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Description of non-linear elasticity valid up to extremely large

hydrostatic stresses
Volker Schmidt

1. Introduction

Under purely hydrostatic loading conditions irreversible
deformations of materials by plastic shear are excluded,
i. e. solids behave in an elastic manner up to extremely
large stresses and strains, resp.. Consequently, for non-
infinitesimal strains, nonlinearly elastic relations be-
tween stress and strain exist, which partly have been de-
scribed on the basis of lattice theories (see, e. g. [1 —3]),
second-order theories of elasticity (also approaches to a
third order theory) [4 — 9], and empirical relations,
resp., gained from experimental compression data (com-
pare the survey on literature given in [9 — 12].

Bridgman [13], [14] carried out high-pressure experi-
ments over several decades of years and he was the first
to give a relation between volume change and pressure as
well as valuable data on material constants, character-
izing the non-linearly elastic behaviour solids. Later, in
the framework of a second-order theory mentioned,
these constants were used for determining the so-called
modulus of third order, by  (compare, e. g. [15]).

At present, due to rapid developments in high-pressure
physics and geophysics, resp., a comparatively extensive
set .of compression data are available for many materials.
Data on the bulk modulus K and on the modulus bg (
(also described by K, and Ky, resp.) are compiled in [7],
[9] and [15], e. g.. Furthermore, attempts were made to
extend the range of validity of second-order theories.
Ullmann and Pankov [9] (see also [10 — 12]) and other
authors, too (see e. g. Somerville and Thomsen [16]),
tried to estimate the modulus of fourth order, k5, and
the authors of the paper [9] developed a mathematical
model for a uniform description of compression data,
valid up to about 50 (or more) per cent of volume
change.

In the present paper a relation between volume ratio
V/V, and stress will be formulated, apparently valid
up to extremely large stresses. The original purpose of
this study was the determination of changes in the mod-
ulus in dependence on hydrostatic strains and of maxi-
mum cohesive stresses of solids, respectively. Thus, the
range of validity of known second-order theories has
been tested, which then led to the extension described
here. Preliminary results were reported on in the papers
[17 — 20]. Some of the equations described in [20] have
been quoted again in this paper. For the sake of some
comparisons results based on second-order theories are
being represented in the following section.

2. Relations based on second-order theories

The elastic potential ¥ related to the initial volume V
has been formulated by Murnaghan [4] (see also [5]) as a
function of the Eulerian strain € (general loading condi-
tion):

A : : :
v = (§+#)€12—2#€u+1€13*m€1 e e (1)

where respectively €y, e[y, €y are the first, second and
third scalar invariants of the strain tensor (strain related
to the deformed state), and N\ and pu, resp., are Lame’s
elastic constants of second order, i. e.

Nt Sus K, @
and
u-G, 3)

(K, is the bulk modulus, G, is the shear modulus).
Furthermore, I, m'and n’are material constants of third
order.

For hydrostatic conditions we have

€ = 36; €H=3€2; €In=€3. (4)

Consequently, by means of egs. (2) to (4), (1) appears as

9

¥ oK, € +(27I'+ 9m' + n')ed . (5)

The material constants of third order in eq. (5) are con-
nected with

dK dK
bgo = o T T do (6)
P p>0 o—>0
by
, , , 9K, _
271 +9m' + n' = — 2 (bko — 4 )

(compare, e. g. [5] or [17]), where p and o0, resp., are the
Eulerian pressure or stress, resp., and K is the ‘'momen-
tary’ bulk modulus defined by

do
= Voo
K v 8)

so that K, is given by
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The relation between the hydrostatic stress ¢ and the
strain € may be derived from (5), as ¥ is given by

¥ = deV 10
——Vo . (10)

7% N, T de aviv, an

The relation between € and V/V, is described by

2
vV 1 1 Vo3
v—o— = (T-'—"ze)—s/z or, € = -2— (l—-—(—V‘——) ) (12)

which, for our purpose, may be represented by a series
expansion. After derivation and multiplication (see, e. g.
[17]) equation (11) yields!)

0 =3K,[e—¢e2 (_gi bko -D1, (13)

if € terms of higher than second order are neglected. By

means of (12), eq. (13) may be expressed as a function
of volume ratio V/V :

_ 3 3
0—3K0{Z—'§bKO

2/3

(™ o -1- 12 bKo—il} (14)

Furthermore, the momentary bulk modulus K and its
derivative with respect to the pressure, i. e.

dK
by = — (15)
K dp

are easily obtained from egs. (8) and (14), i. e.

