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Kinematic Path Control of Robot Arms with Redundancy

E. Krustev, L. Lilov

L. PREFACE. The kinematic control of robot arms with
redundancy has become a subject of intensified investi-
gation in recent years. The most significant features of
robot arms with redundancy that draw the attention of
scientists are increased flexibility, possibility for obstacle
avoidance and an admissibility for satisfaction of opti-
mization criteria, which reflect the dynamic behavior
of the mechanical system [1]. It should be noted also
that research in the field of biomechanics has shown that
the real antropomorphic structures are systems of the
same type.

The basic problem in kinematic control is to coordinate
the displacement in the arm joints, so that a desired
action of the end effector be attained. With the solution
of this problem joint forces and torques are computed
to drive the robot arm in a specified system trajectory.
Thus, a robot arm with redundancy can accomplish a
variety of sophisticated movements with applications
in assembling operations, welding, painting etc..

The realisation of kinematic path control of robot arms
with redundancy usually is based on the solution of the
following two subproblems. First, we are to determine
the conditions under which a given in advance move-
ment of the end effector is feasible for the specified ro-
bot arm [2]. As a second step, a quality criterion for the
laws governing the displacement in the joints is assigned.
The above subproblems, considered in their unity, for-
mulate the general statement of the problem for kinema-
tic path control of robot arms with redundancy, i. e. the
basic problem is to guide the robot arm in such a way
that the end effector follows a specified trajectory in a
desired orientation and, besides, the quality criterion is
to be satisfied [3] — [9].

Rate control [3] seems to be the most predominant tech-
nique that has been applied in solving the problem, here
stated. However, the known applications of this ap-
proach treat implicitly and incompletely the geometric
constraints imposed on the movement of the end effec-
tor. Therefore, only certain motions of the end effector
along the specified trajectory are being considered. In
particular, the existing methods for kinematic path con-
trol of robot arms with redundancy afford no possibility
to describe such motions by which the end effector is
fixed at a point of the specified path trajectory for a
sufficiently short time interval, while simultaneously a
continuous alteration in the arm configuration takes
place. These motions prove to be of value, especially
when a boundary position of an arm joint is being
reached and further on, the continuous movement of
the end effector is not feasible without a shift in the
co ation achieved. Most of the habitual motions
of the human arm (pick-and-place operations, drink test
etc.) are motions of the same type. Moreover, the exi-

sting methods additionally require that the motions of
the robot arm under consideration should possess such
an initial configuration that the corresponding position
of the end effector satisfies the geometrical constraints
imposed by the choice of the path trajectory.

The work, here presented, elaborates a method for kine-
matic path control of robot arms with redundancy. This
method employs all the continuous piecewise smooth
motions of the robot arm by means of which the end
effector follows a specified curve in the set of its fea-
sible positions. The method suggests that each curve cor-
relates to a differentiable manifold, while the laws
governing the displacement in the joints are related to
the integral curves of a tangent vector field. The latter
is built in the above mentioned manifold in accordance
with a control criterion, assigned in advance. This ap-
proach proves to be efficient in determining a conti-
nuous optimal motion of the robot arm for each prescri-
bed path of the end effector. All this is being done by
means of integration of the tangent vector field, under
boundary conditions fixed in the statement of the pro-
blem. In particular, most of the methods for kinematic
path control of robot arms with redundancy follow from
the method here proposed.

II. PROBLEM STATEMENT. Let us consider a robot
arm M, which is an open kinematic chain with rotational
or translational joints. Denote with q = (q;, q2, . - - , qp)
the ordered n-tuple of joint variables, that describe the
displacement in the arm joints. The range Qy C R" of
these displacements is called space of configurations of
the robot arm M.

