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Abstract: Supporting structures in the field of glass facade construction are increasingly relying on making use of silicone
adhesives. Hence, predicting the hyperelastic behavior and the stiffness reduction (Mullins effect) of such adhesives is essential
for the economical dimensioning of load-bearing bonds. For this, a phenomenological hyperelastic model at finite strains is
defined, which enables an accurate prediction of the real material behavior. The presented model is based on the Ogden model.
Two internal variables are defined, which describe stiffness reduction during loading and unloading procedures and hardening or
softening behavior, to model the experimentally observed behavior. For the calibration of the corresponding material parameters,
a staggered parameter identification scheme is proposed in order to obtain a unique parameter set for the representation of
multiaxial stress states. The excellent model prediction is shown by selected examples.
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1 Introduction

Load bearing bonds become increasingly common in glass-fagade structures. This is due to their beneficial characteristics, such
as the more continuous load transfer between glass and the supporting elements compared to alternative connections, and the
possibility to achieve a more transparent design. Utilized adhesives show rubber-like, hyperelastic material response under large
deformations. During experimental investigations, stiffness reduction is observed referred to as Mullins effect (see e.g. Mullins
(1948), Bueche (1961)). Until now, German regulations for the dimensioning of load bearing bonds include very high safety
factors (ETAG (2012)) which could be reduced by using a more sophisticated prediction of the real material behavior (Richter et al.
(2014)). Thereby, a higher material utilization would be possible. To provide better predictions, a material model representing
the complex behavior mentioned above is needed to enable a less time consuming and less cost intensive realistic calculation and
design. To the phenomenological material models belong above all the classical approaches of Mooney (1940) and Rivlin (1948)
as well as of Ogden (1984). These models are still frequently used today because they are relatively simple and contain only a
small number of material constants to be characterized. Comparisons between these and other phenomenological models for the
mechanical behavior of hyperelastic materials and the characterization of the associated parameters can be found in Steinmann
etal. (2012), Martins et al. (2006), Meunier et al. (2008). There, it is shown that these models are suitable to describe the nonlinear
elastic stress-strain behavior of rubber-like materials. However, these material models are not able to represent stress softening
which occurs in the considered adhesives. This softening occurs particularly under repeated loading as is referred to as Mullins
effect, which was first observed by Bouasse and Carriere (1903). In the last decades, a lot different approaches were figured out
to model the Mullins effect. Ogden and Roxburgh proposed the idea that the model response of the material behavior can be
described in terms of a pseudo-energy function. To describe the elastic behavior, an internal variable is set to a constant value and
activated, so that damage occurs during relief (Ogden and Roxburgh (1999)). Dorfmann and Ogden developed a new approach
based on the Ogden-Roxburgh model. They defined two variables within the free energy. The first variable describes the damage
and softening behavior, the second variable describes the accumulation of residual strain during loading and unloading cycles
and is called the residual strain variable (Dorfmann and Ogden (2004)). A more detailed overview of selected models describing
the Mullins effect can be found in Diani et al. (2009). textcolorblackIt is known from the literature that the stress strain behavior
depends strongly on the angle between the current and the previous direction of loading. This anisotropy induced by the Mullins
effect in the deformation history was already observed by e.g. Mullins (1948), Arruda and Przybylo (1995), Pawelski et al., Besdo
et al. (2003). Studies on this topic can be found in e.g. Thlemann (2005), Itskov et al. (2006), Kahraman et al. (2010).

