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1. Introduction

Structural members of most of the modern machines are
subjected to a severe vibratory environment spread over
a wide range of frequencies. Such vibrations result in
malfunctioning of machine parts and also give rise to an-
noying noise radiation. These vibrations are of random
type and it is not generally possible to effectively con-
trol these vibration by the use of conventional design
methods. This is especially so when existing structural
members of a machine cannot be replaced. For control
of such vibrations in existing structural members it is
useful to add damping without removing the member
from the machine. The damping is provided by cove-
ring the structural member with a sheet of viscoelastic
material, so that it becomes a composits structure in the
form of a two layer arrangement, in which the viscoela-
stic layer acts as an unconstrained damping treatment.
The reduction of vibrations occurs because of dissipa-
tion of energy due to deformation in the form of direct
strains produced in the viscoelastic layer.

Materials like long chain polymers, rubbers and plastics,
which possess high energy dissipation capacity, are used
for the viscoelastic layer. Examples of such materials are
buna N rubber (butadiene acrylonitrile), PVC (polyvi-
nylchloride), styrofoam etc. The use of viscoelastic dam-
ping in the form of layered structural members has been
gaining widespread industrial applications, as for exam-
ple in aircraft fuselage structures, missile frames, electro-
nic equipment mounts, automobile door panels, rocket
launch pads and building construction. Most of these
structures are subjected to random loads in addition to
conditions of free and forced vibrations and shock exci-
tation.

The analysis of flexural vibration of unconstrained (two-
layer) viscoelastically damped structures has been car-
ried out by several investigators for sinusoidal [1 — 5]
and shock [6 — 9] excitations. Also considerable work
has been reported on the random excitations of elastic
homogeneous structures [10 — 19]. However, the work
reported on the analysis of unconstrained structures to
random excitation is rather meagre and this paper is an
effort in that direction.

Mead [18, 19] has estimated the effect of a viscoelastic
damping compound on the vibration stresses and ampli-
tudes of an aircraft fuselage structure subjected to jet
efflux excitation. In his analysis, the damping and the
stiffness of the viscoelastic material have been assumed
to be represented by a complex modulus, but they fail
to represent adequately the dynamic properties of the
viscoelastic material. Borisov et al [4] have considered
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the excitation by bandlimited white noise of structures,
on which vibration absorbing coatings are applied. They
have also used the complex modulus representation. Tar-
notzy [20] has conducted experimental study of loss
factors of thin metal plates covered with unconstrained
viscoelastic layers for reduction of radiated sound energy
when subjected to white-noise type of excitation.

In the present paper analysis of an unconstrained visco-
elastically damped beam subjected to random excita-
tions is considered. A fourelement model is used to re-
present the dynamic proporties of the viscoelastic mate-
rial. Two types of random excitation are considered —
namely the white-noise excitation at a point and the tur-
bulent boundary layer excitation over the span of the
structure. The analysis carried out here ist for a beam
and it can suitably be extended for application to a pla-
te. Simply supported end conditions are considered.

2. Theoretical Analysis

2.1. Equation of motion

Figure 1 shows an unconstrained beam arrangement. The
authors have derived the equation of motion for such a
beam [21] based on the following assumptions:

1) Both layers bend according to Bernoulli-Euler theory.

2) Transverse displacement at a section is constant along
the thickness.

3) Only extensional and bending effects occur, while
shear deformations are negligible.

4) Longitudinal displacement at a transverse section va-
ries linearly with layer thickness, but its rate is diffe-
rent in different layers.

5) Rotational and longitudinal inertia terms are negligib-
le and only transverse inertia terms are included.

6) All displacements are small as in the linear theory of
elasticity.

7) No slipping occurs at the interface of the layers when
the beam bends.

8) The material of the viscoelastic layer is linear and its
dynamic properties are represented by a four-element

- model.