The position of the end effector in the base frame
Ox, Yo %Zo can be determined by the coordinates ry of
the origin H of a frame Hxyz, fixed to the end effector,
and the matrix G of transformation from the frame
Hxyz into the frame Ox, y, z, (fig. 1). It is obvious,
that the matrix G belongs to the set T of 3 x 3 proper
orthogonal matrices, which is a three dimensional mani-

fold [10]. Let ® = (s;, W;) i = 1,a be an atlas of T, so that

a
U W; forms an open covering of T and for each
i=1 \

i€ {1, 2,...,a} a diffeomorphic mapping s: W;—>R3
exists. The coordinates ryy and the matrix G are smooth
functions of the joint variables, i. e. ryy : Qy — R3
G : Qy — T. They both determine the end effector’s
position in the base frame [11]. Usually, the inde-
pendent parameters describing the end effector’s orien-
tation are Euler angles, Briant angles etc.. At an arbitrary
q € Qu, such as G(p) EW; fori € {1,2,...,a } these
parameters are given in the form of the composition s;
G. Thus, the end effector’s position in the base frame
is determined by a vector valued smooth function
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F : Qy > RO defined as ¥ (q) = (ry, §; = G). The fun-
ction F is called a generalized function of the end effe-
ctor’s position and the set F(Qp) — a set of feasible
positions (task-oriented space).

The functional capabilities of M and the tasks formu-
lated, do not make it possible for the end effector to
attain six degrees of freedom. Therefore, in the general
case dim F (Int Qpq) < 6, where Int Q) is the interior of
the space of configurations. Denote with m the maxi-
mum rank of the mapping F. The robot arm M is called
[3] a robot arm with redundancy, if

m < dimInt Qy = n.

The existence of redundancy can intuitevely be inter-
preted as a capability of the robot arm to fix its end
effector in a given position of the set of feasible posi-
tions with a continuum of different configurations. It
follows from the inverse function theorem [12], that
the boundary points of the set F(Qy;) are reached only
by a finite number of configurations, belonging to the
boundary of the set of configurations. Thus, no redun-
dancy exists in these points. For this reason and because
of the requirement for smoothness, further on imposed,
only the interior Int Qy; of the space of configurations
is considered. ;

One of the main problems in practical applications of
robot arms is to determine the joint variables as fun-
ctions of time, so that the end effector follows a pres-
cribed curve in the set of feasible positions. Let M be a
robot arm with redundancy. Then M can accomplish
such a task by a variety of modes. In order to include
into consideration all possible modes, assume that an
arbitrary parametrization of the given curve 7 is intro-
duced. Suppose v is an arc of a smooth curve § = § (A) :
R = R™ and denote with A the closed interval of R
that satisfies y = § (A).
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Let us consider the mapping F : Int Qy; x R > R™ de-
fined as F(q") = F(q) — 5 (dn+1), where q* = (¢, Gns1)-
In particular, the equality F(q*) = 0 for (q, qp4+7)
€ Qy x A implies that the end effector’s position is
8 (qn+1) € 7- Thus, the set B=F (0)~1 N (Int Qy; x A)
comprises all ordered pairs (q, A) of configurations q for
which the end effector takes a position y (), A€ A.
Suppose that the mapping F possesses maximum rank on
F (0)—1 and besides

rank F(q) = fank F(q) =m forallq" €B (1)

Actually, such an assumption has been predominant in
most methods for kinematic path control of robot arms
with redundancy [1], [3] — [7], [9]. On this assumption
F(0)~! is a differentiable submanifold of R™*! with
the dimension n—m+1. The case where F (0)~! is two
dimensional is depicted in fig. 2. The validity of condi-
tion (1) can eventually be ensured [13] by an infinitely
small variance of the arc v admissible to the range of
precision assigned by the engineering practice.

Denote with I the time interval the robot arm needs to
follow the arc 7. Let q(t) and x (t),t € I be two con-
tinuous piecewise smooth functions

q:1-0Qy ;s x:I—A )
where x maps I onto A .