4

H

{[ bko — 1]( )

and, by means of (15) and (16), taking into account

dK dK do -1 '
& dK  do 17
dp av/v, (dV/VO ) a7

one obtains

1) Of course, eq. (13) may also be derived from Murn:
tensor relation between stress and strain (see also [5] a%17])
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by = Vo (18 )
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after some rearrangements.

Equations (14), (16) and (18) yield the following data
for special conditions:

Fory———> 0:
o

2 o0 (19)
by > 4/3.

For va 1, necessarily:

o]
>0
K - K, (20)
bg > bgo
3/2
v 5 bko —1 _Vnm
and for o——{ F——— = 7
o 9 92 o
5 bKko
KO
77 %m T oo — 43
K
> =0 21
X (1)

m .

where v and 0y, , resp., are the maximum values of
o

volume ratio and tensile stress (maximum cohesion

stress) of solids.

An alternative representation, on the basis of a second-
order theory, was developed by Pfleiderer, Seeger and
Kroener [5], according to which the elastic potential
related to the initial volume as a function of stress is

given by (general case):
[0 2 0
Q= 2IE — zlé + LUI3 + MOI ont N o111 » (22)

]

where 0y, 0y5, 0y are the first, second and third scalar
invariants of the stress tensor, resp., and L, M, N are ma-



terial constants of third order. For hydrostatic condi-
tions, (22) reduces itself to

Co? o3 '
" 3K + ckZ (bgo *+4) (23)

as

3K2 (27L+9M+N)+§1T((271' +9m’ +n)=4 (24)

(see [5]) and furthermore, as the scalar invariants of the
stress tensor correspond to the relations given in (4), if o
instead of € is introduced there.

The second-order relation between volume change and
hydrostatic stress is represented by (see, e. g., [15] or
(17)).

V-V, S99, o2

Vo Ko 2 K02
Compared with Murnaghan’s relations, i. e. egs. (5) or
(14), resp., equations (23) and (25) have a much smaller
range of validity as will be shown in the fourth section.
Nevertheless, they proved to be useful in treating spe-
cial problems [5].

Besides, other second-order representations have been
formulated on the basis of the Lagrangeian strain (see
[8] and a survey in [7], where also Birch’s and Brugger’s
notations for the higher order constants are described),
but there are similar restrictions with respect to the
range of validity if compared with Murnaghan’s formu-
lation. The relation between the Lagrangeian strain €,
and the volume ratio V/V_ 2 i given by (hydrostatic

(bgo *+ 1). (25)

conditions):
ea=z (O™ -1 (26)

3. Non-linear relations with a wide range of valid-
ity3)

A general material law for hydrostatic loading conditions
can be obtained by rearranging eq. (8),

‘E = d_O s (27)
K K
and by integrating (27), which yields
\' 7 do*

= ) 28
V. exv{ I X } (28)

A Mc Laurin expansion of (28) leads to

2) This relation was given in a wrong way in [17] and has cor-
respondingly to be replaced by (26).

3) In this section the author largely follows the mpreseﬁtation
given in section 2 of the paper [20].

o xo+D+R@) (29

where R (0) is the remainder of the series with higher or-
ders of o and of the corresponding derivatives of K with
respect to p at p > 0, resp. Equation (29) is, of course,
in agreement with the corresponding second-order rela-
tion (eq. (25)), if R (0) is neglected.

On the presupposition that the function

K = £(0) ‘ (30)
is known, equation (28) represents the complete non-

linear material law of arbitrarily high order. Therefore,

an attempt was made on the basis of trial and error to
find this function. The following conditions, which have
to be fulfilled by such an expression, were set:

{ 1} : There exists a maximum tensile stress 0.
(maximum cohesion stress of solids) so that

do
dv

V‘:;:; 0 orK lv:—v’;‘ 0 (seeeq. (8)) (31)

The numerical value of 0 has to agree with
the ,,most reliable” values of 0:; computed on
the basis of lattice theories.

{2} : For 0> — e, we expect V> 0and K>

{3} : With £ (0) being introduced, the second-order
approximation of eq. (28) has to agree with
(25).

{4} : All known experimental data and ,,physically
resonable” arguments, resp., (additionally intro-
duced to those considered above) have to be re-
produced in the range of — < g < or:’] for dif-
ferent types of materials.