The equation of motion is obtained by combining the re-
lationships obtained by considering the equilibrium of
forces and the continuity of displacements. The equa-
tion of motion thus obtained for a general two layer
beam arrangement is
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Figure 1

Two-layer sandwich beam — 2 is viscoelastic layer and 3 is
elastic layer. (a) Layer arrangement, (b) co-ordinate system and
(c) relative deformations.
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2.1.1. Four-element model

We now consider layer 2 to be viscoelastic with its dyna-
mic proporties in extension represented by a four-ele-
ment model (Figure 2). For such a model the dynamic
elastic modulus of the viscoelastic material can be shown

to be given by [22]

_B+yD+yD?2 -

E, =PTYDTyD? :
2 1+aD )
where @, B, v and Y, called the model constants, are re-

lated to the elements {, {3, ny and ng of the model by
the relations

§11m3
a=n3/€3, B=81, Y=ng +ng + G

v=n9m3/{3 6)

Substituting the value of Eg from equation (5) into
equation (2), we obtain after simplification
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Substituting the value of © from equation (7) into equa-
tion (1) and introducing the dimensionless coordinate
x = x/L, we get the following equation of motion for an
unconstrained viscoelastically damped beam
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2.2. Response of a simply supported, unconstrained
viscoelastically damped beam to random excitation

Let us define the transfer function H,, (n, w) of the
beam as its response to unit harmonic force of the type
el®tsin n7x, then on substituting H, (n, w) el ©t
iWtsin nax for f (X, t) in equation (Y),
we obtain the transfer function of the beam as

sin
n7X for wand e

H,, (n,w)=

L4 (— iw3 @6 - w? @7 +iw®8 +®9)

[iw3Oguld+wt (@) ntrt+0,uLt)—iwd (©yntrt+0g ult)

—w? (O30t 1t + @guL)+iwOynt 4 +@ ntnt | (10)

In equation (9), f (x, t) represents the intensity of any
general excitation force acting on the beam. For deter-
mining the response of the beam to such an excitation,
we decompose the loading f (X, t) into the space modes
of sin n7X, so that we may write

f(f,t)=§1fn(t)sinnﬂf (11)

n=

49



where,

f(®=2f & Ysinnrx dx (12)

The impulse response function hy, (n, t) of the beam can
be considered as the Fourier transform of its transfer
function. So it can be expressed as

hy, (n, t) = 21—” f H, (n,w) et dw (13)
The displacement response w (X, t) of the beam corres-
ponding to the excitation f (X, t) is obtained by using

the superposition or convolution integral, and is given
by

w (X, t) =_f°°f(;?, r)h, (n,t—71)dr1 (14)

Substituting equations (11) and (12) into equation (14)
and obtaining from the resulting expression the statisti-
cal average over the sample space of the product

w (X1, t;) W (Xg, tg), which reduces to mean square of
w when X; =Xy and t; = ty, we get

o oo
E[w (i—l’tl)w(’?2’t2)]: 2 2 sin nm—fl sin mﬂfz
= m:

S J hy (0t —711)hy (m, tg — 79) d7y d79

11 N
4 fo fo E[fE;.m1) £E5,79)] (15)
sinnmfy sinmnf, dE; dE,
Putting
h-n=Ty, tg-713=Ts,

16
tl——t2,=T, t2=t ( )
in equation (15), we get the statistical average as
Elw(xy,t+7) w(xg,t)]
=2 X sinnmX; sinm7X g

n=1 m=1
{” J by (n,Ty) hy (m, Ty) dT; dT,
11
4100, BEGL 7Ty £(E,t—Ty))
sin n7r'£1 sin mﬂgz d-gl dgz (17)

Here the expression E [f(§;,t+7—T)) (&g, t—Ty)]
represents the correlation of any random pressure field.