This paper presents a phenomenological model to describe the softening (Mullins effect) of silicone adhesives based on the
Ogden model with a thermodynamically consistent extension to account for the stiffness reduction, neglecting the above mentioned
anisotropy and further effects like viscosity, hysteresis and plasticity. The model parameters are identified in a staggered procedure
in such a way that a unique set of parameters is created which also enables the modeling of multi-axial stress states. Selected
validation examples under consideration of multi-axial stress states are presented at the end.
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2 Experimental studies and material behavior

To model the behavior of the silicone adhesive, at first, the experimental material behavior was observed. A uniaxial tension test
was performed under cyclic loading up to a maximum technical strain of 100%. The experimental results were observed from
that part of the specimen in between the white lines (see Fig. 1), where a homogeneous material behavior can be expected. The
distance between these white lines is 20 mm and the dimensions of the test’s relevant area, marked with the red box in Fig. 1 are
60 mm x 10 mm x4 mm. The corresponding relation of logarithmic strain and first Piola Kirchhoff stress is shown in Fig. 1.
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Fig. 1: Experimental observation: Uniaxial tension test

The stress strain behavior represents an S-shaped curve typical for hyperelastic materials. Furthermore, stiffness reduction can
be observed, which is also described by the Mullins effect. The Mullins effect occurs during cyclic loading and in particular, the
stress softening during the first and second loading and unloading cycles is noticeable. After about five to ten cycles, depending
on the material, a stabilized hysteresis loop can be reached, see e.g. Harwood et al. (1965), Johnson and Beatty (1993), Beatty
and Krishnaswamy (2000), Cantournet et al. (2009). There are different physical explanations and interpretations of the Mullins
effect in literature. Rubbers in general consists of polymers. These polymer chains can be strengthened by adding particles, so
that the filled rubber consists of a network of polymer chains filled with some particles Bol (2005). The anisotropy induced by
the Mullins effect, as observed e.g. by Mullins (1948), is neglected and in addition, no hysteresis effects, viscosity or plasticity
are taken into account in the material model presented here. Therefore, the experimental data were reduced accordingly so that
the idealized Mullins effect is preserved. For this the experimental data are read out in such a way that the load curves and the
last relief curves per cycle are taken into account, the cycles in between are neglected. This is shown in Fig. 1 by the red curve.
For the investigation of shear behavior, a pure shear test was studied. In a pure shear test, a special geometry of the specimen
is required: One edge of the thin specimen must be much longer than the other. Investigations show that the dimension of the
adhesive with 200 mm x 50 mm x 3 mm is suitable to generate a pure shear behavior within the considered adhesive. The pure
shear behavior is observed in the center of the specimen. For illustration, the specimen in the loaded state due to elongation in
y-direction, perpendicular to the longer edge length, is shown schematically in Fig. 2.

AYs

Fig. 2: Details about pure shear behavior in an incompressible material

Due to the chosen geometry there is no influence from the transversal contraction in the center of the specimen, so that €,, = 0,
and &y, increases because of the elongation. In contrast, &;; decreases due to the contraction in z-direction. Considering an
incompressible material, the contraction in z-direction is equal to the elongation in y-direction, &,, = —&,,. This is indicated by
the following deformation gradient:

1 0 0
Fi=10 2 0|, (1)
0 0 a!

where A is the respective stretch. The plotted strains into y- and z-direction, which are exactly the same size, imply that a pure
shear deformation is obtained at an angle of 90° in Mohr’s circle. The maximum shear strain is reached when ¢y, = &,, = 0.
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Fig. 3: Experimental observation: Pure shear test

In Fig. 3 the specimen used for the test procedure is shown. If the specimen constricts strongly due to its almost incompressible
behavior at high strains, a pure sample may slip slightly out of the clamp each time a new strain level is approached. Joined
specimens were used to avoid the remaining strain resulting from these friction losses in the clamping area. Stainless steel
sheets were used as joining partners and clamped into the test bench. Since the stainless steel practically does not deform at
the comparatively very low loads and thus does not change thickness, the problem of friction loss and the associated successive
slippage of the specimen could be avoided. The load was thus transferred to the adhesive via adhesion to the parts to be joined
and no longer via a frictional clamping effect. For evaluation, the logarithmic longitudinal strain perpendicular to the longer edge
length and the first Piola Kirchhoff stress in the stretched direction are considered, see Fig. 3. Here, too, the curve obtained from
the experiment is reduced to the envelope red curve.