A l

Fig. 2

Definition 1. By an absolutely defining trajectory we
understand each smooth arc y for which the set l’y =

~{ (@, x(®) : F(@(®, x(9) = 0 for all t€ 1}

is nonempty.

Every motion of the robot arm in the time interval I
such that the end effector follows a given absolutely
defining trajectory 7y corresponds to an element (q (t),
X (t)) of the set X,- Conversely, any element of Xy
defines a motion of the end effector along the abso-
lutely defining trajectory. The subset of X,y for which



X (t) = 0 for all t €1 is of particular importance for
practical implementations. Its elements define such con-
tinuous motions of the robot arm that the end effector
follows the absolutely defining trajectory by the para-
meter t in the same direction already specified by the
parameter A. Further on, we refer to the elements of the
set X, as admissible motions of the robot arm M.

The problem of tracing a prescribed position trajectory
is considered by the following formulation.

Let M be a robot arm with redundancy and an absolu-
tely defining trajectory 7 : [A,, Ay 1— F (Q)) with end
points v, = vY(A,); 71 =7 (A;) be given. Find an admis-
sible motion that minimizes an assigned functional

L@@, X®) —min ; t€l=[t,y] @)
The solution of this problem is called optimal admissible
motion.

Before embarking on the solution of this problem we
have to point out that the problem formulation does
not require the assignment of any specific initial con-
figuration q, = q(t,) with the property F(q,) = 7,
because it can be determined as follows. Suppose a ge-
neral case when the robot arm possesses an initial con-
figuration q, € Int Qy for which F(q,) # 7,. Appa-
rently the adjustment of M to an appropriate initial
configuration q, is reduced to the solution of a pro-
blem with the same formulation as stated above, where
the absolutely defining trajectory originates in the
computed position F(q,) and ends in the given posi-
tion . This problem statement gives scope for the most
expedient choice of a functional correlation between the
intervals I and A. Thus, the mode of motion for tracing
a prescribed absolutely defining trajectory is fully deter-
mined by introducing the functional (3) in the problem
formulation. These special features are of substantial
importance for the application of the method for kine-
matic path control of robot arms with redundancy, here
proposed.

III. MAIN RESULTS. The basic concept for solving the
problem above formulated is that the optimal admissible
motion forms a trajectory of a tangent vector field V,,
t €1 of the manifold B.

To begin with, we introduce a generalized representation
of the tangent vector fields of B. Denote with TB the

tangent vector bundle of B and with J (q) = 2F) the

D(q)

Jacobian matrix of F(q) at q € Int Q. For each ele-
ment v* = (vT, v, ,1)T€TB,v=(vy,va,...,vy)T such
a point q* € B exists, that the vector v* belongs to the
9y
0 An+1
(dn+1) Vn+1 = 0. According to (1) the system obtained
can be considered as a system of m linear equations with
respect to the components of the vector v

tangent space ToxB of B at " i e. J(q)v —

9y

Jv Fquy ™1 (4)
Hence [12], the set of solutions of this system forms a
linear variety L, which may be written as L, =
v(®) + N(J) whe%lv(o) is an arbitrary solution of ](4-)

and the set N(J) ={ x € R® : Jx = 0} is the null space

of J(q). We find it more convenient to consider the fol-

lowing representation of L,
n+

L,

where u is an arbitrary vector of dimension n,P =
E - I'@J@ J* @ = JT@Q@IT (@) is the
pseudoinverse of J (q) and E is the identity n x n matrix.
The linear space R™ is projected onto N (J) by the linear

operator P =P (q) (fig. 3).
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The null space of J(q) is defined on the smooth mani-
fold

Bqn+1 :{ q €IntQy :F(q)_-y(qn+l)=0} (6)

that consists of configurations q, for which the end ef-
fector’s position coincides with a given position ¥ (qp+1),
dn+1 € A and besides, N (j) is identical with the tangent
space of qu_ , 2t (fig. 2, 3).