Condition { 4-} is restricted this way that static com-
pression data have to be reproduced, and furthermore
that phase transitions are neglected.

Fortunately, the conditions {1} and {4-} have implied
such strong restrictions that all but one function out of a
large number of others could be rejected. This functxon
at least at a high degree of accuracy, is

—olal
K . "7"'m , (32)
Ko W(l-o/a})
where
K
+ _ 0
o Sbgo (33)

is identical with the maximum cohesion stress of solids
(see below). Thus, inserting (32) in (28) and using (33),
the material law appears as

l 1_ * + d %
=exp{_ 1 f.n_(__‘_’._/f_m_) a} (34)
2bKO o el

<|<

o
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The integral is the Dilogarithm function

4. Check of validity, comparison and representa-

tion, resp., of the results

o In(1-¢*/a}) do* o (0/a”
—f ___*_’“ = 3 m (35)
o 0 v=1 2
but the series representation is only valid for | o/ 0+ <1 {1} :

(see e. g. [21]). In general, the integral has to be com-
puted numerically. Some data will be given in the ap-
pendix of thls paper. For extremely high pressures
(p>lOO0m ~10K,, i e.

p = (10° ... 109) MPa for many materials) eq. (34) re-
duces itself to

z—(): exp{ 21) < [ln(p/a )]2+§->} (36)

Before giving remarks on the validity of the material law
we shall add some other expressions characterizing the
mechanical behaviour of solids.

2
The 'momentary’ material constants by = %IS and 4K

P dp?
are derived from (32): { 2} .
+
1 plo
by = 2bgo reuiin . ~ {3
In(l+p/o,) In(l+p/o )I (1+p/o))
\ G
2K ) 4bKO
dp? Ko

| { ~2(1+P/a}) In(1+P/at) + (P/ot ) [2+In (1 +P/ot)] }

(1+P/o})2 [In(1+P/o})]3
(38)

Being subsequently derived with respect to p = — o con-
stants of arbitrarily high order may be obtained, but in
the frame of our representation only two parameters,
bg o and K, are required, i. e. constants of fourth and
higher order are not necessary. Finally, the strain energy
density for hydrostatic conditions (see (10)) is

{4} -

\
J o dV

1
Q=1 39
bo Vo ( )

After dV has been substituted, which is easily derived
from (32) or (34), eq. (39) appears as

Om o N
. 2bko ({ln(l_g**/om)
1 0** 1!1(].—0*/0+) * %
[CXP{”W [ —— 4oty 199
KO o g : Ur:x

(40)

If in eq. (40) the pressure, p = — 0, is introduced instead
of o, the sign in front of the first integral on the right
side becomes positive.
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At first it has to be shown that within the restrictions
mentioned the conditions {l} to {4} are fulfilled.

For 0 - ¢ the limiting value of K (see eq.
(32)) is zero as required. Values of or;'l used for
comparison should be most reliable if com-
puted on the basis of the Born-Mayer latice
theory. The good agreement between these data
and values obtained by means of eq. (33) has
been shown in [19] (see also [22]). The corres-
ponding value of the volume ratio V/V, for
U/or; - 1 results from (34) and (35)

+
Ym o[
vV, P 12bgo

as the limiting value of the Dilogarithm series is

(41)

2
m +
— for o/o, —> 1.

6

By means of (36) the result of V- 0 for p >
is obvious.

: If in eq. (34) the integral is substituted by the

infinite series (eq. (35)) and if then the well-
known series

2
ex=1+x+-;—!+....

is reduced to the second-order approximation,
where the same is done with

v

1 = (0/0;)

X = ) ,
2bKO v=1 2

one verifies eq. (29) for R (¢) > 0 (or (25),
resp.). At the same time, this means that
bg = bk and K = K, resp., if 0 > 0, which
is easily obtained by corresponding derivations
or on the basis of egs. (37) and (32) for 0 > 0.

Data computed on the basis of the material law.
(eq. (34)) almost completely match the path of
experimental compression data (static compres-
sion) available up to pressures of about 102 GPa
for metals, ionic and molecular materials, resp..
Comparative examples of more than 30 solids
were given in [19] and [20]. The maximum
pressures reached correspond to p ~ (1. .. 10)
K, for many materials, whereas the respective
volume ratios are about V/V, ~ 0,4. A good

" agreement was also shown [20] to exist with

minterpolated” data for H, Hy0 and Ar given
by Zharkov et al. [23]. These data are due to
the interpolation of experimental and quantum-
statistical values, resp., for pressures up to
about 103 GPa.



