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Mathematical modeling and analysis of elastic waves in a thermo
piezoelectric multilayered rotating composite rod with LEMV/CFRP
interface
R.Selvamani1? S.Mahesh2

1 Karunya University,Department of Mathematics,Coimbatore ,TamilNadu, India.
2 Kathir College of Engineering,Department of Mathematics,Coimbatore ,TamilNadu, India.

Abstract: In this present paper, we form the mathematical model for wave propagation in a thermo piezoelectric multilayered
rotating composite rod made of inner and outer piezoelectric layer bonded together by Linear Elastic Materials with voids
(LEMV).To uncouple the equation of motion, electric and heat conduction equations, displacement potential functions are
introduced. The frequency equations are obtained for longitudinal and flexural modes of vibration and are studied numerically
for heat conducting PZT-5A material.The computed non-dimensional frequency is presented in the form of dispersion curves
against various physical quantities. Adhesive layer Linear Elastic Materials with Voids (LEMV) is compared with Carbon Fibre
Reinforced Polymer (CFRP).We found that the frequency wave characteristics are more stable and realistic in the presence of
thermal, electrical and the rotation parameters

Keywords: Piezoelectric cylinder, Thermal cylinders, Rotating rod, Vibration, Stress analysis, LEMV, CFRP, multilayered
structures, Composite cylinder.

1 Introduction

Solid state materials in engineering is hovering to provide significant inputs to the areas of constructive design of structural
components as well as creating trends of its own. The cross disciplinary fields of mechanical materials and interfacial component
are shows potential developments. Further interdisciplinary materials research will likely to continue to acquiesce materials with
improved properties for application that is both common place and specialized. piezoelectric polymers allow their use in a massive
amount of compositions and geometrical shapes for a huge variety of applications from transducers in acoustics, ultrasonics and
hydrophone applications to resonators in band pass filters, power supplies, delay lines, medical scans and some industrial non-
destructive testing instruments.The frequency responses of rotating cylindrical structures has numerous applications in a variety
of fields of science and technology, specifically, submarine structures, pressure vessel, bore wells, ship building industries and
have many other engineering applications.
Honarvar et al. (2007) developed a wave propagation model for a transversely isotropic cylinders and verified their physical
characteristics. Thermo-piezoelectric materials are intelligent materials that display individual electro-mechanical coupling.In
view of this, Paul and Raman (1991) studied wave propagation in a hollow pyroelectric circular cylinder of crystal class
6.Mindlin (1974)analyzed equations of high frequency vibrations of thermopiezoelectric crystal plates.Also Paul and Raman
(1993) discussed wave propagation in a pyroelectric cylinder of arbitrary cross section with a circular cylindrical cavity.Storozhev
(2013),investigated propagation of electro elastic waves in multilayer piezoelectric cylinders with a sector notch.Nelson and
Karthikeyan (2008a) discussed axisymmetric vibration of pyrocomposite solid cylinder.Nelson and Karthikeyan (2008b)studied
axisymmetric vibration of pyrocomposite hollow cylinder.Shulga (2002) observed Propagation of harmonic waves in anisotropic
piezoelectric cylinders:Compound waveguides.Hua et al. (2013) observed guided wave propagation and focusing in multi-layer
pipe with viscoelastic coating and infinite soil media.Tasdemirci et al. (2004) discussed Stress wave propagation effects in two-and
three-layered composite materials.Singh and Saxena (1995) discussed axisymmetric vibration of a circular plate with double linear
variable thickness.Presented clear statement for modal shapes and natural frequencies of materials into account the effects of
length, shear deformation, and rotary inertia.Abd-Alla and Mahmoud (2010) observed magneto-thermoelastic problem in rotating
non homogeneous orthotropic hollow cylindrical under the hyperbolic heat conduction model.El-Naggar et al. (2002) discussed
thermal stresses in a rotating non-homogeneous orthotropic hollow cylinder.Abd-Alla et al. (2000) examined thermal stresses in a
non-homogeneous orthotropic elastic multilayered cylinder.Abd-All et al. (1999) observed transient thermal stresses in a rotating
non-homogeneous cylindrically orthotropic composite tubes. Selvamani (2015) has discussed wave propagation in a rotating disc
of polygonal cross-section immersed in an inviscid fluid.Several researches are performedto incorporate the interfacial material in
analysis of composite multilayered mechanical structure.Among that, the study of Cowin and Nunziato (1983) with Linear Elastic
Materials with Voids as interface bonding materialis noted. However, the rotational effect on the thermo-electro-mechanical
vibration responses of multiylarerd cylinder with different bonding material(LEMV/CFRP) not been reported thus far. Therefore,
the objective of the present work is to investigate the influence of the thermos piezo elasticity and rotation on the vibrating of
? E-mail address: selvam1729@gmail.com doi: 10.24352/UB.OVGU-2019-022 2019 | All rights reserved.

mailto:selvam1729@gmail.com
http://www.ovgu.de/techmech
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Fig. 1: Geometry which shows the problem

piezoelectric multilayered cylinder with different bonding material.
The present article intended to revise mathematical model for wave propagation in a thermo piezoelectric multilayered rotating
composite rod made of inner and outer piezoelectric layer bonded together by linear Elastic materials with voids (LEMV).To
uncouple the equation of motion, electric and heat conduction equations, displacement potential functions are introduced. The
frequency equations are obtained for longitudinal and flexural modes of vibration and are studied numerically for heat conducting
PZT-5A material.The computed non-dimensional frequency is presented in the form of dispersion curves against various physical
quantities. Adhesive layer LEMV is compared with Carbon Fibre Reinforced Polymer (CFRP).

2 Formulation of problem

In this section we consider a homogeneous transversely isotropic, thermally and electrically conducting piezoelectric rotating
composite rod of infinite length with uniform temperature T0 in the undistributed state initially. The composite rod is assumed to
be rotating with consistent angular velocity Ω̄. In cylindrical coordinates (r, z), the equations of motion in axisymmetric direction
and absence of body force and including the Coriolis Effect and centripetal forces are

σl
rr,r + σ

l
rz,z + r−1σl

,rr + ρ(Ω̄ × (Ω̄ × ū) + 2(Ω̄ × ū,t )) = ρu,tt (1a)

σl
rz,r + σ

l
zz,z + r−1σl

,rz + ρ(Ω̄ × (Ω̄ × ū) + 2(Ω̄ × ū,t )) = ρw,tt (1b)

The electric displacement equation is given as

1
r
∂

∂r
(rD l

r ) +
∂

∂z
(Dl

z) = 0 (1c)

The heat conduction equation is defined as

K11(T
l
,rr + r−1Tl

,r + r−2Tl
,θθ ) + K33T

l
,zz − ρ

lcvT,t = T0
∂

∂t
[β1(e

l
,rr + el,θθ ) + β3e1

,zz − p3φ,z] (1d)

Relation between the stress and strain of mechanical and electrical field is

σl
rr = c11elrr + c12elθθ + c13elzz − β1T

l − e31El
z (2a)

σl
zz = c13elrr + c13elθθ + c33elzz − β3T

l − e33El
z (2b)

