly straight and uniform so that the
effects of bend can be neglected and the flow charac-
teristics can be physically represented by a one-dimen-
sional model.

b) Vertical acceleration is neglected and hydrostatic
pressure prevails at each point in the river.

¢) The wind effect as well as surface stress is negligible.

d) The influence of density gradient on the flow has
been neglected.

e) The resistance coefficient is assumed to be the
same as for steady flow in open channels and can
be approximated by resistance law applicable to
open or by field survey.

f) Well-mixed salinity condition exists at all points in
the river.

The basic equations are:
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where B-total width of the surface H- water level to bot-
tom, Q-cross-sectional descharge, g- acceleration due to
gravity, A- conveyance area, n- Manning’s coefficient,
R- hydraulic radius, E- dispersion coefficient, C- cross-
sectional averaged salinity, A,- total area of the cross-
section, 0(C)-source and sink of salinity, x- longitudi-
nal coordinate, t- time, g- the lateral inflow.

The tidal model and salt transport model are linked
together, and an uncoupled numerical solution method
is used to solve the above equations. By this method
one solves egs. (2.1) and (2.2) first and then in the same
time step eqs. (2.3) using unsteady flow conditions
determined from the solution of eqs. (2.1) — (2.2).

3. Numerical solution for the tidal model

3.1. River network schematization

A river network consists of junctions (interior nodes),
boundaries and river branches each of which is sub-
divided into river reaches by cross-sections. The flow
of every branch has a certain direction. A river network
in which the flow in every branch has a determined
direction can be considered as a graph with directional
arcs. Each arc corresponds to a branch and the posi-
tive directions are numbered in an increasing order along
the positive direction of the branch. There are two
types of branch interior branch and boundary branch.
Every interior branch connects two junctions I and J;
I'is called the beginning and ] the end of the arc (I, J).
Boundary branch connects a junction and a boundary.
In order to conform to the algorithm described in what
follows we always impose the boundary as the end of
an arc.

3.2. Difference schemes for eqs. (2.1) — (2.2)

For the tidal model the following four-point implicit
scheme is used in order to solve egs. (2.1) — (2.2):
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Substituting (3.1) into eqs. (2.1) — (2.2) for all reaches,
after linearizing, one gets a set of linear equations:

3.2
A2.H;_; +B2.Q;_, +C2.1; +D2.Q;=E2 (3-2)
where Al, Bl, ..., D2, E2 are known coefficients.

It is noted that (3.1) is the Preissmann’s scheme which
has been presented in detail in [3]. Beside its advantage
of being implicit and well-approximating the integral
conservation laws, the above scheme allows the si-
muitaneous computation of the unknown functions
at the same grid-point. This feature is convenient for
giving boundary conditions and getting field data. [t
was shown in [3], furthermore, that the Preissmann’s
scheme being quickly stable with respect to initial con-
ditions.

3.3. Initial condition, boundary condition and condi-
tion at junctions

In order to proceed with the computation of (3.2) it is
necessary to specify the stages and discharges at all
grid points at the initial time step. Usually these are
not known and owing to the avantage of a four-point
scheme we should estimate by setting Q = 0 and H =
constant at all computational sections.

In a river reach with two boandary sections it is neces-
sary to specify stages, discharges or stage-discharge re-
lations as the boundary conditions.

In a river network the junction condition is often
treated as an interior boundary. Assuming a steady-state
condition at the junction shown in Fig. I, mass conser-
vation is satisfied by the following equation:

Q; =Q9 + Q3 (3.3

Fig. 1
Junction of three channels

and the conservation of energy is represented by equa-
tions
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Here are o — the correction factors for energy loss; h; —
the energy main loss given by the product of the fric-
tion slope and the distance between sections; H; — wa-
ter level; u; - the velocity; Q; — the discharge. Eqgs.
(3.4) can be simplified by disregarding the velocity and

main loss terms.
3.4. Computational sequences

For the computational purposes two types of relations
are developed: the recurrent equation for every branch
and the general junction equation.

a) Recurrent equation

To solve (3.2) for every branch of a river network the
following recurrent equation is used:
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In fact (3.5) is a double sweep algorithm. The first sweep
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computes recurrent coefficients and the reverse sweep
computes . Q at all cross-sections. It is shown in [6]
that (3.5) & stable to the round-oft errors. Equation
(3.5) i~ called a forward =weep. In the following we u=e
a procedure similar to (3.5) but the process starts from
the end back to the beginning of the branch in order to
compute the recurrent coefficients:
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where the subscript i refers to the beginning and the sub-
seript N corresponds to the end of a branch. Equation
(3.0) is called the inverse sweep.

b) Junction equation

To set the equation at junction, the relations (3.5) —
(3.6) are used. Consider, for example, a branch (1. J),
(I is an interior junction while J is either junction or
boundary)

h1) The case where 1, ] are both junctions.