We are going to prove that an arbitrary element v(®)
of L‘,n+1 can be represented in the form

]
Wo) =A-1JT (Ja-1JTy-1 27§ @
e In+1

where A is an appropriate regular n x n matrix. Indeed,
if W) e L,,n is the element vy, ;, with the minimum
Euclidean norm, then [12]

9y
Vmin = JTaim-1 3 Vn+1 ®

. n+1

and thus, it satisfies the assertion with A = E. Assume
that W(©) # Vmin- Lhen such a proper orthogonal n x n
matrix A, exists [14], that

W) = \/(V(O)Tv(o)/v:;in Vmin) A1 Vmin ®)

LetA—1 = \/(v(o)Tv(")/vmit;r Vmin) Aj. Weverify that the
matrix A represents v(°) in the form desired. Obviously,
the matrix A is regular and relation (1) implies that
JA—1] is regular as well. According to (8) and (4) we
obtain
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Multiply this equation leftwise by A—1 JT. Now the
desired representation (7) of ¥(°) follows from (8) and
9.

Conversely, it is easy to verify that any v(°) of the form
(7) satisfies M) EL, .

Finally, from (5) and (7) we obtain

Ly, = Vs * P (10)

where £ = A1 JT JA-1IT-1 27 104 A ig aregu.
Oqp+1

lar matrix.

We employ the matrix A as follows. The generalized fun-
ction of position maps Int Qp into a m-dimensional
smooth manifold in the linear space R®. Suppose that in
RS some sort of metric is defined, so that the distance
between the generalized positions of the end effector
can be determined. This metric defines a Riemann
metric on Int Qy i. e. the inner product of every two
n-diménsional vectors u, v is defined at an arbitrary con-
figuration q Int Qp as (u,v) = uT A(q) v where A (q) is
a n x n positive definite smooth matrix. We choose the
matrix A in (7) as the matrix A (q) that defines the
Riemann metric on Int Qp. In this case, one can esta-
blish that (Pu)T A (q)W(®) = 0 if W(°) is given by (7).
Therefore, the metric introduced, implies that the
vector, W®) belongs to the orthogonal complement
NA(J)"={ vER™ :vI A(g)x=0, Jx =0} of N(J) and
Pu € N(J) for an arbitrary u € R, i. e. in (5) each ele-
ment of L, +1 18 defined as the sum of two orthogonal
vectors v(°3 and Pu. When the functional (3) is mini-
mized, this property proves to be of great utility.

A Riemann metric is introduced in the Cartesian pro-
duct Int Qy x R by means of the matrix

A* = diag(A(g), 1), i. e. (u*,v*) = u*T A*v* =uTAv +
Up 4] Vp+1- Thus, the inner geometry of Int Qy remains
invariant during the end effector’s motion.

Most of the existing methods for kinematic path control
of robot arms with redundancy, for example 1] [31-
[8] presuppose that the interval A coincides with the
time interval I and besides q,,; = t. Hence, these me-
thods consider this, and only this proper subset of Xy
that consists of elements (q (t), x (t)) with X (t) =v,,; =1
for all t € L. Apparently, such an approach makes it
impossible to consider simultaneously all admissible
motions of the robot arm M. Besides, it artificialy sets
limits to the capabilities of the kinematic control.

We solve the problem stated in the set X, that defines
all possible motions of the end effector along the abso-
lutely defining trajectory 7. The method proposed is
based on the specific differential structure of B.