There are other hints givingrise to believe in a wide valid-
ity of the non-linear relations:

Apparently, as mentioned in [20], the relation (36) re-
veals the same dependence of the pressure p on the vol-
ume ratio V/V, as the quantum statistical one in the
case of highly degenerated matter, if p reaches a ,,criti-
cal” value p > — 0, inducing a volume collapse of mat-
ter. Reasonable data on such critical values have been
obtained as will be shown in a subsequent paper.

Furthermore, after some rearrangements, the material
law (eq. (34)), may be interpreted as arelation between
entropies, i. e. entropies of ,,arrangement”, ,,excitation”
and ,,cohesion”, resp., as defined in [20] with the result
that the entropy of arrangement always reaches an ex-
treme, after the excitation (i. e. the entropy of excita-
tion) has been changed by increasing the stresses. De-
tails are described in [20]. There it has also been shown,
that the characteristic constants of the solid state are the
stresses at the upper and lower existence limit of solids,
i. e. K, and bk j appear as derived quantitjes.

Now some relations will be represented graphically.
Fig. 1 shows the dependency of the volume on the
stress according to eq. (34), given here as the plot 0/0;
over A V/V, = (V — V,)/V,. The influence of the par-
ameter by, the modulus of third order, can be seen,
which amounts to 3 < bgg < 7 for many materials.
(Note that 0; = Ko/2bg o used in the dimensionless
ratio a/or; depends on bg g). For o/or“;1 - 1 the curves
always show a horizontal tangent, which in Fig. 1, how-
ever, lacks in elearness. as the curvature of the curves
changes rapidly in the very vicinity of 0/0, > 1, as de-
monstrated in the next figure (Fig. 2), in which
K =V do/dV, the momentary bulk modulus (according
to eq. (32)), is plotted over o/0 : There is a steep
decay of K to zZero very close to 07(11]; - 1. Equally, the
variation of K with stress is demonstrated up to very
high pressures. The usual assumption that K, approxima-
tely, changes proportionally tothe stress is only justified
within suitably small intervals, but the intervals may be
chosen the larger the higher the pressures are. This is also
shown in Fig. 3, where the derivative of K with respect

dK

too,ie by = —— = LS is plotted over U/Or:rx (eq.

do d

37)). Figs. 2 and 3 may be usEd to demonstrate the mod-
ulus changes of prestressed solids, if a certain point in
the curves, marked by a certain prestress, is considered
the new reference state.

Finally, the elastic potential (eq. (40)) related to the
initial volume V is represented in Fig. 4, here in depend-
ence on r/r, = (V/V,)1/3, which is the usual plot for
potentials formulated on the basis of lattice theories.
The full circles mark data corresponding to the Born-
Mayer potential, but this will be described in another
paper;, i. e. it will be omitted here.

Some comparisons with the second-order approximation -

by Murnaghan are added:

In Fig. 2 values of K due to the second-order relation
(16) for two different parameters (bxg = 4 and 6,
resp.), may be compared with our results (eq. (32))
which, in this plot over o/ or:'l, yield only one curve for

Fig. 1
Dependence of dimensionless stress 0/G} on volume change
AV[V, = (V - V,)/V, according to eq."z34).

0 02 0s 06 08 1

-800 - 600 p - 400 -200
om

Fig. 2

Variation of momentary bulk modulus K over K, with dimen-

sionless stress 0/0m (curves) according to eq. (32). Points mark

data due to the second-order relation (16) for bgo = 4 (full

circles) and bgy = 6 (open circles). The upper curve is related

to the co-ordinates marked at the left and upver border of this-
figure, whereas the lower curve is related to the co-ordinates at

the right and lower border, respectively.

arbitrary values of bg g . (Note that the influence of the
parameters by o on the K/K values for given stresses 0
affects our relation (32) by 0./ = K /2bg o).

Deviations of the second-order representation are no-
ticed to increase considerably at relatively large stresses,
but in a different way for different by o values. In Fig. 3
by data’ computed on the basis of eq. (18) (for b o = 4
and 6, resp.) may be compared with our results, where
again the plot of Fig. 3 over U/Ur; according to eq. (37)
yields only one curve for arbitrary by values. Devia-
tions are relatively large. if o/ o;‘ approaches the lim-
iting value 1 (see the text below). Besides, the bg values
differ noticeably for very high pressures as can be
derived from Fig. 2.
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Fig. 3

Variation of momentary modulus of third order by over b

with dimensionless stress G/0;" (curves) according to eq. ( 5}5?