At least a compression test was performed to investigate the volumetric deformation. Here, a cylindrical pure substance sample
with a diameter of 20 mm and a height of 30 mm, is uniaxially loaded, while deformation in the other two spatial directions is
prevented, see Fig. 4. A change in shape is only possible by reducing the volume. The experimental implementation takes place
in a precisely fitting steel tube into which the test specimen is inserted and then loaded with a punching force. The nearly linear
relation of pressure p and the specific volume ratio AV/V is shown in Fig. 4.
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Fig. 4: Experimental observation: Compression test
3 Material modeling
The total Helmholtz free energy of this model is defined as
w = wel(/l]» /12’ /13’ p) + WC((S), (2)
where the first part is based on the Ogden model for hyperelasticity
: 1 A
Yer(A1, A2, A3, p) = ZHk(P)[—(ﬂfk + A5+ 5% =3) = Ind| + —(J* - 1 - 2InJ), (3)
=l 0773 4
the free energy function of which is defined as a function of the principal stretches A;, i = 1,2, 3, and contains the material

parameters u; and . J is the product of the principal stretches and A is the Lamé constant. As a new variable p is defined for
taking into account stiffness reduction. This variable is assumed to be a scalar and works as an internal variable taking values
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between 0 and 1. The following formulation w(p) is defined, which is used instead of the original parameters y:

;12 if p=0
pr(p) = Y (1= p)Pre(u — ) + Y if 0<p<1 4)
My if p=1

In the standard continuum damage mechanics approach, the model response results in failure for the case D = 1 (D is the damage
variable). On the contrary, in the current formulation, p = 1 does not refer to failure but to a final stress-strain relationship which
can be represented by the model. The parameters y;° are needed to describe this last stress-strain curve. In contrast, ,ug (the
value of i (p = 0)) are artifical parameters, which are needed to describe the stress-strain behavior during the stiffness reduction,
and do not reflect any physical properties. The advantage of this embedded variable p is, that stiffness reduction is considered
specifically in each Ogden term. The consideration of the newly introduced variable leads to an additional term ¢, which is
added in the free energy function in order to control the development of stiffness reduction and to model the softening/hardening
behavior (cf. e.g. Brepols et al. (2017), Simon et al. (2017)). For this control part, the following exponential formulation

ve®) =5+ 065 — 1) 5)

was chosen, which depends on the softening/hardening variable § and also contains the two model parameters ¢; > 0 and
¢ > 0. Both parts, p(p) and ¥ (6), can be chosen freely and independently, making the model very flexible. Following general
thermodynamical considerations, the second law of thermodynamics must be fulfilled and is therefore exploited to derive the
state relations of the model.

- +P-F>0 (6)

M\ .. o . O .
(P aF)F op " 35 020 @
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In the considered case, the first Piola-Kirchhoff stress tensor is denoted by P, and F is the deformation gradient. The remaining
dissipation inequality provides the thermodynamic conjugated forces of the model, which can be computed by Z—ﬁ and g—‘é’, which
are abbreviated to Y and vy, respectively. In order to define the onset of stiffness reduction as well as the hardening or softening

behavior, the stiffness reduction criterion is defined as
D=Y-Y-y6)<0 (8)

Here, Yy is an additional material parameter and defines the threshold of stiffness reduction. According to the generalized
normality rule, the evolution of stiffness reduction and hardening/softening variables are given by
0o . 0D

pzszk, 0=—K— =K )

where & represents the required multiplier. Further, the Karush-Kuhn-Tucker-conditions must hold:
k20, ®<0, kP=0 (10)

The condition ® = 0 induce that thermodynamic driving force is generated whenever the stress is high enough and stiftness
reduction is accumulating. On the contrary stiffness reduction does not evolve, for example in case of unloading, if ® < 0.
Therefore, in this framework, stiffness reduction can only grow (¢ > 0).