Let v* € Tq« B be an arbitrary vector, tangent to B.
Hence, this vector satisfies (4) and vE L,,n+ 1 fupey =
Vp+1, then it follows from (10)

v" = Ku* forallq*€B (11)
P

where K (%) = ((Tp)l “(‘l')) »a(@®) = (¢(@")T, DT

and u* = (uT,up4 ;)T € R2*1, Thus, the matrix K defi-
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nes a linear mapping K : Rn+1 — Tqs B forall q* €B.
Moreover, it follows from (11) that v* can be written as
v* = w(l) + w(2), where w(l) = [(Pu)T,OlT and w(2) =

(¢T,1)Tu,,; are two linearly independent vectors with
the property w(1)T A* w(2) = 0. In this representation

the vector ¥" is unique. It can easily be established that
w(1) and w(2) belong to Ty« B. The following relations
are straightforward:

W) TA* 11 = 0 12)

where e, is the unit vector along the n+1 coordinate
direction

w(2) TA* en+1 =u TA enyy 13)
KK(®) = K, (14)

where K(°) is the matrix K, in the definition of which,

‘the vector ¢ from (10) for A = E is chosen. Relation

(12) asserts the orthogonality of w(1) and e,,; with
respect to the Riemann metric on Int Qy x R intro-
duced. The geometry notion in (13) is that the pro-
jections of w(2) and u* onto the direction of ep,;
coincide (fig. 4).

The vector w{1) is tangent to the submanifold

Bqgn+1 X g+ CB. Foruy,; =0, when v = w(l), this

vector determines such an admissible motion of the
robot arm, so that the end effector remains fixed in the
position 7 (qu4+)) and the configuration of the robot
arm alters continuously. When u,,; # 0 a second ad-
missible motion with a tangent vector w(2) is defined.
In this case, the resulting admissible motion possesses a
tangent vector v* = w(1) + w(2) and induces an altera-
tion in the end effector’s position in compliance with
the given absolutely defining trajectory.

Denote by

U ={ U=u"(q"):B— Rn+1} (15)
the set of all smooth vector fields of B. Every element of
U is mapped by the linear mapping K into a tangent vec-
tor field of B. We define the elements U, V € U equiva-
lent if, and only if, the relation

KU = KV (16)

holds for all ¢* € B. One can prove that this relation is
a relation of equivalence. Denote with U/K the quotient
set defined by means of the above relation. It follows
from (10) and (11) that the elements of U which define
ordered pairs of vectors (w(1), w(2)) identical for all
q" € B, belong to the same class of equivalence. Further
on, relation (14) implies that every class of equivalence
of U/K contains a unique tangent vector field. Hence,
the quotient set U/K is identical with the set of al
tangent vector fields of B.

Let U € U/K be the class of equivalence which contains
the vector field U. It can be proved that the unique
tangent vector field of U is

K(®)U 17)
Besides, the elements of U can be written as )
U+ diag(JT JA-1 JT)-1 J,1) V (18)

where V = (vT, 0)T is an arbitrary element of U.
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The sum of classes and the scalar multiple of a class by
a real number are defined in the quotient set U/K by
the corresponding linear operations with the tangent
fields of the classes. For example, the sum of the classes
Uy and Uy is defined as the sum of K(°) U; and
K(°) Uy in the tangent space Tq+B for all ¢* € B. There-
fore, the linear operations above introduced, emerge as
the well familiar linear operations with vectors from the
tangent space Ty, B for all q* €B. Finally, one can
establish that these linear operations introduce a struc-
ture of linear vector space in U/K.

By means of the transpose matrix of K, a quotient set
U/KT is defined. The elements ¥, © € U are regarded
equivalent, i. e. they belong to the same class of equiva-
lence of U/KT, if and only if KT ¥ = KT @ holds for all
q" €B. Thus, the vector fields ¥ = y* (¢*) € U; y* =
WT, ¥,41)T that define identical ordered pairs of
vectors

[T, 0T , [0T,af y*IT (19)

for all q* € B form a class of equivalence of U/KT. De-
note with ¥ the class of U/KT defined by .

Since KT K(®) ¥ = KT ¥ therefore
kKTwe¥ (20)

and for all q* € B the répresentative of this vector field
lies in the subspace generated by the vectors (19).
(fig. 4) Thus, the quotient set U/KT is identical with the
set of all vector fields (20), where ¥ is an arbitrary ele-
ment of U.

