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Abstract: An elastic-brittle anisotropic model is presented based on the work by Fassin et al. (2019a). After discussing the local
model equations and the incorporation of crack-closure, the gradient extension using the micromorphic approach according to
Forest (2009) is briefly summarized. In order to run unit cell simulations on the microlevel, relevant material parameters have to
be identified. Therefore, the energy dissipation provides a differential equation with a linear and quadratic term for the damage
variable. Finally, the isotropic damage model is used to show numerical examples with variation of fracture toughness and volume
fraction of pores.
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1 Introduction

Due to the renewable energy act proposed by the German government, a significant amount of electric power must be covered
by renewable energies. However, a huge amount of the electric power supply will still be provided by fossil power plants. The
repeated turn on and off procedures of fossil power plant generators are associated with high demands on the materials’ strength in
cyclic loading. This can be accounted for by making use of innovative materials which are characterized by improved functional
properties and higher performance. In this context, carbon fiber-reinforced (CFR) epoxy resin has widely been used. Before
such materials can be applied in the generators, their material behavior and performance must be analyzed. Since the overall
mechanical behavior of such heterogeneous media is to a large extent determined by the micro-structure, numerical simulations
can be conducted to study the local material behavior and the effective constitutive response. In particular, the initiation and
growth of damage at the micro-scale is crucial and needs to be taken care of. Due to the manufacturing processes, micro-cracks
and -voids (Fig. 1) are present which grow and coalesce under certain loadings leading to damage processes in the matrix material.

2 Model equation

This section briefly presents the anisotropic gradient-extended damage model, recently published in Fassin et al. (2019a) and its
extension to tension compression asymmetry (Fassin et al. (2019b)).

2.1 Local damage model

The free energy density ψ is assumed to consist of three parts

ψ = ψe(ε, D) + ψαh (α) + ψDh (D)
︸               ︷︷               ︸

ψh

, (1)

representing the elastic, the damage hardening and an additional hardening term with the strain tensor ε, the hardening variable
α and the symmetric second order damage tensor D. The elastic strain energy for an initially isotropic and material is also split
into three parts

ψe(ε,D) = 1
2

(
1 − g

)
λtr2(ε)

︸              ︷︷              ︸
λ-term

+ (1 − ϑ)
(
1 − g

)
μI : ε2

︸                      ︷︷                      ︸
μiso-term

+ ϑμ
(
I − D

)
: ε2

︸             ︷︷             ︸
μaniso-term

(2)

with g = f (tr(D)) → e.g. g = tr(D)/3, μ and λ are the Lamé parameters. The λ-term and μiso-term are related to isotropic
damage since the terms are damaged by the scalar (1− g(D)). The material parameter ϑ controls the degree of damage anisotropy
related to both μ-terms: For the choice ϑ = 0, the third term in Eq. (2) vanishes and fully isotropic damage is obtained. In
contrast, fully anisotropic damage is achieved for ϑ = 1 and the second term vanishes. Thus, for ϑ = 0 we obtain
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ψe(ε, D) =
1
2

(
1 − g

)
λtr2(ε) + μ

(
I − D

)
: ε2. (3)

The quadratic energy with the hardening parameter K1 is given in Eq. (4). For anisotropic damage the additional hardening
represented by Eq. (5) is a convex function of the eigenvalues Di of the damage tensor with the property f → ∞ for Di → 1.
Eq. (5) ensures that the eigenvalues of the damage tensor do not exceed the value of 1.

ψαh (α) =
1
2

K1 α
2 (4)

ψDh (D) =
1
2

KD
h

3∑

i=1

f (Di) (5)

(6)

By evaluating the second law of thermodynamics

D = σ : Ûε − Ûψ = (σ − ∂εψe) : Ûε − ∂Dψ : ÛD − ∂αψ ∙ Ûα ≥ 0 (7)

the thermodynamically conjugate forces like the stress can be derived

σ =
∂ψ

∂ε
= λ

(
1 − g

)
trεI + μ

[
(I − D)ε + ε(I − D)

]
(8)

as well as the damage driving force Y

Y = −
∂ψ

∂D
= −

∂ψe

∂D
−
∂ψh

∂D
= Y e − Y h (9)

Y e = −
∂ψe

∂D
=
λ

2
trεI + με2 (10)

Y h =
∂ψh

∂D
= KD

h

3∑

i=1

f ′(Di) n
D
i ⊗ nD

i (11)

which is split according to the free energy density function into an elastic and hardening part.
Introducing an initial damage threshold Yc

0 and the abbreviation β =
∂ψ
∂α =

∂ψh
∂α = K1 α the damage criterion reads:

Φ = ‖Y e − Y h
︸   ︷︷   ︸

Y

‖ −
(
Yc

0 + β
)
≤ 0. (12)

Then the following associative evolution equations for the internal variables are chosen