σl
rz = c44elrz (2c)

Dr = e15elrz + ε11El
r (2d)

Dz = e31(e
l
rr + elθθ ) + e33elzz + ε33El

z + p3T (2e)

where σl
rr, σ

l
rθ, σ

l
rz, σ

l
θθ, σ

l
zz, σ

l
zθ denotes mechanical stress component, elθθ, e

l
rθ, e

l
zθ, e

l
rz are the strain components, Tl is the

temperature change about the equilibrium temperature,c11, c12, c13, c33, c44, c66 are the five elastic constants,β1, β3 and K1,K3

respectively thermal expansion coefficients and thermal conductivities along and perpendicular to the symmetry, ρ is the mass
density, cv is the specific heat capacity,p3 is the pyroelectric effect.
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The strains ei j are related to the displacements given by

elrr = ul,relθθ = r−1(ul + vl,θ ), e
l
zz = wl

,rz (3a)

elrθ = vlr − r−1(vl − ul,θ ), (3b)

elzθ = vl,z + r−1wl
,rθelrz = wl

,r + ul,z (3c)

Substitution of the (3) and (2) into (1) results in the following three dimensional equation of motion and heat conduction:

c11(u
l
,rr + r−1ul,r − r−2u) + c44ul,zz + (c44 + c13)w

l
rz + (e31 + e15)E

l
rz − β1T,r + ρ(Ω

2ul + 2Ωu,t ) = ρu
l
,tt (4a)

c44(w
l
rr + r−1wl

,r ) + r−1(c44 + c13)u
l
,z + (c44 + c13)u

l
,rz + c33w

l
,zz + e33E,zz(E,rr + r−1E,r )

−β3T,z + ρ(Ω
2wl + 2Ωu,t ) = ρw

l
,tt (4b)

e15(w
l
rr + r−1wl

,r ) + e31 + e15(u
l
,rz + r−1ul,z) + e33w

l
,zz − η33El

,zz − η11(E
l
,rr + r−1El

,r ) + p3T
l
,z = 0 (4c)

K11(T
l
,rr + r−1Tl

,r + r−2Tl
,θθ ) + K33T

l
,zz − ρ

lcvT,t = T0
∂

∂t
[β1(u

l
,r + r−1vl,θ + r−1ul) + β3w

l
,z] − p3El

,z (4d)

Solution of the field Equation

ul(r, z, t) = (φl,r ) exp i(kz+ ωt) (5a)

wl(r, z, t) =
i
a

Wl exp i(kz+ ωt) (5b)

El(r, z, t) =
ic44

ae33
Vl exp i(kz+ ωt) (5c)

Tl(r, z, t) =
c44

β3a2
Tl exp i(kz+ ωt) (5d)

Here i =
√
−1, k is the wave number,ω is the frequency,ul,wlEl,Tl are all displacement potentials, electric conduction and

thermal change. By introducing the dimensionless quantities such as x = r
a ,η = ka, Ω2 =

ρω2a2

c44
,c̄11 =

c11
c44

,

c̄13 =
c13
c44

,c̄33 =
c33
c44

,c̄66 =
c66
c44

,β̄ = β1
β3

,k̄i =
(ρc44)

1
2

β2
3T0aΩ

,d̄ =
ρcvc44

β2
3T0

,p̄3 =
p3c44
β3e33

Substituting (5) in (4) we obtain

(c̄11∇
2 + (Ω2 − ζ2))φl − ζ (1 + c̄13)W

l − ζ (ē31 + ē15)E
l − β̄Tl = 0 (6a)

ζ (1 + c̄13)∇
2φl + (∇2 + (Ω2 − ζ2c̄33))W

l + (ē33∇
2 − ζ2)El − ζTl = 0 (6b)

ζ (ē31 + ē15)∇
2φl + (ē15∇

2 − ζ2)Wl + (ζ2ε̄33 − ε̄∇
2)El + ζ p̄3T

l = 0 (6c)

β̄∇2φl − ζWl + ζ p̄3El + (d̄ + i k̄1∇
2 + i k̄3ζ

2)Tl = 0 (6d)

where ∇2 = ∂2

∂x2 + x−1 ∂
∂x

[c̄11∇2 + (Ω2 − ζ2)] −ζ (1 + c̄13) ζ (ē31 + ē15) −β̄
ζ (1 + c̄13)∇2 [∇2 + (Ω2 − c̄33ζ

2)] (ē33∇2 − ζ2) −ζ
ζ (ē31 + ē15)∇2 ē15∇2 − ζ2 (ζ2ε̄33 − ε̄∇2) ζ p̄3

β̄∇2 −ζ ζ p̄3 (d̄ + i k̄1∇2 − i k̄3ζ
2)

(φln,W
l
n, E

l,Tl
n)

T = 0 (7)

Evaluating the given in (7), we obtain a partial differential equation of the form

(pl∇8 + ql∇6 + r l∇4 + sl∇2 + tl)(φl,Wl, El,Tl)T = 0 (8)

Factorizing the relation given in (8) into biquadrate equation for (α2
j a)

2, j = 1, 2, 3, 4 the solutions for the symmetric modes are
obtained as

φl =

4∑

j=1

[Al
j Jn(α

l
jax)]cosnθ (9a)

Wl =

4∑

j=1

[alj A
l
j Jn(α

l
jax)]cosnθ (9b)

El =

4∑

j=1

[blj A
l
j Jn(α

l
jax)]cosnθ (9c)

Tl =

4∑

j=1

[clj A
l
j Jn(α

l
jax)]cosnθ (9d)
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Here (αljax) > 0, f or( j = 1, 2, 3, 4) are the roots of algebraic equation

(pl(αljax)8 + ql(αljax)6 + r l(αljax)4 + sl(αljax)2 + tl)(φl,Wl, El,Tl)T = 0

Here alj, b
l
j, c

l
j are the arbitrary constants and Jn(α

j
l
ax) denotes the Bessel functions first kind of order n. The constants alj, b

l
j, c

l
j

are calculated using the following relations with ∇2 = αljax

(c̄11∇
2 + (Ω2 − ζ2)) − ζ (1 + c̄13)a

l
j − ζ (ē31 + ē15)b

l
j − β̄c

l
j = 0

ζ (1 + c̄13)∇
2 + (∇2 + (Ω2 − ζ2c̄33))a

l
j + (ē33∇

2 − ζ2)blj − ζc
l
j = 0

ζ (ē31 + ē15)∇
2 + ē15∇

2 − ζ2)alj + ζ p̄3blj + (ζ2ε̄33 − ε̄∇
2)clj = 0

β̄∇2 − ζalj + (d̄ + i k̄3ζ
2)blj + ζ p̄3clj = 0

3 Solution for linear elastic materials with voids

The displacement equations of motion and equation of equilibrated inertia for an isotropic LEMV are

(λ + 2μ)(u,rr + r−1u,r − r−2u) + μu,zz + (λ + μ)w,zz + βℵ,r = ρu,tt (10a)