The sum of classes and the scalar multiple of a class by
a real number is defined in the quotient set U/KT as the
similar linear operations applied to the representatives
(20) of these classes. The linear operations, above intro-
duced, define a structure of linear vector space in the

quotient set U/KT.
Since
Kdiag (P,1) = K 21

it is apparent that the vector field Il = diag (P,1)U

q

belongs to Ue UK (fig. 4). Moreover, for all ¢* € B its

representative lies in the subspace generated by the vec-

tors [(Pu)T,0]T and [0T,u,,;]T, where U = (uT,
T

Upe1) v

Definition 2. The class of equivalence ¥ € U/KT is cal-

led conjugate to the class U € U/K, if

diag (P, 1) u = KT ¥ (22)

It can be proved that relation (22) defines isomorphism
between the quotient spaces U/K and U/KT. If a class ¥
is given, then its conjugate UE U/K can be found. Obvio-
usly,

diag (P, )KT ¥ = KT ¥ 23)

and from (22) and (16) it follows that I' = (YT, oT ¥)T
i8 a representative of the class U, conjugate to \:I_{ Thus,
the conjugate to ¥ is fully defined. Conversely, if U is
given, then

KT @7, upyy — £Tu) = diag (2, 1) U 24)

Hence, the conjugate class \if to U possesses a represen-
tative ¥ = (uT, up+1 — £Tu)T. Thus, the vector field IT
defines in (22) a bijection between U/KT and U/K.

Each class U € U/K, such that KU is nonzero for all
q" € B can be interpreted as a tangent vector field of B.
Suppose that for every t €I the element U, € U is given
as a continuous piecewise smooth function of t. Then,
a family of trajectories q; : B - B of the field KU, is
defined, i. e. the elements of q: satisfy the following
system of ordinary differential equations

q* = KU, ; teT (25)

Indeed, let q* (t) be an arbitrary trajectory of KU, € U
such that q* (t,) € B. Then [15], relation (1) implies
that q” (t) € B for all t € I. For example, the resolved
motion rate control method [3], [4] for robot arms with
redundancy is obtained from (25), where U, = (0T, 1)T
forall " €B and t € L In this case, (25) takes the form
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q= ATQA-iyTyL 2T

n+1
n+1 = 1
Obviously, this system is equivalent to
g= A1t gA-1yTy1 2

t € I, the latter being the desired final result, if the mat-
rix A is interpreted as a ,,positive definite weighting mat-
rix”.

Conversely, any admissible motion (q(t), X (t)) = q" ()
may be interpreted as a trajectory of (25), where the
vector field Uy is appropriately chosen. Suppose N is an
open subset of F (0)~1 and N D B. Hence [13], a smo-
oth function g: F (0)~1 - [0,1] with the following pro-
perties exists. It satisfies g(q*) = 1 for all ¢ €EB and it
is g(q*) = 0 for all ¢* out of N. Let £(°) be the vector £
from (10), defined for A = E. Then it follows from (14)
and (11) that q* () is a trajectory of (25) where U, is
defined as the restriction to B of

(+HEE) w0 26)

forallt€ 1l

In particular, let the vector of the joint rates q(t) be
determined by a method that presupposes maximum
rank of the mapping F : Qy = R™ [1], [3] — [9]. By
implication, this method employs x (t) = 1 for all tE L
Thus, in view of the above considerations, we conclude
that q(t) is defined by the first n-components of KU,,
where U, is the restriction of (26)forg™ ((t) = (q(t)T,1)T.
Finally, we come to the conclusion, that the solution of
the problem here considered is a trajectory of a tangent
vector field V; = KU;, t € I of the smooth manifold B.
The method employed needs no explicit definition of B
and thus it has assumed a form suitable for numerical
interpretation. The control of the admissible motion is
reduced to an appropriate. assignment of the element
Ui € U, t €1 in the system of ordinary differential
equations (25).