4 Fitting procedure and selected experiments

The model contains fifteen parameters in total. The influence of the Lamé constant A in the second part of ¢.; can be neglected if
the material is nearly incompressible and if A >> p(p) is adhered to for all k and p. In order to determine A in the correct order
of magnitude, a computation based on the bulk modulus K from a compression test can be done separately at the beginning of the
fitting procedure. For the computational determination of A, the compression modulus K was determined from the compression
test in Fig. 4 with

_pb _
K =— = 1176 MPa (11)

v
With the Poisson’s ratio v, the following relationship between the Lamé constant A and the bulk modulus K applies from linear
theory

12)
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With v = 0.495 one obtains A = 1168 MPa. This means that strictly speaking, the value only applies exactly to the linear initial
range. To get one parameter set for a representation of all loading conditions, it is necessary to fit the remaining parameters
simultaneously to results of a tension test and a shear test. Experiments to consider tension could be uniaxial or biaxial tension
tests, and simple shear or pure shear experiments are both suitable for the consideration of shear tests. For the fitting procedure, the
remaining parameters are initially divided into two groups. The first parameter group comprises the parameters ,° and @y, which
describe the general S-shape of the stress-strain curve. The second group contains the parameters from the stiffness reduction
(Px), the control term (Cy, C;) and the artificial parameters ( ,ug). This group influences the occurrence and progression of stiffness
reduction. These two groups can be fitted independently. The first group containing ,°, which relates to the last unloading path,
can be fitted together with @y to the last stress-strain curve measured in the experiment and the remaining parameters (group 2)
are fitted to the experimental results of the cyclically loaded tests, Fig. 5.
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Fig. 5: Separate parameter fitting to last unloading path and to cyclic experimental data

strain

The parameters were adjusted using the Optimization Toolbox ™ in MATLAB, which enables a nonlinear algorithm for least
squares, Isqcurve fit. For a simultaneous fit it is necessary to feed the test data into the algorithm in matrix form. The number of
data points of all test data must correspond to each other. With manual weighting of the test data to achieve better fitting results,
the matrix entries of different lengths can be filled by adding zero vectors. The fitted parameter set (Tab. 1) results in a very good
representation of the uniaxial tension test and of a pure shear test, shown in Fig. 6.

1r i 0.35
- experiment - experiment
0.8l ——model L 0.3 F|——model
— - 0.25
e =
o [
& os g o2
X 1
004 ' < 0.15
= i o1 X
0.2 -
0.05 +
X
N | | ‘o N R
0 0.2 0.4 0.6 0 0.02 0.04 0.06 0.08 0.1
logarithmic strain[-] logarithmic strain[-|

Fig. 6: Simultaneous fit to uniaxial tension test and pure shear test

Tab. 1: Model parameters of the proposed model

elastic parameters

P [MPa] 3’ [MPa]  uP[MPa]  ai[-]  ax[-] a3l-] A[MPa]
0.250 391E-07 -0.195 0.011 21422 -4.398 1168

stiffness reduction parameters

#9[MPa]  pS[MPa]  p[MPa]  pi[-] P[] ps[] ci[MPa] Gl
33.496 0.118 -0.523  4312.2 149.27 1017.6  3327.8 43.73

In general, the material parameters are determined to positive values. However, in order to map the S-shaped curve observed
in the experiment, one exponent @ must be negative as also shown by Ogden (1984). In Ogden (1972) the stability condition
Hrag > 01is defined. From this, it follows that with a negative exponent ay the corresponding 1, must also be negative.

5 Model validation

To validate the model, its prediction regarding multiaxial stress states is compared with experimental data. For this, the model
formulation was implemented as user material subroutine into the FEM software FEAP Taylor (2014). In addition to the possibility
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of using the standard element Q1, the use and suitability of an advanced finite element technology was investigated, because
modeling hyperelastic materials can evoke mesh distortion. The used element formulation, which is very efficient and robust
against mesh distortion was formulated in Reese (2005). This formulation makes use of a reduced integration plus adaptive
hourglass stabilization concept. The stabilization factors are computed based on the enhanced strain method. Moreover, this
element formulation is very efficient from computational point of view, due to the integration in only one Gaussian point.