(λ + μ)(u,rz + r−1u,z) + μ(w,rr + r−1w,r ) + (λ + 2μ)w,zz + βℵ,z = ρw,tt (10b)

−β(u,r + r−1u) − βw,z + α(ℵ,rr + r−1ℵ,r + ℵ,zz) − δkℵ,tt − ωℵ,t − ξℵ = 0 (10c)

u,v,w represents displacements components along r, θ, and z directions α, β, ξ, ω and k are LEMV material constants characterizing
the core in the equilibrated inertial state,ρ is the density and λ, μ are the lame constants and ℵ is the new kinematical variable
associated with another material without voids. The stress in the LEMV core materials are

σ,rr = (λ + 2μ)u,r + λr
−1u+ λw,z + βℵ

σ,rz = μ(u,r + w,r )

The solution of (10) is taken as

u = U,r exp i(kz+ wt) (11a)

w = (
i
h
)W exp i(kz+ wt) (11b)

ℵ =(
1
h2

)ℵ exp i(kz+ wt) (11c)

Substitution of the (11) into (10) with non-dimensional variables x and ζ , can be reduced as

(λ + 2μ)∇2 + F1 −F2 F3

F2∇2 μ̄∇2 + F4 F5

−F3∇2 F5 α∇2 + F6

(U,W,ℵ)T = 0 (12)

where∇2 = ∂2

∂x2 +
1
x

∂
∂x F1 =

ρ

ρ1 (ch)2− μ̄ζ2 F2 = (λ̄+ μ̄)ζ ,F3 = β̄ F4 =
ρ

ρ1 (ch)2−(λ̄+ μ̄)ζ2 F5 = β̄ζ F6 =
ρ

ρ1 (ch)2 k̄−ᾱζ2−iω̄(ch)−ξ̄

and λ̄ = λ
cl44

,μ̄ = μ

cl44
,ᾱ = α

h2cl44
,β̄ = β

cl44
,ξ̄ = ξ

cl44
,ω̄ = ω

h (c
l
44ρ)

1
2 ,K̄ = k

h2 . The above (12) can be specified as,

(∇6 + P∇4 + Q∇2 + R)(U,W,ℵ) = 0 (13)

Thus the solution of (13) can be given as follows,

U =

3∑

j=1

[Aj J0(αjax) + BjY0(αj x)] (14a)

W =

3∑

j=1

dj[Aj J0(αj x) + BjY0(αj x)], (14b)

ℵ =

3∑

j=1

ej[Aj Jn(αj x) + BjYn(αj x)] (14c)

(αj x)2 are the roots of the equation when replacing ∇2 = −(αj x)2. The arbitrary constant dj and ej are obtained from

F2∇
2 + (μ̄∇2 + F4)dj + F5ej = 0

−F3∇
2 + F5dj + (α∇2 + F6)ej = 0

The governing equation for CFRP core material can be obtained from (10) by taking the void volume fraction ℵ = 0 and the lames
constants as λ = c12, μ =

(c11−c12)
2 .
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4 Boundary condition and frequency equation

We consider a wave propagation problem of piezo thermo elastic multilayered rotating rod with adhesive as LEMV/CFRP under
the effect of the axisymmetric rotation field. The frequency equations of the problem can be obtained using the following boundary
conditions.
(i) At the inner and outer surface of solid rod with free traction
σl
rr = σl

rz = El = Tl = 0 With l = 1, 3.
(ii) At the solid and adhesive interface
σl
rr = σrr ;σl

rz = σrz ;
(iii)Thermally insulated and Electrically shorted Boundary conditions
Tl = 0 and El = 0;

Using the values of φl,Wl, El,Tl and U,W,ℵ from the (9) and (14), the above boundary conditions will give a system of
homogeneous algebraic equations for the unknown constants Al

1, A
l
2, A

l
3, A

l
4, A1, A2 and A3.This set of equations can be written in

the following 20 × 20 vanishing determinant form

|(Yi j )| = 0, (i, j = 1, 2, 3, ..., 20)atx = x1,where j= 1, 2, 3, 4 (15)

At x = x1 where j = 1, 2, 3, 4

Y1j = 2 ˉc66n(n− 1)Jn(α
l
jax1) + (αljax1)Jn+1(α

l
jax1)] − x2[(αja)

2 ˉc11 + ζ ˉc13aj + ζbj + β̄cj]Jn(α
l
jax1)

Y1, j+4 = −[2μ̄(αj x1)Jn(αj x1) + (λ̄ + μ̄)(αj)
2 + β̄ej − λ̄ζ d̄j]J0(αj x1)

Y2j = 2n[(α1
j ax1)Jn+1(α

l
jax1) − (n− 1)Jn(α

l
jax1)]

Y2, j+4 = −μ̄(ε + dj)(αj)J1(αj x1)

Y3j = (ζ + aj + ē15bj)[nJn(α
1
j ax1) − (αjax)Jn+1(α

1
j ax1)]

Y3, j+4 = −(αj)J1(αj x1)

Y4, j = (ē15ζaj − ˉε11bj)[nJn(α
1
j ax1) − (α1

j ax1)Jn+1(α
1
j ax1)]

Y4, j+4 = −dj J0(αj x1)

Y5j = elj J0(α
l
j x1)

Y6j = x1J0(α
l
j x1) − (αlj)J1(α

l
j x1)

Y7, j+4 = ej(αj)J1(α
l
j x1)

and the other nonzero elements at the interface x = x1 can be obtained on replacing J0 by J1 in the above elements. They are
Y(i,j+7),(i=1,2,3,4,5,6,7).The components at the interface x = x2 by varying j from 5 to 7 are replaced the subscript x1 by x2

and the other nonzero elements at the interface x = x2 are calculated by replacing J0 in to J1 in the above elements. They
are Y(i,j+3),Y(i,j+10)(i=8,9,10,11),Y(12,j+10),Y(13,+10) and Y(14,j+3). At the outer surface x = x3 the non zero elements by
varying j=11,12,13,14 are replaced subscript x1 by x3 in the above elements. The other nonzero element at the interface x = x3

can be obtained on replacing J0 by J1 in the above elements. They are Y(i,j+4),(i=15, 16, 17, 18).