50

=Z

n=1

2.2.1.  White noise random excitation
2.2.1.1. Field excitation

Let us consider an excitation process, such that its cor-
relation is of the form

E[fE,t+7-Ty) £z, t—Ty)l

3 8E-F) Re(+Ty-T) (8)

where 6 () is Dirac’s delta funktion. Equation (18) im-
plies that spacewise the loads are completely correlated
only for §1 = -2_2 and completely uncorrelated for El *
Ez , and that there exists some correlation in the time do-
main.

Substituting equation (18) into equation (17) and using
the random vibration analysis and applying the Wiener-
Khintchine relationships [23], we obtain after some sim-
plification

Ew (X, t+7) w(Xa,t)
sinnmX) sinnmXy [ S (w) IH, (n,w) 29T dw
—o0

The mean square displacement at a location X, obtained
by putting X; = X3 = X and 7 = 0 in equation (19), is

(19)

E [w? (z)]=°z?_1 sin? n7x waf (w) I, (n,w) ? dw (20)

For white noise excitation the spectral density S; (w) is
constant over the entire frequency range. Denoting this
value by S, we write equation (20) as

E[w? (®]=S,Z sin?nnz / IH, (nw)l2do (21)
n=1 —00

Equation (21) represents the mean square displacement
response of the beam at any point X to white noise ran-
dom excitation of distributed type. If equation (21) is
averaged over the span of the beam, then

E[w2]=§2‘i °z°_ [ 1H,, (n, )12 doo (22)

2.2.1.2. Point excitation
Let the beam be acted upon by a random force F (t) at

a single point a, then f (x, t) can be expressed as

F(i,t)=FLﬂ 8 (X—3) (23)

Substituting equation (23) into equation (17) and sim-
plifying with the help of Wiener-Khintchine relation-
ships, we get mean square displacement at any point X
on the beam as

o0 o0
E[w?(X)]=4Z I sinn7Xsinm7X sinnna sinmna
n=1 m=1
o

/ H, (n,w) H, (m, - w) S (w) dw (24)



On averaging over the span of the beam, the double sum-
mation will reduce to single summation, because of the
orthogonality of the functions sin n7X and sin m7x
we have for the white noise excitation

E[w2]=2S,% sin?nma [ IH, (n,w)l2dw (25)
n=1 — 00

K=RA Figure 2
! Four-element viscoelastic model.
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2.2.2.

For this case the statistical average of the excitation
E[f ¢, t+7-Ty) f(&,t— Ty of equation (17)
would represent the correlation of the wall pressure fluc-
tuations caused by the turbulent flow of a fluid over a
flexible surface. In the present study the fluid conside-
red is air.

Turbulent boundary layer excitation

Wall pressure correlation measurements by several au-
thors indicate that

(i)  the fluctuating pressure field is a random process,
which may be considered stationary in time and
homogeneous in space, so that the correlation is a
function of spatial separation and time difference
only

(ii) the spatial correlation function along each of the
longitudinal and lateral directions can be represen-
ted by an exponentially decaying cosine wave.

In view of (i) above, we can write

E[fE),t+7—Ty) £E, t— Ty)l=R; €, 7~ Ty +Ty) (26)

where = El - 2—2 is the spatial separation. Substituting
equation (26) into equation (17) and simplifying it with
the help of Wiener-Khintchine relationships, we get

oo oo
Elw (X ,t+7) w(X,t)] = £ Z sinnnX; sin mnx,
n=1 m=1
oo

/ H, (n,w) H, (m, —w) el®T

4f1 fl S+ @, w) sinnnE; sinmn§y dE; dE, dw (27)
0 0

J1°

where S; (§, w) is the spectral density of the excitation
process due to pressure fluctuations.

If S¢ (w) be the power spectral density of the pressure
fluctuations, which is assumed independent of position,
then we may write

S¢ €, ) = 8¢ () Q¢ §, w) (28)

where Q; (¥, w) is the spatial correlation coefficient of
the pressure.