ÛD = Ûλ
∂Φ

∂Y
= Ûλ

Y

‖Y ‖
, Ûα = − Ûλ

∂Φ

∂β
= Ûλ (13)

with the Kuhn-Tucker conditions

Ûλ ≥ 0, Φ ≤ 0, ÛλΦ = 0. (14)

2.2 Tension compression asymmetry

Tension compression asymmetry (TCA) is incorporated in this model as follows. The strain ε is split into a positive and negative
part (compare to Ladeveze and Lemaitre (1984))

ε = ε+ + ε−, tr(ε) = tr+(ε) + tr−(ε) (15)

ε+ =
∑

i∈A

εini ⊗ ni, A = {i : εi ≥ 0}, tr+(ε) =
〈
tr(ε)

〉
(16)

ε− =
∑

i∈B

εini ⊗ ni, B = {i : εi < 0}, tr−(ε) = −
〈
−tr(ε)

〉
. (17)

Accordingly the elastic part of the free energy is also divided into a positive part, which is corresponding to tension, where
damage is fully active and a negative part

ψe(ε, D) = λ
2 (1 − g) [tr+(ε)]2 + μ(I − D) : ε2

+
︸                                        ︷︷                                        ︸

ψ+
e

+ λ
2 (1 − htc g) [tr

−(ε)]2 + μ(I − htc D) : ε2
−

︸                                                 ︷︷                                                 ︸
ψ−
e

. (18)

The material parameter htc controls the degree of tension compression asymmetry (TCA) within the material: For the choice
htc = 1 the compression related part is damaged in an analogous manner to the tension related part (no crack-closure is considered).
In contrast, the highest possible degree of TCA is achieved for htc = 0. For this case, the compression related part is not damaged
at all.
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2.3 Gradient extension: micromorphic approach

The gradient extension is realized by adding one additional scalar micromorphic field variable according to Forest (2009). The
additional global field variable αχ is the counterpart to the local variable α and causes additional terms in the internal virtual
work

gint =

∫

B

σ : ∇sδu dV +

∫

B

(
βχ δαχ + ξ ∙ ∇δαχ

)
dV (19)

gext =

∫

B

f ∙ δu dV +

∫

∂Bt

t̄ ∙ δu dA (20)

with the Cauchy stress tensor σ, the generalized stresses βχ and ξ , body force f an the prescribed traction vector t̄ on the
boundary ∂Bt . δu and δαχ are suitable test functions. The micromorphic extension is neglected in the external virtual work, as
Eq. (20) shows. Making use of the principle of virtual work

gint
!
= gext (21)

the equations of linear momentum balance are obtained in the standard way

div(σ) + f = 0 in B (22)

σ n = t̄ on ∂Bt (23)

u = ū on ∂Bu . (24)

For the additional field variable the micromorphic balance equation and the corresponding Neumann boundary condition on ∂BΞ
are

div(ξ) − βχ = 0 in B (25)

Ξ̄ = ξ ∙ n = 0 on ∂BΞ. (26)

In addition, the free energy of the local from Eq. (1) has to be extended by an additional micromorphic energy, which consists of
two parts

ψmicr =
1
2

Hχ (αχ − α)
2 +

1
2

El2 ∇αχ ∙ ∇αχ . (27)

The first part of Eq. (27) acts as a penalty energy which forces the micromorphic field variable αχ to be as close as possible to
the local variable α with the penalty parameter Hχ. The second part takes into account the energy stored by the gradiend of the
micromorphic field variable αχ.
With the additionally introduced micromorphic energy the expressions for the generalized stresses can then be derived

βχ =
∂ψ

∂αχ
= Hχ(αχ − α), ξ =

∂ψ

∂∇αχ
= El2∇αχ . (28)

3 Application and numerical results

Fassin et al. (2019a) showed that isotropic and anisotropic damage models yield to the same result if no diffusive damage occurs.
Since this work focuses on the modeling of crack formation as shown in Fig. 1 and no diffusive damage.

Fig. 1: Crack formations in the matrix material.

It is sufficient to make use of the simplified gradient-extended isotropic damage model for the simulations of the epoxy matrix on
the microlevel.

3.1 1-D isotropic damage

In order to identify relevant material parameters from the more classical fracture mechanic theory like the strain energy release
rate or stress at fracture, the first variation of the free energy functional with respect to D (Eq. (29)-(31)) provides the essential
criteria. The procedure is similar to Francfort and Marigo (1998), Bourdin et al. (2008) and Pham et al. (2011).
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Fig. 2: Solution for D.

With the evaluation of Eq. (29) the strain energy release rate Gc can be formulated dependent on the internal length l , which
controls the thickness of the damage localization zone.