5 Numerical computation and discussion

The purpose of the present study is demonstrating the various applications of composite materials with different adhesive core
materials. The material chosen for the numerical calculation is PZT-5A. The physical data of PZT-5A are taken from Sharma
et al. (2004) and are used for the numerical calculation:
C11 = 13.9×1010Nm−2;C12 = 7.78×1010Nm−2;C13 = 7.43×1010Nm−2;C33 = 11.5×1010Nm−2;C44 = 2.56×1010Nm−2;C66 =

3.06 × 1010Nm−2;β1 = 1.52 × 106NK−1m−2; β3 = 1.53 × 106NK−1m−2;T0 = 298K;Cv = 420 j kg−1K−1; p3 = −452 ×
10−6CK−1m−2;K1 = K3 = 1.5Wm−1K−1;e13 = −6.98Cm−2;e33 = 13.8Cm−2;e15 = 13.4Cm−2; ε11 = 6010CN−1m−2;ε33 =

54.7 × 1010CN−1m−2;ρ = 7750Kgm−2;
The frequency (15) are essentially an implicit transcendental equation of the unknown frequency parameter and wave number for
the given boundary conditions. The results of the present investigation are displayed in Figs. 2− 7. In Figs. 2 and 3 the variations
of the non-dimensional frequency of a thermo piezoelectric multilayered solid rod with respect to the parameter (Ω = 0, 0.2, 0.4)
have been shown for different values of the wave number to the solid rod. From Fig. 2 it is observed that the non-dimensional
frequency of the solid rod shows some dispersion from the linear behavior of frequency with respect to Ω for the increasing wave
number parameter k.But in Fig. 3 almost linear variation with respect to Ω for the increasing wave number parameter k without
thermal impact. In both cases at small values of the parameter k the values of frequency are almost steady for different values
of the rotating parameter Ω,where the higher values of k the frequency starting dispersive only including thermal impact but
maintain the same behavior for without thermal impact of the rod.

In Figs. 4 and 5 the variations of the non-dimensional frequency of a thermo piezoelectric multilayered solid rod with respect
to the parameter (Ω = 0, 0.2, 0.4) have been shown for different values of the thickness to the solid rod. From Fig. 4 it is observed
that the non-dimensional frequency of the solid rod shows almost linear behavior of frequency with respect to Ω for the increasing
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Fig. 2: Variation of dimensionless frequency against wave number atβ = 0 with various rotating speed.

Fig. 3: Variation of dimensionless frequency against wave number at β = 0.5 with various rotating speed.

Fig. 4: Variation of dimensionless frequency against wave number at β = 0 with various rotating speed.
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Fig. 5: Variation of dimensionless frequency against thickness atβ = 0.5 with various rotating speed.

Fig. 6: Variation of dimensionless frequency against volume fraction ℵ at E = 0 with various rotating speed.

thickness parameter.Also in Fig. 5 almost linear variation is observed with respect to Ω for the increasing thickness parameter.In
both cases different values of the parameter the values of frequency are almost steady for different values of the rotating parameter
Ω, further these two results shows the thermal impact of the solid rod is not significant in order increasing of parameters thickness
h and rotating speed Ω of the solid rod.
The variation of the non-dimensional frequency with respect to the volume fraction ℵ and different rotating speed for thermo
piezoelectric multilayered rotating rod is shown in Figs. 6 and 7 respectively.From Fig 6 almost linear variation observed with
respect to Ω for the increasing parameter ℵ without electric impact.But in Fig.7 it is clear the frequency of the rod increases
monotonically to attain maximum value in ℵ = 2 and slashes down to remaining range of ℵ for different parameter (Ω = 0, 0.2, 0.4)
with electric impact. The 3D Figs 8-9 clarifies the variation of non dimensional frequency against wave number for the two
different layers LEMV and CFRP of thermos piezo electric composite rod. These figures explain the dependence of the core
materials in the frequency. The 3D Figs 10-11 clarifies the variation of non dimensional frequency against thickness for the
two different layers LEMV and CFRP of thermopiezoelectric composite rod. These figures explain the dependence of the core
materials in the frequency.
The 3D Figs 12-13 clarifies the variation of non dimensional frequency against β for the two different layers LEMV and CFRP
of thermopiezoelectric composite rod. These figures explain the dependence of the core materials in the frequency.

Fig. 7: Variation of dimensionless frequency against volume fraction ℵ at E = 0.5 with various rotating speed.
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Fig. 8: Variation of dimensionless frequency against wave number and LEMV core in thermo piezoelectric multilayered rod with
Ω = 0.5

Fig. 9: Variation of dimensionless frequency against wave number and CFRP core in thermo piezoelectric multilayered rod with
Ω = 0.5

248



R.Selvamani,S.Mahesh Tech. Mech., Vol. 39, Is. 3, (2019), 241–251

Fig. 10: Variation of dimensionless frequency against thickness and LEMV core in thermo piezoelectric multilayered rod with
Ω = 0.5

Fig. 11: Variation of dimensionless frequency against thickness and CFRP core in thermo piezoelectric multilayered rod with
Ω = 0.5

Fig. 12: Variation of dimensionless frequency against β and LEMV core in thermo piezoelectric multilayered rod with Ω = 0.5
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Fig. 13: Variation of dimensionless frequency againstβ and CFRP in thermo piezoelectric multilayered rod with Ω = 0.5

6 Conclusion

The free wave propagation in a multilayered piezothermoelastic rotating rod with LEMV/CFRP interface is discussed using
three-dimensional linear theory of elasticity. Three displacement potential functions are introduced to uncouple the equations
of motion, electric and heat conduction. The frequency equation of the system consisting of rotating piezothermoelastic rod is
developed under the assumption of thermally insulated and electrically shorted free boundary conditions at the surface of the
rod. The analytical equations are numerically studied through the MATLAB programming for axisymmetric modes of vibration
for PZT-5A material. The computed numerical results are presented as dispersion curves for the variation of frequency against
the various physical quantities with thermal and electrical parameters together with rotational speeds. The rotation, thermal and
electrical fields have a great role in frequency distribution, since the amplitudes of these frequency modes are varying with the
increase of the field values. We concluded that the deformation of a body depends on the nature of the applied forces and rotational
effect as well as the type of boundary conditions. The result provides a motivation to investigate the free wave propagation in a
multilayered piezothermoelastic rotating rod with LEMV/CFRP core as a new class of applications elastic solids. The methods
used in the present article are applicable to a wide range of problems in elasticity
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Abstract: We examine the effect of the skin-core structure of isotactic polypropylene (iPP) in bending tests. The depth-dependent
material properties are determined in tensile tests and mapped to a finite element model. This enables the examination of internal
stresses during bending numerically. In a bending test, one usually expects a monotonic stress distribution across the thickness,
provided that the material is homogeneous and does not strain-soften. We found that the structural gradient of injection-molded
iPP easily overcompensates the monotonic stress dependence, such that the maximal equivalent von Mises stress lies well below
the surface in the so called shear layer. The latter is a result of the injection molding process.