Bull et al [24] and Crocker [25] have, on the basis of ex-
periments conducted by them, suggested the spatial cor-
relation coefficient of the following form

Q€. w)=exp(—B; %) cos(7F),E>0 (29
where'
_ L _ L

] =0.1ﬁ“i andy = 1.0Ui (30)

c c

After substituting for S (§, w) from equation (28) into
equation (27), the mean square displacement at any
point X is obtained as

E [w2 (i)]=4; ; gin nmX

n=1 m=1

sin mmX
J S¢(w) H, (m, ~w)
11 _ _ —_— e e
fO fO Q¢ (§, w)sinnm) sinmméy dE; dEy dw  (31)

which on averaging over the span of the beam reduces to

E(w]=2% fmsf (w) IH, (n,w) R

n=1 —oo

11 _ _ —
fo fo Qf (§', (A)) sin anEl sin nTrEz dEl d£2 dw (32)

Substituting for Q¢ (§, w) from equation (29) and intro-
ducing

E1t89=71, % —E5= and

[

sin nﬂgl sin nngz = 3 (cosnw¢ — cosnmn)

into equation (32), and then applying a coordinate trans-
formation similar to that suggested by Crocker et al
[26], we get after simplification

Ew2]=2 | S(w)H, (@ )20 +])da (33)

n=1 —oo

where

~ e_B—l [-B1 sin(nm+y) —(nm+7) cos(nm+y)]+nm (1 +B1)+y

e PL(B2 - (un+7)2} cos(um+7)— 28, (ar+7) sin (o +7)}-B2 +(nm +7)2
R

n [(nm+7)2 + B3 1

(34)

[@m+7)? + BF 12
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Jo is obtained from equation (34) simply by replacing
Y by — ¥ throughout.

For S¢ (w) the Bull’s model is used, because it gives the
best emperical fit to the experimental data obtained by
him [27] and others [24] and also because his model and

models similar to his have been used by several other
authors.

3. Theoretical Results and Discussion

To obtain the influence of various parameters on the res-
ponse, a composite two layer beam with the elastic layer
of aluminium and the viscoelastic layer of PVC is consi-
dered. The effect of various geometrical and physical pa-
rameters on the beam response is evaluated on the basis
of equation (25) and the same is discussed below. The
beam is considered to be excited at its mid-point, i. e.
a=0,5.

Figures 3 and 4 show the effect of geometrical parame-
ters on the response quantity E [w2]/S, while figures 5,
8 to 10 show the effect of variation of the physical para-
meters on the response. The response quantity conside-
red here represents the ratio of the mean square value of
the displacement E [w2] to that of the constant value of
the spectral density S, of the white noise excitation.

Layer thickness ratio (T 3)

Figure 3
Variation of the ratio E [w2]/S with Tg 3.
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Figure 5
Variation of the ratio E [w2]/S with §;/E3 ({3 = 330.06 kg/
cm2, Mg = 0.207 kg sec/em2, N n3=1 038]kg sec/cm ).



The physical parameters considered are the elements of
5. the viscoelastic model, because a change in any one of
the elements results in a change in the physical charac-
teristics of the viscoelastic material. In figures 5, 8 to 10
is illustrated the effect of change of each of the four ele-
ments separately on the beam response. Only one of the
elements is varied at a time, while the other three are
kept at fixed values indicated in each of the figures.
Thus in figure 5 the modulus ration {;/E3 varied for se-
veral values of the thickness ration Ty 3. The response ra-
tio E [w2)/S,, is seen to behave in a typical manner unlike
that for sinusoidal and impact excitations. The response

Loss factor (nE)

3 increases gradually at low values of {{/E3 and it attains
a peak value at —El?, = 10-3. Further increase of this ratio
causes a rapid decrease of the response from the peak va-
lue. The variatiorn of response is similar for all values of
Ty 3 considered herein. The typical variation of response

z can be explained with the help of figures 6 and 7. From
figure 6 it is seen, that at all frequencies the loss factor
is high for small values of {;, which causes an initial low
response. The loss factor subsequently decreases with
the increase in the value of {7, but at the same time, as