For validation, two examples will be shown and discussed in the following. As a first example, a so called butt joint tensile test
was chosen. This bonded specimen shows a large number of shows a large number of practice-relevant multi-axial stress states
and is therefore particularly suitable for checking material laws. Two steel cylinders are connected to each other by an adhesive
layer. The test was carried out under strain-control with cyclic loading. During loading the adhesive layer was elongated in
axial direction. By using symmetry, the test specimen can be calculated two-dimensionally or three-dimensionally on a circular
cylinder sector. The following results were generated with the displacement-controlled calculation of a circular cylinder sector
whose cross-section is shown in Fig. 7. Based on the study of mesh convergence, shown in Fig. 8, 390 elements were chosen,
because this mesh has already reached a converged solution.

The model prediction compared to experimental results is shown in Fig. 9 and shows a very good match. For this computation
the fitted parameters from Section 4 were used.
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Fig. 7: Butt joint tensile test Fig. 8: Mesh convergence butt joint tensile test

A comparison of the advanced finite element formulation Q1SPused here and the standard element Q1 of FEAP, in Fig. 10,
shows that 390 elements with the standard element Q1 are obviously not sufficient to predict the experimental results well enough,
whereas 390 elements with QISP provide a reliable prediction. Also, increasing the number of elements to 1000 elements does
not sufficiently improve the prediction using the Q1 elements. As already shown in the study of mesh convergence, about 1000
elements with Q1SPlead to a similar prediction as 390 elements, these curves lie exactly on top of each other.
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Fig. 9: Model prediction in comparison to experi- Fig. 10: Model prediction with different discretiza-
mental results for the butt joint tensile test tion and element types for the butt joint

tensile test

The second example of validation is the specimen shown in Fig. 11, which is intended to resemble a component-like sample.
With the aid of the component-like sample, a mixed stress state is to be generated within the connection. This results, for example,
from a wind suction load on a facade element that is glued on all sides. Due to the plate loading of the glass pane, it undergoes a
deflection which leads to a rotation in the joint.
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steel
adhesive

Fig. 11: Validation specimen in testing machine and simple sample for simulation

The specimen consists of a steel beam and a steel plate connected to each other by the adhesive layer. The lower steel beam is
clamped in the test stand and at the end of the lever the sheet metal of the bonded specimen is pulled upwards in the load axis. For
the simulation, the entire specimen was reduced to the sample section in Fig. 11, considering only the adhesive layer and a section
of the upper steel plate. The bottom is completely fixed and the steel plate edge is moved upwards. The displacement applied
to the lever end during the test was converted to the required displacement at the selected steel edge using the deflection angle
for the displacement specification in the FE calculation. Since the evaluation of a force-displacement curve in this experiment is
dependent on the length of the lever arm, the load-bearing behavior of the adhesive was represented in the form of a torsional
momentum curve. As can be seen in Fig. 12, the length |, can be used to determine a momentum with M = F - |, that is
independent of the length of the lever arm. The model prediction is in good match with the experimental results, see in Fig. 12.
In particular, the maximum point from the prediction matches very well to the experimental data.
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Fig. 12: Torsion angle and momentum relation

6 Comparison of the proposed model with the Ogden-Roxburgh model

To investigate the behavior of the proposed model in comparison to existing models from literature, the proposed model is also
compared to the Ogden-Roxburgh model (Ogden and Roxburgh (1999)). First, the results of the simultaneous parameter fit to the
uniaxial tension test and the pure shear test are compared, followed by the calculation of the butt joint tensile test, already shown
in Section 5. The Ogden-Roxburgh model already implemented in the FE software Abaqus Systemes (2016) was used for this
comparison. The in Abaqus modified strain energy density function has the form

‘//(/ii’ 77) = nl!/dev(/ii) + (D(U) + ‘;l’vol(‘])' (13)

This function is splitted into a deviatoric part Vaev(;) and a volumetric part ¥,0;(J), depending on the deviatoric principal

stretches A; = J‘%/l,- and the volume ratio J respectively. The continuous damage function ®(7) depends on the damage variable
n, which varies according to