Keywords: polypropylene, bending, skin-core gradient, microtoming, elastic-plastic

1 Introduction

Polymer parts are usually produced by injection molding, where the polymer melt is injected into a cavity. Injection molding can
produce both simple and intricate parts with high production output and high efficiency. During the process, the semicrystalline
microstructure of the polymer forms under shear and thermal gradients, which cause variable morphologies between the skin
and core of the molded sample. The resulting, often stratified microstructure affects the structural mechanical properties of the
product. As a net result of the effects of shear, pressure, and thermal fields during injection molding, skin-core morphologies
that exhibit a layer-like or gradient structure, where the orientation of macromolecules and crystals, the crystallinity and the
crystalline-amorphous superstructure depend on the distance from the surface (Housmans et al. (2009); Katti and Schultz (1982);
Russell and Beaumont (1980); Drummer and Meister (2014)).
Therefore, polymeric gradient materials are produced naturally upon injection molding, even when the cooling or the shear flow is
not controlled explicitly. The skin-core microstructure was studied, e.g. in Fujiyama et al. (1988); Wen et al. (2004); Housmans
et al. (2009); van der Meer (2003), among many others. Extended accounts to the structure formation in solidifying polymers and
injection molding technology can be found in Kamal et al. (2009); Zheng et al. (2011). Here, the focus is on the mechanical skin
layer effects in elasticity and at small plastic deformations.
A typical load case for thin-walled plastic components is bending, hence bending tests are commonly used to characterize
polymer properties, see, e.g. Bledzki et al. (2015). In bending, stresses are usually highest at the surface, since the strains grow
monotonically from the mid-plane. For the same reason, the mechanical properties of the surface affect the effective flexural
properties disproportionately. Bending tests offer some advantages: Bending samples can neither neck (like in tensile tests) or
buckle (like in compression tests), hence they are a versatile tool to characterize the mechanical properties beyond what can
be obtained from uniaxial tests. However, unlike tensile tests, the structural properties (like force-displacement curves) cannot
be mapped directly to material properties due to the inhomogeneous deformation. Only with simplifying assumptions, like
material homogeneity and small strains, one can identify the material properties from measuring forces and displacements. Both
presumptions are shaky for injection-molded iPP parts, which makes it difficult to obtain material parameters for materials with a
depth-gradient in the material properties.
Furthermore, it raises questions regarding the stress distribution. One might expect the surface to be the most critical region for
crack nucleation in bending, as it combines inhomogeneities (e.g. scratches) with the highest stresses. We were unable to find an
examination of the stress distribution across the thickness which takes into account both the bending state and the material property
gradient. We approach this gap by characterizing the material properties layer-wise and mapping the depth-dependent material
data to a finite element (FE) model of a bending test. We find that the softer skin layer may well overcompensate this monotonic
stress increase, leading the stress maximum approximately 0.5 mm to 0.7 mm below the surface in bending samples of 4 mm
thickness. Near the surface, a drop of the equivalent von Mises stress of approximately 20 % is observed.
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Figure 1: Left: Geometry of an injection-molded iPP sample for bending tests, the injection nozzle is at the center of the bottom
plane. Right: micrograph inside the x − z-plane showing skin (right) and core (left) structure of a typical injection
molded iPP sample.

2 Sample preparation and material characterization

2.1 Injection molding of the iPP samples

We manufactured bars of commercial iPP (Borealis HJ120UB) of dimensions 45 mm × 10 mm × 4 mm (see Fig. 1), using a BOY
XS injection molding machine. The iPP was heated up to 200 °C. The mold temperature was 40 °C. The injection pressure was
350 bar. With these parameters, the filling time was about 1 to 2 seconds. After filling, a subsequent holding phase with a duration
of 20 s and a holding pressure of 60 bar was applied. Subsequent cooling to room temperature under ambient pressure lastet about
4 minutes.

2.2 Skin-core structure

The micrograph in Fig. 1 gives an impression of the skin-core structure. It was examined thoroughly in a similar setup for different
iPP materials and a sample width of 2 mm in Housmans et al. (2009). They distinguish four layers, namely the skin layer, the
transition layer, the shear layer and the isotropic core. These layers have different main characteristics:
• The skin layer is cooled fastest, and has therefore the lowest crystallinity.
• The transition layer gets cooled down rapidly and sheared at the same time, which causes the polymer chains to orient
collectively.
• The shear layer forms due to the interaction of the solidified skin layer and the flowing melt in the core during the injection.
The shear layer has a higher crystal fraction, since it solidifies from the regular chain orientation from the transition layer.
When the shear rate exceeds a critical value, the formation of crystal nuclei, as well as formation of β-crystals is observed.
• Regarding the isotropic core, the layers act as insulators, hence the core cools much slower without much shear flow, leading
to an isotropic spherulitic structure.

The thickest layer is often the shear layer. Its thickness depends on the injection speed and ranges from 0.2 mm at high speeds to
1 mm at low speeds. It has a strong anisotropy and the highest β crystal fraction near the isotropic core (see Figs. 3, 4, 9 and 14
in Housmans et al. (2009)). Here, we join the very thin skin layer and the transition layer, which ranges from the surface to a
depth of approximately 150 µm. The adjacent shear layer ranges to approximately 500 µm, where the isotropic core begins. These
layer boundaries can be estimated by inspecting the polarized light image (Fig. 1). We also observed simultaneous changes of the
depth-dependent material parameters at these depths. Nevertheless, since the transition is smooth, there is some vagueness in
giving definite layer boundaries. We found that the fracture toughness that has been determined in tensile tests on thin slices is a
good indicator, which shows a sudden drop between a depth of 400 µm and 500 µm. These results are collected in an upcoming
article (Mahmood et al., N.D.).

2.3 Tensile testing of bulk specimen

The polymer block was clamped directly into a universal testing machine (Zwick/Roell Z010). The gauge length was assumed to
be the clamping distance. The test speed was 27 mm/minute at a clamping distance of 27 mm, such that the nominal strain rate was
1/60 s−1 ≈ 0.0176s−1.

2.4 Tensile testing of thin films

The injection molded bars were cut in the y-z-plane into slices of 50 µm by stepwise microtoming from the surface to the core via
a Leica SM2500E sectioning system. The toming direction was the z-direction. Tensile specimens (shouldered test bars) were
punched out from these layers using a cutting-die unit according to ISO 527-2 Typ 5B. The positioning of the stencil was carefully
adjusted to always cut out the shouldered test strip at the same position. The specimen size was 6 × 35 mm3, with a specimen
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gauge length of 12 mm. The tensile testing for the stress vs strain behavior was carried out on on a Zwick universal testing machine
(Z010, Zwick/Roell) at room temperature and a testing speed of 12 mm/min. The testing speeds were adjusted in proportion to the
gauge length, such that the nominal strain rate was the same (1/60 s−1 ≈ 0.0176s−1 ) for all tests.
A total of 40 slices was examined, from a depth of 25 µm (mid-plane) to 1975 µm in steps of 50 µm. For each depth we averaged
the results of at least 3 tests. For the largest sample set (7 slices) the standard deviation was less than 5% for Young’s modulus.
Some characteristic stress-strain curves are presented in Fig. 2 along with the fitted material model as detailed in the Sec. 2.5.

2.5 Material model

We did not examine the strain rate dependence in more detail. The material properties depend on the depth. We found the
deformation plasticity theory using the Ramberg-Osgood-relationship (Ramberg and Osgood (1943)) to suit the stress-strain
behaviour up to approximately 10 % of strain quite well at all depths, see Fig. 2 for some representative stress-strain curves. The
Ramberg-Osgood-law gives the strains as an explicit function of the stresses

ε =
1
E

(
σ +

σn

σn
y

)
(1)

with three material parameters, where E is Young’s modulus, σy the yield stress and n the hardening exponent. The Ramberg-
Osgood-model does not introduce plastic strains but is a nonlinear elasticity which mimics an elastic-plastic behavior, similar to
the deformation theory of plasticity by Hencky (1924) and Ilyushin (1947). Therefore, it cannot be applied if unloading or strain
path changes occur.