1 figure 7 indicates, higher values of {1, give rise to large
values of storage modulus, i. e. more rigidity to the

2000
2
= 5000 kgkm
0 - - | . . L , S00r § .« 150 kgkrt
O 100 2000 3000 4000 5000 6000 7000 8000
Frequency w (rad/sec) 125
Figure 6 100
Variation of Ny, with wand {7 ($3 = 330.06 kg/cm?, 75
7y = 0.207 kg sec/em?, 73 = 1.038 kg sec/cm). woo
50
In figure 3 the response ration E [w2]/S, is found to = f:
decrease with the increase in the layer thickness ratio \E
Ty 3 for all values of T3y considered, but the rate of & T -Tkgfem?
decrease is rapid at low values of Ty 3 and slow at high :;, 300}
values. The initial rapid rate of decrease is due to the in-
crease of the beam loss factor with the increase of Ty3 . 3
As the increase of Ty 3 is continued, the beam loss fac- 8
tor reaches a maximum and then decreases at a fairly E
uniform rate [28]. This decrease of loss factor would :,"\
tend to increase the response, but it is offset by the in- & 200
crease in stiffness associated with the increase in T3,
thereby resulting in a slowly decreasing nature of the res-
ponse for the continued increase in the thickness ratio
To3.
The variation of the response ratio with the ratio T3, of 100
the elastic layer thickness to beam length is shown in fi-
gure 4. From this figure it is seen that, as expected, the
response of the beam increases with increase in beam
span (lower values of Tgj). The effect of change of
$1/E3 on the response is not significant. ol . . . , . . o
The effect of the geometrical parameters on the respon- 0 1000 2000 3000 4000 5000 6000 7000 8000
se of the two layer viscoelastic beam discussed above is Frequency o (rad/sec)
similar to that for sinusoidal and impact excitations Fieure 7
(3,8, 9] iat

Variation of E with wand {} (¢3 = 330.06 kg/cm?,
N = 0.207 kg sec/cm?, M3 = 1.038 kg sec/cm?).
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Figure 8
Variation of the ratio E [WZ]ISo withe the model element {3
(§1 = 275.94 kg/em?, Ny = 0.207 kg sec/em?, N3 = 1.038 kg
sec/em2).
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Figure 9
Variation of the ratio E [w2]/S, with the model element L)

(51 = 275.94 kg/em2, {3 = 330.06 kg/cm2, N3 = 1.038 kg sec/
cm<).

beam, which leads to the reduction in response. Thus at
some intermediate value of {;, which in this case is
700 kg/cm?, the response attains a peak value. Thereaf-
ter the response decreases because of the dominance of
the increase in rigidity over the effect due to decrease
in loss factor.

Figure 8 shows the variation of the response ratio
E [w2]/S, with the variation of the model element ¢ 3
The response ratio is seen to decrease continuously with
increasing values of {3.

Figures 9 and 10 give the variation of the response ratio
with the model elements 5 and 13 respectively. In both
cases the reponse in seen to decrease continouosly with
increasing values of each of the elements.

For turbulent boundary layer excitation the response
quantity E [w2] is considered and it is found that the
variation of response with the various geometrical and
physical parameters is similar to that given in the above
figures 3 to 5 and 8 to 10 for the white noise excitation
case.
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Figure 10

Variation of the ratio E [w2]/S, with the model element 73

(§1 = 275.94 kg/em2, {3 = 330.06 kg/emZ, Mg = 0.207 kg sec/
2

cm<).

4. Experimental Verification

A few experiments are conducted on test samples of the
two layer elastic-viscoelastic beams for verifying some of
the theoretical results. Both white noise and turbulent
boundary layer excitations are used. The details of the
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Figure 11

Block diagramm of testing equipment for point load random ex-
citation.
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Wind tunnel test section for turbulent boundary layer excitation.