The relation (3.4) gives H; = Il(”, Hy = “(ﬂ’ where
Hyy i= the water level at the junction [.

The forward sweep from 1 to ] provides
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The inverse sweep from J to I provides
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b2) The case when I is a junction and ] is a boundary
i) Qn = BQ is known (boundary condition Q in the end
point). Both sweep vrocedures are used and the
results are



fptay (v fpn - BO)
H(I) =—Q — — (3.9)
P1 P1

qp " qy —1

ii) Hy = BH is known (boundary condition H at the end
point). The inverse sweep provides
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The procedure is similar if the boundary condition
is given in the form ally + BQn = 7. So for an interior
branch we have two relations (3.7) — (3.8), for a boun-
dary branch we have either (3.9) or (3.10). Since the
sum of the discharges at junction has to be zero we can
link (3.7) — (3.10) together to get a system that only
consists of water level unknowns at all junctions. Sol-
ving this system and using (3.5), the H, Q at all cross-
sections of the present branch of the network can be
computed.

4. Numerical solution for the salinity intrusion
model

The diffusion equation (2.3) desribes two physical
phenomena : transport (or advection) and diffusion,
both are longitudinal. For salinity intrusion, diffusion
is a pseudophenomenon. The equation (2.3.) was set
up with the assumption of neglecting molecular diffu-
sion velocity and the diffusion term was an averaged
result over the cross-section. This term represents jointly
the turbulent diffusion and the
complement due to irregularity of velocity at the cross-
section. The parabolic equation (2.3) requires one
boundary condition at each end and one initial condi-
tion. The two boundary conditions of a branch can

two phenomena

usually be specified by the following procedures:

a) The salinity at the boundaries i~ a known function
of time C(0,t) = C,(t) for upstream, and G = Cy(v)
for downstream.

b) Assuming the salinity does not change at the down-
stream boundary.

¢) Assuming the second partial derivative of the sali-
nity is equal to zero, which means the salinity has a
linear relationship with x at the downstream.

To make the model more predictive some authors 1],
[2] divide the salinity process into two parts: during the
flood tide salinity at downstream must be given and
during the ebb tide salinity variation is assumed linear
with x. The detail discussions of boundary conditions
for the salinity model can be seen in [3], [0].

As considered in detail in physics, pure diffusion is a
phenomenon occurring so slowly that for (2.3), during
outflow towards boundary (at ebb tide) or inflow
towards junction this phenomenon has neglegible influ-
ence on the variation of salinity there within a time step.
This hypothesis together with the fractioned-step
method enable us to formulate easily the salinity equa-
tion at the junction. Following [4], solving (2.3) within t
to t + At the problem may be separated into two proces-
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The solutions of (4.1) will be used as initial condition
of (4.2) (for details, see [4]). The decomposition of
(2.3) into (4.2) is purely mathematical, while physically
salinity C at a point x and at the time t is the result of
two simultaneous processes: transport and dispersion.

4.1. Numerical scheme for (4.1)

The numerical solutions of (4.1) must be carefully in-
vestigated. Most finite difference schemes have numeri-
cal diffusions that are sometimes stronger than those
of (4.2) which spoil the physical significance of compu-
tation results.

After lagrange’s point of view, we can consider the
problem (4.1) as follows: a liquid particle, starting
from a point M at the time t,, along a trajectory (the
dotted line in fig. 2) with a velocity U reaches the
point x;, | at the time t, , ;. In pure transport process
the liquid particle does not change, so that

(‘(\l+l’tn+l): C(\]tn) (4%)

By this the problem (4.1) becomes that of going inver-

" sely along the trajectory back to the time. If M coincides

with x; _; (or x;) where C has been known one can
know C(xj, 1. t,17) precisely. If M lies between x;
and x; one must use an interpolation that gives (4.1) the
same accuracy. The above process is the content of the
method of characteristics for solving (4.1). Following
[3]. [5], linear interpolation often leads tc numerical
diffusion. To overcome this phenomenon a cubic inter-
polatien [3]. cubic spline or Lagrange’s interpolation can
be used. The method of characteristics for (4.1) and
procedure for interpolation can be seen in detail in [5],

[6].
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Fig. 2
Path of tluid particle

4.2. Numerical scheme for (1.2)

For solving (4.2) with a non-uniform grid we apply a
weighted implicit finite difference scheme associated
with the fractioned-step method:

f= gt
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in which the symbols are similar to those in (3.1).
Substituting (4.3) into (4.2) and working out some

calculations, the result is the following tridiagonal
system of equations

Lic™y MMt N e = by (4.4)
where L;, M;, N;, P; are known functions.