Yield limit As can be seen in Fig. 2, a pronounced yield point is not visible. In such cases, the yield point is defined according to
some rule, the well known 0.2 % residual strain rule is one example. For the Ramberg-Osgood law, the residual strain at σy is 1/E .
For our measurements of E ≈ 600 MPa . . . 1200 MPa, this corresponds to a residual strain between 0.083 % and 0.16 %, i.e., a
reasonable yield point definition.

Hardening Note that larger values of n imply less hardening, hence the inverse hardening exponent 1/n actually quantifies the
hardening. 1/n is the slope of the stress-strain-curve beyond the yield point in a double logarithmic plot.

Fitting the parameters E , σy and n to the experimental data The three parameters were fitted by the least squares method to
the experimental data in the strain interval from 0 to 10 %, which is just before necking occurs in most of the tests. This was done
for all layers between 25 µm (mid-plane) and 1975 µm in steps of 50 µm. The adopted material parameters are plotted over the
depth in Fig. 3. One can see that on the surface, stiffness, yield strength and hardening have a local minimum, which makes the
surface the mechanically weakest part. Conversely, approximately 300 µm below the surface, Young’s modulus and the inverse
hardening exponent have a local maximum, while the yield stress remains roughly the same. At approximately 700 µm below the
surface, Young’s modulus has a local minimum, the yield stress a local maximum and the inverse hardening exponent drops to
approximately 0.08. Since the core material is more brittle, there is an increased scattering of the results. In this depth range, the
experimental data was replaced by a trend line, see Fig. 3.

3 Layer properties vs bulk properties

One may have noticed that the layer-wise stiffnesses and yield limits are somewhat lower than the bulk properties of iPP. Young’s
modulus lies usually between 1300 MPa and 1800 MPa, the yield stress lies mostly between 25 MPa and 35 MPa. Here, the average
Young modulus of the layers is approximately 920 MPa, while the bulk’s Young modulus is approximately 1320 MPa. Hence, the
elastic properties are underestimated by a factor of approximately 0.7, see Fig. 2. At first glance, this is unexpected, since one
might expect that the bulk Young modulus is close to the average of the layer-wise moduli. This systematic discrepancy is a result
of the loss of scale separation. The layers exhibit, in proportion to the volume, a large surface with zero stresses, i.e. homogeneous
stress boundary conditions. It is well known from homogenization theory that such samples underestimate the effective stiffness
(see, e.g. Glüge et al. (2012)). Therefore, a fine discretization of the slices across the thickness is opposed by a loss of the scale
separation. This is a fundamental dichotomy.
From a descriptive point of view, the layer’s Young moduli are lower because of a lack of load distribution which is present in the
bulk. Due to the inhomogeneity of the material, the local stresses deviate from the imposed uniaxial tensile state. Near the surface,
the stresses confined to a plane stress state. This plays no big role in the bulk tensile tests, where the plane stress confinement
makes up only a small portion. But in the layer-wise tests, the stresses are forced to be plane practically everywhere. This robs the
slices of one dimension for the load distribution, as sketched in Fig. 4.
The loss of scale separation is larger in the core, since the core contains spherulites, the diameters of which are almost as large as
the slice thickness of 50 µm (see Fig. 1). Near the surface, a finer microstructure prevails. This explains the increased scattering in
the core Figs. 3.
Note that these observations apply to the effective elastic and plastic properties, although the effect appears less pronounced for the
plasticity. For our fitting procedure, we found the bulk sample to have a yield limit of only 16 MPa, but in conjunction with an
exceptionally high inverse hardening exponent of 0.18, such that the bulk is effectively stronger than most layers, see Fig. 2. Since
for our bending tests the plastic properties are more relevant, we take the values as they were measured, keeping in mind that the
overall stress levels, stiffness and strength of the bending sample are rather underestimated.
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Figure 2: Left: True stress over engineering strain curves obtained on thin sections at different depths, where the number indicates
the starting depth of the layer (e.g., ”100 µm” indicates the third layer, spanning the depth from 100 µm to 150 µm). The
coloured solid lines correspond to the tensile test data, the black dotted lines represent the fitted material model (eq. 1).
The black dots indicate the yield point as obtained from fitting the Ramberg-Osgood material parameters. The bulk
stress strain curve shows a higher stiffness and strength than most layers. Only at a depth of 350 µm, the bulk stress is
exceeded in a small interval. Right: Zoom on the elastic portion. The bulk’s Young modulus is considerably larger than
any of the Young moduli of the slices.

4 Bending tests

To examine the effect of the surface layer, bending tests were simulated numerically.

4.1 Test setup

The samples described in Sec. 2.1 were subjected to a three point bending test. Both bars ends jut out 10 % of the sample length
of 45 mm, which leaves a load span of 36 mm. The loading head and the supporting points are freely rotating cylinders with a
diameter of 8 mm. A sketch drawn to scale is given in Fig. 5.

4.2 Simulations

To examine the stress distribution, finite element (FE) simulations were devised.

4.2.1 Finite element setup

A finite element model of the bending test was created, for which we used the FE system Abaqus. We compared three different
material property distributions, namely homogeneous core material (as found at a depth of 2 mm), homogeneous skin layer material
(as found at the surface) and depth-dependent according to the material data as presented in Sec. 2.5. Due to the symmetry, only
one half of the sample was modelled. The simple geometry of the sample calls for a structured mesh with hexahedral elements,
with a mesh refinement near the surface and the contact points. An impression of the meshing is given in Fig. 6. To avoid shear
locking, we used quadratic shape functions. The bending load head and the support points were modelled as rigid surfaces, since
the steel barrels are much stiffer than the iPP. The barrels are in frictionless contact to account for the pivoted mounting. Since
large deformations occur, a geometric nonlinear framework is used.

4.2.2 Simulation results

The most interesting result, namely the reduced surface stress due to the softer skin layer is depicted in Fig. 6 (FE model) and
Figs. 8 to 9 (stress accross thickness).

Force displacement curves The force-displacement curves are depicted in Fig. 7. One can see that the pure skin material sample
is much softer, compared to the pure core and the inhomogeneous samples. The latter do not differ significantly.

Stress distribution over depth The stress distribution is depicted along a line through the cross section in the center of the
sample (see Fig. 6). One can see the typical compressive and tensile normal stresses as expected in a bending test in Fig. 8. It is
also visible that the equivalent von Mises stress drops about 20 % near the surface, from approximately 30 MPa at a depth of

255



Tech. Mech., Vol. 39, Is. 3, (2019), 252–260

0

200

400

600

800

1000

1200
E

in
M

P
a

0

5

10

15

20

25

30

σ
y

in
M

P
a

0.5 1.0 1.5 2.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Depth in mm

In
v

.
h

a
r
d

e
in

g
e

x
p

o
n

e
n

t
1
/n

[-
]

Figure 3: Young’s modulus E , the yield stress σy and the inverse hardening exponent 1/n over the depth in mm as fitted to the
tensile test data (blue) and after removal of the scattering via a trend line (yellow). One can see that stiffness, yield
strength and hardening rate have a minimum at the surface. The vertical lines indicate the layer transitions.
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Figure 4: The semi-crystalline spherulites are much stiffer than the amorphous matrix. Under effective tension in the vertical
direction, the load distribution runs mostly through adjacent spherulites. If the bulk is sliced, the load distribution is
locally forced to run through the softer matrix, making the slices appear softer. Note that this is just a rough description
of the load redistribution, it does not take into account more intricate effects that may take place at the phase boundaries.