(a) Details of the mild steel wall-plate, (b) specimen in position
with testing arrangement and (c) details of fixing of beam end.
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Variation of the ratio E [w2]/So with Tq 3 for point load excita-
tion at a = 0,5 (o experimental, —— theoretical).
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Variation of r. m. s. displacement with Tq 3 for turbulent boun-
dary layer excitation (o experimental, theoretical ).

specimens, tested tor both types of excitations, are gi-
ven in Appendix I. For white noise excitation a white
noise generator is employed and the detailed arrange-
ment of the instrumentation is shown in figure 11. For
the turbulent boundary layer excitation the test speci-
men is mounted on the wall of a wind tunnel as shown
in figure 12, and the necessary instrumentation is used in
the same manner as shown in figure 11.

The experimental results thus obtained are plotted in fi-
gures 13 and 14 and are shown by small circles, while
the theoretical results are shown by continuous lines.

5. Conclusions

The agreement between the experimental and theoreti-
cal values is reasonably good. It is seen from figures 3 to
5 and 8 to 10, that the response to random excitations
can be suitably controlled by applying an unconstrained
viscoelastic layer over an elastic main layer. The values
of the elements of the model can be suitably selected to
obtain a certain desired level of the response. Similarly
suitable values of the layer thickness ratio can be selec-
ted for a given viscoelastic material, so that the response
is kept within a desired level.

APPENDIX I: DETAILS OF BEAM SPECIMENS TESTED

S.  No. L b Layer No. H; Material
(em)  (cm) (i) (cm)

a) White noise random excitation

1. 30 2.5 2 0.050 PVC
3 0.081 Al
2. 30 2.5 2 0.100 PVC
3 0.081 Al
3. 30 25 2 0150 PVC
3 0.081 Al
4. 30 2.5 2 0200 PVC
3 0.081 Al
5. 30 2.5 2 0250 PVC
3 0.081 Al
b) Turbulent boundary layer excitation
1. 13 2.5 2 0.050 PVC
3 0.017 Al
2. 13 2.5 2 0.100 PVC
3 0.017 Al
3. 13 2.5 2 0.150 PVC
3 0.017 Al
4. 13 2.5 2 0200 PVC
3 0.017 Al

APPENDIX II: LIST OF SYMBOLS

coordinate of point load excitation
area of cross-section of layer i
width of beam

flexural rigidity of layer i (= E; I;)
operator 0/0t

Young’s modulus of layer i

[1] mathematical expectation of the random
quantity inside the brackets

-
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intensity of external loading

F(t) external point load

hy, (n, t) impulse response function

Hy, (n, w) transfer function

H; semi thickness of layer i

I section area moment of layer i

K; longitudinal stiffness of layer i (= E; A;)

L length of beam

n, m modal number

Q¢ €, w) spatial correlation coefficient

R¢ & 7T 11 T9) correlation of 'f 'for turbulent boundary
layer excitation

S (f, w) spectral density of pressure fluctuations

So spectral density of white noise random
excitation

S¢(w) spectral density of 'f’

Sy (w) spectral density of "w'

t, tl, t2, Tl’ T2 time variable

Ty 3 ratio of thickness of layer 2 to that of
layer 3

T3 L ratio of thickness of layer 3 to the span
of beam

X, X1, X9 spatial coordinate

U, _ convection velocity of air

w transverse displacement of beam

aB 7Y constants of the viscoelastic model

¢ 1 ¢ 3. 2, N3 elements of the viscoelastic model

§1, £,6m spatial variable

o density of layer i

P slope of beam

u mass per unit length of beam
=2b(p2 H2+p3H3)

w circular frequency

7,7T1.T9 time variable

Viscoelastic layer is designated as layer 2 while elastic layer as
layer 3. A bar over a spatial variable or coordinate represents its
ratio to beam span L.
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