δD

∫

V

ψdV = 0 → ...
dE
dA

=
√

2E 2l
∫ 1

0

√
w(D)dD = Gc (29)

ψ = w(D) + 1
2 El2∇D ∙ ∇D (30)

w(D) = Yc
0 D + 1

2 K1D2 (31)

The damage criterion provides a useful criterion for the stress at fracture σc which is corresponding to the damage threshold Yc
0 .

Φ = 0 → ψ0(ε) = Yc
0 →

√
2E Yc

0 = σc (32)

Yc
0 + K1D − El2D′′ = 0 with D(x0) = D′(x0) = 0. (33)

The solution of Eq. (33) is plotted in Fig. 2. 2x0 represents the whole crack width or rather the thickness of the damage localization
zone. Thus, the strain energy release rate Gc , stress at fracture σc and the crack width x0 can be controlled at the same time.

3.2 Unit cell simulations with variations of the fracture toughness

As numerical example a quadratic unit cell with 60% fiber and 2% pore volume fraction is considered (see Fig. 3). Periodic
boundary conditions are defined. It is noted that the unit cell can’t be considered as statistically representative. The material
parameters are set such that no damage will occurs in the fiber material with E=220000 N/mm2, ν=0.2, Yc

0 =∞ Nmm/mm. For
the matrix material the parameters E=3000 N/mm2, ν=0.3, K1=100.0 Nmm/mm3, Hχ=106 Nmm/mm3, l=1.5552 ∙ 10−4 mm,
Yc

0 =1.1258 Nmm/mm3 are used.

Fig. 3: Unit cell geometry.

Fig. 4: Specimen with variation of CSR particles.

In this first example the variation of the fracture toughness is shown. In reality, soft and elastic Core-Shell-Rubber particles (CSR)
are embedded in the epoxy matrix. With increasing volume fraction of CSR particles (Fig. 4) the fracture toughness increases
and the limit stress σc decreases. The new material parameters in Tab. 1 for varying CSR volume fraction are identified with the
criteria of subsection 3.1.
The limit stress σc is decreasing for increasing CSR fraction. With Eq. (32) the initial damage threshold (the last column of
Tab. 1) has to decrease, in analogy. The crack width x0 for the given geometry in Fig. 3 remains constant.
The average stress over the average strain is plotted for the load case εyy > 0 for each CSR variation in Fig. 5 and shows the
increasing maximum stress for increasing matrix fracture toughness.
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Tab. 1: List of material parameters for matrix material with varying CSR volume fraction.

CSR E [N/mm2] K1 [Nmm/mm3] l [mm] Yc
0 [Nmm/mm3]

0% 3000 100.0 1.5552e-04 1.1258
4% 2752 200.0 1.9877e-04 0.9419
8% 2604 300.0 2.1169e-04 0.8619
12% 2440 350.0 2.2885e-04 0.8133

Fig. 5: Average stress over average strain for varying
CSR volume fraction.

Fig. 6: Maximum average stress over pore volume
fraction.

In this case, the conventional scale transition criteria aren’t satisfied, i.e., the depicted behavior is related to the unit cell (not the
composite) and thus only qualitative. While the Young’s modulus for the matrix material is decreasing (second column in Tab. 1)
and the fracture toughness which is corresponding to the energy release rate Gc is increasing, it is reasonable that the maximum
average stress of the unit cell increases, too.

3.3 Unit cell simulations with variations of pore volume

In the next numerical example the volume fraction of pores is modified with 0%, 2%, 4% and 6%. The initial material parameter
set is taken from subsection 3.2 for the matrix material without incorporation of CSR particles (0% CSR volume fraction).
Geometry, fiber volume fraction as well as fiber material parameters stay the same.
Representing only first qualitative observations these UC simulations show that with increasing volume fraction of pores the
average maximum stress is decreasing, which is visualized in Fig. 6. Crack initiation starts in the matrix material near a pore and
propagates along the interface, but does not pass through the rubber particles.
Furthermore Fig. 6 emphasizes that 2% volume fraction of pores does not have a remarkable influence on the maximum average
stress. This is different between 4% and 6% volume fraction where a bigger difference of the average stress is noticeable. This
observation has to be investigated with using more representative unit cells.

4 Conclusion

In the present work, an anisotropic gradient-extended brittle damage framework of Fassin et al. (2019a) was presented. In addition,
the model enables tension compression asymmetry (crack-closure) extension recently published in Fassin et al. (2019b). The
numerical examples make use of the simplification of the model to isotropic damage.
The two numerical examples of unit cell simulations, where first the fracture toughness and second the pore volume fraction
was varied, were shown. Both results demonstrate reasonable overall response. Though for statistical representation more unit
cell simulations have to be done considering bigger unit cells. For the purpose of investigation of the performance of carbon
reinforced epoxy resin the next (macro) scale has to consider anisotropic damage with crack-closure consideration for a more
realistic material response.
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