4 mm 4 mm

36 mm

u

4 mm

45 mm4 mm

Figure 5: Bending setup drawn to scale.

Figure 6: Equivalent von Mises stress distribution at a displacement of approximately 9 mm. One can see a considerable decrease
of the equivalent von Mises stress in the skin layer. The stress distribution along the arrow is depicted in Fig. 9.
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Figure 8: Left: Normal stress distribution through the bending sample near the bending load head for the three cases at the load
maximum at a displacement u of approximately 9 mm. Note the slight shift of the neutral axis due to the large deflection
and the compressive loading at the bending load head at a depth of 4 mm. The vertical lines indicate the layer boundaries
between the skin- shear- and core layer. Right: Equivalent von Mises stress distributions for the three cases at different
load head displacements. In the inhomogeneous case, a considerable stress drop near the surface is observed. The
vertical lines indicate the layer boundaries between the skin- shear- and core layer.

approximately 500 µm to approximately 24 MPa at the surface. This effect is observed from the very beginning, but it is more
pronounced the larger the strains become (see Fig. 9 top). This is in a sense counter-intuitive, as the outermost layers are subject
to the largest strains in bending tests. We clearly see that the influence of the material property gradient is stronger than the
approximately linear strain increase inside the cross section due to the bending.

5 Summary

We sliced a bulk iPP sample into layers of 50 µm thickness, the material properties of which were characterized in a tensile test.
The material parameters were mapped to a finite element model of a bending test, of which the stress distribution across the
thickness was analyzed. Our results can be summarized as follows:
• In the strain range up to 10 % and in the low strain rate limit, the tensile stress-strain behavior of iPP can be modeled well
using the Ramberg-Osgood material law with only three parameters, namely Young’s modulus, the yield stress and the
inverse hardening exponent.
• Unfortunately, the layer-wise properties that were measured cannot be correlated directly with the bulk properties due to a
loss of scale-separation. Either the discretization is coarse, or the layers are too thin to be representative. Specifically, the
confinement to a plane stress state excludes a local load distribution mechanism in the microstructure, which makes the
layers appear softer than the bulk. This affects the elastic properties, which are underestimated on average by a factor of
approximately 0.7, more than the plastic properties.
Since the spherulite size is larger in the core, the loss of scale separation is bigger in the core. This implies that the tensile
tests underestimate the core stiffness more than the skin stiffness, which means that the unbiased material property gradient
may be even stronger.
• The depth profile of these material parameters is rather complex, see Fig. 3. Going from the skin to the core, we find directly

at the beginning of the skin/transition layer that all three parameters exhibit a local minimum (E ≈ 750 MPa, σy ≈ 20 MPa,
1/n ≈ 0.06), making the outermost layer softest and weakest. The adjacent shear layer from approximately 150 µm to
≈ 500 µm is stiffest and strongest, having a global maximum of Young’s modulus of ≈ 1050 MPa and the inverse hardening
exponent of ≈ 0.11 at a depth of ≈ 300 µm. In the shear zone, the yield stress increases monotonically. Near the start of
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Figure 9: Left: Normal stress distribution (left column) and equivalent von Mises stress distribution (right column) through the
bending sample near the bending load head at different load head displacements, shown for the inhomogeneous material
(top row), the pure skin material (middle row). The vertical lines indicate the layer boundaries between the skin- shear-
and core layer. Note the slight shift of the neutral axis due to the large deflection and the compressive loading at the
bending load head at a depth of 4 mm. Most important, the upper right plot shows a significant drop of the equivalent
von Mises stress near the skin.
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the core, the yield stress has a global maximum of ≈ 26 MPa at ≈ 600 µm, while Young’s modulus has a local minimum
of ≈ 700 MPa at a depth of ≈ 0.7 µm, before a homogeneous property profile with average material parameters starts at
≈ 900 µm.
• The gradient of the material properties along the depth is rather strong. It easily overcompensates the linear strain-increase
due to the bending deformation. Naturally, the effect is strongest after plastic deformations, where it can produce an
equivalent von Mises stress drop from 30 MPa to 24 MPa in a depth from 0.5 mm to 0 mm, but it appears already in the
elastic range. Young’s modulus drops from ≈ 1000 MPa to ≈ 750 MPa at the surface over a thickness of only 0.1 mm. This
is a strong gradient, which easily overcompensates the linear strain growth in the bending deformation.
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Abstract: The contribution at hand discusses the thermo-mechanical analysis of a steam turbine rotor, made of a heat-resistant
steel. Thereby, the analysis accounts for the complicated geometry of a real steam turbine rotor, subjected to practical and
complex thermo-mechanical boundary conditions. Various thermo-mechanical loading cycles are taken into account, including
different starting procedures (cold and warm starts). Within the thermal analysis using the FE code ABAQUS, instationary
steam temperatures as well as heat transfer coefficients are prescribed, and the resulting temperature field serves as input for the
subsequent structural analysis. In order to describe the mechanical behavior of the heat-resistant steel, which exhibits significant
rate-dependent inelasticity combined with hardening and softening phenomena, a robust nonlinear constitutive approach, the
binary mixture model, is employed and implemented in ABAQUS in two different ways, i.e. using explicit as well as implicit
methods for the time integration of the governing evolution equations. The numerical performance, the required computational
effort, and the obtained accuracy of both integration methods are examined with reference to the thermo-mechanical analysis of
a steam turbine rotor, as a typical practical example for the numerical analysis of a complex component. In addition, the obtained
temperature, stress, and strain fields in the steam turbine rotor are discussed in detail, and the influence of the different starting
procedures is examined closely.