Points mark data due to ‘tl:n second-order relation (18) for

m(o = 4 (full circles) and bg = 6 (open circles), resp.. Note
e relatively small range of stresses (compared with Fig. 2).

0

8

Fig. 4

R::g].)reacntatl on, gf dimensionless strain-energy density over
rltg = (V[V, ) according to relations (40) and (34), resp.
(full lines). Dashed curve corresponds to the second-order
relation (5) for by ) = 6. Details, see text.

105 _r—/;

For V = 0 (0 > — <) the second-order relation yields
bg > 4/3 (compare (19)), whereas the limiting value
according to eq. (37) is zero.

Comparing the stress-volume relations (eqs. (14) and
(34), resp.) one will see again that the deviations depend
on both the stress level and the by values in a compli-
cated manner. For pressure ratios of /o, < 10 devia-
tions of the corresponding volume ratlos are usually
smaller than about *+ 5 per cent, but for p/or:l =100
they become larger or much larger, resp. than 10 per
cent. On the tensile side, the deviations are in the order
of 10 per cent if 0/0; > 1, i. e. the second-order rela-
tions yield larger values (compare data according to
(21) with the values given in (33) and (41), resp.)
Furthermore, the second-order approximation by Pflei-
derer, Seeger and Kroener [5] for the volume change in
dependence on the stress (eq. (25)) was compared with
our representation (eq. (34)). One will easily conclude
that the approximation can be used for stresses
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K,
4bgo

The deviations of the volume changes will then be smal-
ler than about four per cent. For larger stresses the
approximation completely fails (see, e. g. the compari-
son made in Fig. 1 of the paper [19]).

The volume-stress relation may also be' compared with
the approach by Ullmann and Pankow [9]. The agree-
ment partly depends on the accuracy of the values they
obtained for the modulus of fourth order (see [11],
[12]), given by

d2K 1
kg = Ko — ~ g (+bgo) (1-2bgo) . (42)
dp? 'p~0

The k4 values of Ullmann and Pankow were mentioned
[20] to correspond only roughly to ours, which are given by

Ky = —2/3bgg’ BN

(following from (38) for p = 0)4), i. e. noticeable devia-

tions in the range of about VV— < 0.5 have been ob-
served. o

The author would like to thank Prof. Dr. H. Bethge for
enabling this work. He is also indebted to Prof. Dr.
P. Bankwitz, Drs. W. Ullmann, D. Méhlmann, Z. Knesl
and H.-G. Maschke for rendering possible respective
literature and for helpful discussions. Dipl.-Phys. R. Al-
brecht is thanked for the numerical computations used

for the figures and the table.

Appendix

Numerical data for the volume ratio V/V, in depend-
ence on the stress ratio 0/, for by o = 5.

The data given here may also be used for other values
of b K0 3 (compare (34)) the relation

*
holds for a given value of o/ 0; (“;— is the volume ratio
o

related to the value b;('o, whereas V/V is the ratio re-
lated to bgg = 5, where both the ratios are related to
the same value of 0/0,). Values for the Dilogarithm

function may also be used from (21) or computed nu-
merically as done here. For ratios p/ o, > 100 data may
be obtained on the basis of (36).5)

4) Besides, from (14) to (18)
Kg = — (bKO —2/3) (bKO —4/3)
results.

5) Compared with the data of the table, eq. (36) yields ViV,
values which are smaller by about 1, 0.1 and 0.04 per cent
resp., for pla values of 10, 100 and 200, resp.



o/o.

0.8 1.1135 - 14
0.6 1.0755 - 16
0.4 1.0459 - 18
0.2 1.0213 - 20
-0.25
- 05
-0.75

8 +

10 0.6571 - 100

VIV, ojo,, IV,
1 11788 - 12 0.6280
0.6030
0.5811
0.5617
0.5442
0.5073
0.4772
0.4521
0.4306
0.4119
0.3954
0.3675
0.3445
0.3251
0.3085
0.2940

0.9767 - 25
0.9561 - 30
09377 - 35
0.9210 — 40
0.8661 - 45
0.8236 - 50
0.7889 - 60
0.7595 - 70
0.7341 - 80
0.6916 - 9
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