Definition 3. We call a class of motion control each con-
tinuous piecewise smooth function U; : I > U/K, such
that KU, is nonzero forall * €B, tE€ L.

In view of this definition, the set X., can be considered
as the union of the {amilies q: of solution curves of the
system (25), where U, describes the set of all classes of
motion control.

Let f’io), KUﬁo) € {’io) be a class of motion control,
which possesses a trajectory q(®)*(t) = (q(°)(v),
x°) (b)), t €,1 that is an optimal admissible motion.
Further on Uﬁo) is called a class of optimal motion

control. If the functional (3) is given in the form
t
L(g X) =S  1(q, x) dt, then the class f}io) of opti-
tO
mal motion control may be determined by means of the
maximum principle of Pontrjagin [16]. Replace U, in the
system (25) and its conjugate by the representative Ugo)
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of a class of optimal motion control, determined by the
maximum principle. Then, the optimal admissible
motion can be found by integrating the system of ordi-
nary differential equations, thus obtained under boun-
dary conditions deriving from the specific formulation
of the problem stated. From a computational point of
view the easiest case is when in this formulation the
initial and terminal configurations of the robot arm are
assigned, i. e. the admissible motions under considera-
tion are with fixed end points. However, in the most
general case of the problem formulation only the initial
and terminal positions of the end effector are known.
Another posibility is that the initial configuration of the
robot arm and the terminal position of the end effector
be given in advance [8]. In order to determine the boun-
dary conditions of the system obtained, the transver-
sality condition [16] is to be employed in both cases.
This condition defines the optimal initial and respecti-
vely the terminal configuration of the robot arm.

IV. EXAMPLE. In this section, the technique of the
method for kinematic path control above described, is
demonstrated in the case when the quality criterion (3)
is given in the form

H
L x)=/ q'Sqdt— %1 27

to

)

where S = S(q) is a n x n positive definite matrix, con-
tinuous with respect to q. For instance, when the end
effector is considered as a moving rigid body the quan-
tity (1/2) 4TS q may express its kinetic energy in the
inertial space [4]. This quantity may represent also the
kinetic energy of the robotic system, when it is viewed
upon as a linkage of rigid bodies.

Let the matrix S define the Riemann metric on Int Qpy
and the matrix S* = diag (S,1) define the Riemann
metric on Int Qy x R. The substitution of the first n
equations of (25) into (27) yields

ty
L(Up) = I U,'pU,— min (28)

o t

Owing to the Riemann metric introduced, the matrix D
is obtained in the form D = diag (PSP, k), k = T E>0.
From the formulation of the problem stated, it follows
that the end points q{(®)* (t,), q(®)* (t;) of the optimal
admissible motion belong to certain smooth submani-
folds in Rn*1 (fig. 2), i. e.

@ (L) EB xXo; g (1) EBy x N (29)

while q(°)* (t) satisfies the system of equations (25) for
t €[t,, t; ]. Further on, the optimal admissible motion is
found by applying the maximum principle of Pontrjagin
to the system (25) and to the conditions (28, 29). The
Hamiltonian H is defined as H= —UT D U, + ¥T K U,

where the vector ¥ = (T, ¥,.1)T, ¥=(V1,Vg,-.., ¥n)T
of auxiliary functions satisfies the following equations

j = uT 2D T 3K
A A

i=12...,n+1

(30)



The class of optimal motion-control ﬁio) is a continu-
ous, piecewise smooth function of t into the quotient

space U/K. Hence, it is sufficient to determine from the
maximum condition

oH
a0, =~ U +KT¥ = 0, t€lt,, ] (31

one representative Uﬁo) of the class of optimal motion
control U t° .