1
n=1-—erf

r

(lﬁ:}lev —Ydev ) "

m+,8¢132v

where the Gauss error function er f(X) contains the ratio of Y, » which is the maximum value of 4., at a material point during
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its deformation history. Corresponding to the Ogden model in Abaqus, Y., (1;) is defined by

N=3
- Y
Vaen(Ai) = Y LLAT + 25+ 25 - 3). (15)

i=1 i

The volumetric part of the strain energy is defined by

N=3

1 .
a9 = ) (-1, (16)

i=1

The corresponding elastic parameters y;, @;, compression parameter D; and the damage parameters r, 5 and m were determined
in Abaqus itself on the basis of imported test data from the uniaxial tension test and the pure shear test (see Section 2) and are
shown in Tab. 2.

Tab. 2: Model parameters of the Ogden-Roxburgh model

elastic parameters
pi[MPa]  pp[MPa]  p3[MPa]l  ai[-] a3[-] a3[-] Di[MPa”'] D;[MPa’'] Dj;[MPa']
—44.051 19.112 25.859  1.524 2.039 0.969 2.18E-02 0.0 0.0
damage parameters
r[MPa] m[MPa] B[MPa]
1.248 3.01E-02 1.038

In contrast to the parameter limitation of the proposed model presented in Section 4, the parameters in Abaqus are controlled
during the fit to the experimental data by checking the Drucker stability Systemes (2016). A limitation of the parameters y; and
a;, as in the proposed model by p;@; > 0, does not exist in Abaqus.
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Fig. 13: Comparison of Ogden-Roxburgh model and proposed model in simultaneous fit to uniaxial tension test and pure shear
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Fig. 14: Comparison of Ogden-Roxburgh model and proposed model in simulation of butt joint tensile test

84



E. Toups, R. Seewald, B. Schaaf, H. Holthusen, U. Reisgen, M. Feldmann, S. Reese, and J.-W. Simon Tech. Mech., Vol. 40, Is. 1, (2020), 77-86

The results fitted by the Ogden-Roxburgh model compared to the results fitted by the proposed model in Section 4 are shown in
Fig. 13. A significantly better fitting result is provided by the proposed model for the unloading path in the uniaxial tension test
compared to the Ogden-Roxburgh model. The pure shear test is described much better in the initial range by the proposed model
and up to an elongation of 10% also in the relief range. The Ogden-Roxburgh model, on the other hand, strongly underestimates
the initial range of the pure shear test and overestimates the actual material behavior at higher strains. The further investigation
shows the comparison of the model responses for the calculation of the butt joint tensile test from Section 5. For this, the element
C3D8RH was used in Abaqus. The stress-strain behavior of the sample with corresponding geometry from Fig. 7 is shown in
Fig. 14. Similar to the comparison with the fits on the uniaxial tension test, the proposed model also matches the unloading
paths better than the Ogden-Roxburgh model. On the other hand, the maximum stress is better predicted by the Ogden-Roxburgh
model.

7 Conclusion and outlook

A flexible model for a hyperelastic material with exchangeable parts such as the stiffness reduction function, the elastic formulation,
and the control term was presented. The parameters of the model were obtained from a staggered fitting procedure and were
successfully fitted to compression test, uniaxial tensile, and pure shear test data simultaneously. First computational results
demonstrated the accurate prediction of the proposed model, enabling the representation of multi-axial stress states of a hyperelastic
material behavior considering stiffness reduction (Mullins effect) at large deformations. For the implementation in the FE program
FEAP the element formulation QISP was used. It could be observed that compared to the standard element formulation Q1
for QISP a significantly smaller number of elements is required to achieve acceptable results. In a further step, the efficiency,
parameter determination and the accuracy of the new model were compared with the Ogden-Roxburgh model from the literature
and will also be compared with other models from the literature in future research work. In order to extend the proposed material
model by a failure prediction, it would first be necessary to investigate the failure behavior within experimental studies. Based on
these results, the model formulation can be extended to improve the prediction possibilities. Furthermore, the consideration of
plastic deformation could be another step to make the model formulation more flexible and to achieve a higher agreement between
the real material behavior and the model response.
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