(4.4) is solved by the double sweep method that has
been well-considered in many papers.

4.3. Salinity boundary condition for a single river

i) During flood tide (Q < 0)

Using the boundary condition at downstream in order to
solve (4.1) we get the values C; for the entire river
branch. These values are used as initial values for (4.2).
The value C; at downstream will be the boundary
condition at the same end for (4.2).

ii) During ebb tide (Q > 0)

At upstream the salinity must be given and by solving
(4.1) we get the values C, which can used as initial con-
_dition for (4.2). The computed value C, at downstream
will be the boundary condition for (4.2) at this bounda-
ry.
It should be noted that for river network, the upstream
boundary conditions are replaced by those values of
salinity at the junction which are only available after
treating the salinity at the junctions. So, it is only
necessary to specify C at downstream during flood tide,
the ebb tide C can be computed. If the computation
process starts at the beginning of ebb tide C.;, at
downstream can be computed, one needs to know only
Cmax, then using an interpolation between C ; and
Cnax We can get the boundary C at downstream during
flood tide. Such an organization needs only one infor-
mation C ., and the model can predict the length of
salinity intrusion into the river.

4.4. Formi.lation of the salinity equation at junction

Assuming that during inflow towards junction the dis-
persion process at that time has a negligible influence
on the variation of salinity, the balance equation at
junction can be established as follows:

Consider, for example, a junction I where four river
branches intersect and at a certain time in branches
1, 2 flow goes into junction and in branches 3, 4 flow
goes out from junction (see fig. 3).

Consider branches 1, 2, following the algorithm des-
cribed above we go along the characteristics starting at
the cross-section next to junction I (at t) back to the
intersection of these characteristics with the straight line
of the time level t. Using a certain interpolation the
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Fig. 3
Junction of four channels

values at junction CN;, CNy of branches 1, 2 can be
computed. In flows going out of the junction the values
CN3, CN; must take the value at junction CN which
results from mixing CNy, CNy in branches 1, 2. So we
have the following balance equation:

Q]. CNI + Qz CN2 =Q3 CN3 +Q4.CN4
= CN.(Q3 + Q4)

or

CN = (Q; .CN; +Q2.CNp)/(Q3 * Q4)

In general we have

CN=ZQ; CNi/ 2Q} (4.5)
i J

where QlI is the discharge of branch i going into junc-
tion and Q is the discharge of branch j going out of
junction. (15) allows an easy estimation of salinity at
junction.

5. Application of the model

The algorithm described above has been tested on some
river networks in Vietnam. The Fig. 4 and 5 show the
Camau peninsula and its schematization. This system
consists of 30 junctions, 253 cross-sections, 55 branches,
7 boundaries. The peninsula is subjected to tides of two
types: semidiurnal tide from the East sea and mixed
but predominantly diurnal from the Gulf of Thailand.
These two tidal flows when going into the very dense
canal network create a complicated flow regime. The
results of the hydrodynamic component of the first
few tests are presented in Fig. 6a — d and 7a, b for
discharge and for water level at some selected stations -
compared with field data. It can be seen that in ge-
neral the model produces a good agreement with the
observed data. The results obtained from the first few
test runs of the model are presented in Fig. 8a — c. It
can be observed that the results can meet the practical
purpose.

6. Conclusion

A numerical model has been developed for computing
water level, discharge and salinity in a tidal river net-
work. The algorithm has been tested on some river
systems with complexity of the topographic and hydro-
logic conditions. It can be seen that the model may be
used for practical purposes. With some modifications the
model can also used for water quality problems.
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Yariation of discharge at four selected stations
in time.
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Fig. 7
Variation of water level at two selected stations
in time:

observed, ——————— computed
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Variation of salinity at three selected stations

in time (salinity hydrograph):

————— observed, —————— computed
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