In the general case it would be a difficult computati-
onal task to obtain U °’ from (31) because the matrix D
is irregular. Suppose ti:at Y is defined as ¥ : [t,,t; ] > U
and denote with ¥ the corresponding class in U/KT.
Then the maximum condition (31) can be rendered to
the conjugation condition (22) of U/K and U/KT.
Apparently, the equation (31) can be written in the
form

ding (2, 1)S"ding 1) U= 112) 2) v e

Besides,

12KT (9T, aT k-1 — £1 y)T = (1/2) ( AL ) ¥
T k-1

(33)
From (22), (32) and (33) it follows that for an arbitrary
representative t° of the class of optimal motion
control the vector field S* diag (P, 1) Uﬁo defines a class
of U/K which is conjugate to the class of U/KT with the
representative (1/2) (VT, aT W k=1 _ ¢T y)T Then, as
it was shown in (23) the class I' € U/K of the vector
field S* diag (P,1) U, is determined by the known
vector field I' = (1/2) (.ptT, ol ¥ k—1)T. Moreover, there
exists a vector field (18) V = (vI, 0)T so that

S* diag (P, 1) US®) = T + diag JT (JS-1JT)-17, 1)V
(34)
It is gasll)y established that all elements of an optimal
class Uﬁo of motion control satisfy this equation and
besides, to different classes of optimal motion control
in (34) there correspond different vector fields V of the
form (vI, 0)T. The equation (34) multiplied leftwise by
the matrix S*—1 yields ‘

ding (P, 1) U{*) = $*~1 (T + diag (T 45~ 11T)~ 11, ) V)

(3%
This equation holds, if and only if
§-1y + s-1JT(s-1JT)-1JveN() 36)
holds over q{®)*(t). We employ this condition to deter-

mine the vector field V in (34).

Since S—1 JT(JS~1 JT)~1 Jv € Ng (J) for an arbitrary v,
then (1/2) S—1 { can be represented as a direct sum of
its projections onto N(J) and Ng (J)J' ie. (1/2)S-1y

=(1/2)PgS—1y + (1/2)S-1 JT(JS-1 JT)~1]S—1 y where

Pg=E —S—1JT (JS=1]JT)~1]. Hence, in order to satisfy
(36) the components v of the vector field V are to be de-
fined as v =—1/2 S—1y. Consequently, from (2 12, a7
and (35) the otpimal class of motion control Ui°’ is de-
fined by its representative

U®) = diag (B5, 1) S™-1T (37)

It can be proved that the class of optimal motion control
is invariant with respect to the choice of the representa-
tive I" of the class I'. Hence, the class of optimal motion
control is unique.

Thus, the optimal admissible motion can be found by
means of integrating systems (25) and (30), where Uy is
substituted by the expression (37) of Uﬁos, given as a
function of q* and ¥W. Substitute © = (1/2)¥; © =
T, 0n+1)T into the system obtained. Then the opti-
mal admissible motion satisfies the system of ordinary
differential equations

g =K®e

5, =8 2D g _ er
%9 oy 9
i=12,...,n+1l

where © = diag (Pg,1) $*-1 (9T, aT © k-1)T

t€[ty, 41

K5 (38)

The conditions for transversality [16] corresponding to
(29) yield P ¢ (t,) = 0; P 9 (t;) = 0. These equations
define 2n boundary conditions for the system (38). The
remaining two boundary conditions are g, (t,) = A,
and qp 41 (t;) = A;. They follow directly from definition
(2) of the function X (t) and illustrate the point that the
end effector’s initial position is 7,, while v, is its ter-
minal position. ‘

V. CONCLUSIONS. The mathematical apparatus of the
method described, gives ground for a common approach
to the kinematic path control of robot arms with redun-
dancy, based on the assumption that the Jacobian
matrix of the generalized function of the end effector’s
position possesses maximum rank. It has also been
established that similar methods for kinematic path
control follow from the method, here proposed. The
final results are in a mode suitable for application in
computer programmes. Therefore, this technique for
kinematic path control can be employed in the field
of robotics for preprogramming the movement of the
end effector and for investigating the movements of
real antropomorphic structures in biomechanics, as
well.
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