Keywords: steam turbine rotor, mixture model, creep, numerical time integration, nonlinear constitutive modeling

1 Introduction

The current paper presents details on the thermo-mechanical analysis of a steam turbine rotor considering complex boundary
conditions as well as the complicated geometry of this power plant component. In power plants, high temperatures prevail (around
873 K) such that the components operate under creep conditions, cf. Straub (1995); Fournier et al. (2011b); Pétry and Lindet
(2009); Naumenko et al. (2011b); Götz (2004). Furthermore, the components are subjected to cyclic loads because of frequent
start-ups and shut-downs of power plants, cf. Fournier et al. (2011a, 2005, 2009b, 2010); Röttger (1997). To withstand these
conditions, heat-resistant steels with high chromium content offer excellent properties, e.g. high creep strength and good corrosion
resistance, cf. Pétry and Lindet (2009); Götz (2004); Fournier et al. (2005); Berns and Theisen (2008); Giroux et al. (2010);
Wang et al. (2013); Alsagabi et al. (2014); Kostenko et al. (2013), such that these alloys are commonly used for power plant
components. Nevertheless, these steels tend to soften under creep-fatigue loads, which is based on microstructural processes such
as the coarsening of subgrains and precipitates, cf. Straub (1995); Fournier et al. (2011b,a, 2009b, 2010); Röttger (1997); Giroux
et al. (2010); Chilukuru et al. (2009); Agamennone et al. (2006); Orlová et al. (1998); Fournier et al. (2009a).
To the present, various constitutive models have been developed to simulate the mechanical behavior of high-chromium heat-
resistant steels. Since a detailed survey of these approaches goes beyond the scope of this paper, we only provide a brief overview
in the following. Overall, the constitutive models can be classified either as unified or non-unified approaches. The notion of
unified model was introduced by Chaboche and Rousselier (1983). Thereby, only one time-dependent inelastic strain is taken
into account. In contrast, non-unified models introduce separate variables to describe the instantaneous plastic strains and time-
dependent inelastic deformation. Among the non-unified models, Wang et al. (2015) and Velay et al. (2006) present approaches
for high-chromium heat-resistant steels. First, in Velay et al. (2006), the authors make use of internal variables to account for
the cyclic behavior of a heat-resistant steel. In addition, Wang et al. (2015) adopt the Chaboche model, cf. Chaboche (1989),
with three backstresses including both isotropic and kinematic hardening as well as a damage variable to simulate creep-fatigue
behavior.
Moreover, the Chaboche model is frequently employed also in combination with unified constitutive models, cf. for example
Saad (2012); Barrett et al. (2013); Zhang and Xuan (2017). All three chosen unified constitutive models are used to simulate the
thermo-mechanical behavior of high-chromium heat-resistant steels, and 10 or even more temperature-dependent parameters are
involved. Note that the actual number of parameters is at least twice as much since a minimum of two parameters is required to
determine the (in the simplest case – linear) dependence on the temperature of each parameter. The large numbers of parameters
frequently result from the introduction of several backstresses in order to account for nonlinear kinematic hardening. Consequently,
the calibration effort increases and providing a physical background for all introduced parameters becomes a challenging task.
For these reasons, we refrain from using the Chaboche model with several backstresses, and a unified mixture model is used to
describe the thermo-mechanical behavior of the alloy X20CrMoV12-1, which is a typical heat-resistant steel with high chromium
? E-mail address: johanna.eisentraeger@ovgu.de doi: 10.24352/UB.OVGU-2019-024 2019 | All rights reserved.
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content.
Originally, the mixture model is based on materials science. Inelasticity combined with hardening and softening phenomena
is simulated by applying an iso-strain concept to a binary mixture with a soft and hard constituent, cf. Straub (1995); Polcik
(1998). The alloy under consideration is made of soft subgrains, which are separated by harder boundaries. Furthermore, the
volume fraction of the hard constituent is closely related to the microstructure, for example the mean subgrain size. In order
to model softening, we assume that the volume fraction of the hard constituent reduces during deformation until a saturation
value is attained, cf. Naumenko et al. (2011a). Following the original formulation in materials science, the mixture models can
be calibrated based on micrography, cf. e.g. Straub (1995); Polcik (1998); Barkar and Ågren (2005). However, if one would like
to use results from macroscopic material tests for the calibration, the micromechanical mixture model must be transformed into
a macroscopic approach. For this purpose, Naumenko et al. (2011a) introduce a backstress and a softening variable as internal
variables. This macroscopic mixture model is calibrated in Eisenträger et al. (2018a) based on results from high temperature tensile
tests and creep tests published in Eisenträger et al. (2017). After all, the mixture model describes the thermo-mechanical behavior
of the considered heat-resistant steel over wide ranges of stresses and temperature (100 MPa≤σ ≤ 700 MPa, 673 K≤T ≤ 923 K
with the Cauchy stress σ and the temperature T), while only 16 temperature-independent material parameters are involved, cf.
Eisenträger (2018). To sum up, the mixture model features three main improvements in comparison to alternative approaches.
Firstly, the number of material parameters is kept to a minimum since only two internal variables, i.e. a backstress and a softening
variable, are taken into account. Secondly, it is possible to calibrate the model using only simple macroscopic tests, such that
time-consuming microscopic observations are not necessary to identify all parameters. On top of that, one can apply the model
to wide ranges of stresses and temperatures.
The current contribution aims at analyzing a steam turbine rotor with the calibrated mixture model. Note that the results of a
similar analysis are presented in Eisenträger (2018). However, the analysis in Eisenträger (2018) focuses on a rotor with idealized
geometry and simplified boundary conditions. To conduct this finite element analysis, the mixture model has been implemented
into the FE code ABAQUS based on the implicit Euler method for time integration, cf. Eisenträger et al. (2018b). As a next step
based on the previous publications, the contribution at hand demonstrates the applicability of the mixture model to a real power
plant component with complicated geometry subjected to complex boundary conditions in step with actual practice. Note that
several papers on finite element analysis of turbine rotors have already been published, cf. for example Jing et al. (2001, 2003);
Nayebi et al. (2012); Sun et al. (2013); Wang et al. (2016); Zhu et al. (2017); Benaarbia et al. (2018); Wang and Liu (2018).
Whereas the papers Nayebi et al. (2012); Benaarbia et al. (2018) refer to gas turbine rotors, the majority of publications focuses on
steam turbine rotors. Furthermore, most authors make use of the Chaboche model to describe the multiaxial stress-strain behavior
of the rotors. Axisymmetric FE models are frequently applied, and in many cases a preceding thermal analysis is conducted, which
provides the temperature field as input for the subsequent structural analysis. Although these studies provide detailed insight into
the stress and strain fields in rotors subjected to creep-fatigue loads, the influence of different starting procedures, such as varying
initial temperatures in the rotor, has not been analyzed yet. Furthermore, in many cases, the given information on the applied
boundary conditions could go more into detail. Consequently, the contribution at hand will address these problems by analyzing
the influence of different starting procedures on the rotor as well as providing extensive and precise information on the applied
boundary conditions. On top of that, we present a new implementation of the mixture model into the finite element method (FEM)
based on explicit time integration of the evolution equations. This allows for a comparison of two different time integration
methods (implicit and explicit Euler methods) with respect to their numerical performance, the involved computational effort,
and the obtained accuracy. Although both time integration methods are well-known, most evaluations in literature focus on simple
numerical examples, cf. Manzari and Prachathananukit (2001); Hu and Liu (2014). In contrast, the contribution at hand applies
both methods to a complex problem taken from practice, whereby it is of particular interest to minimize computational times.
The current paper is composed of five sections, including this first introductory section. In Sect. 2, the governing equations
of the binary mixture model are derived, and two internal variables, i.e. a backstress and a softening variable, are introduced.
Section 3 focuses on the implementation of the mixture model into the FE code ABAQUS, based both on explicit and implicit
time integration. The stress update algorithms as well as the consistent tangent operators are described for the two different time
integration methods. Afterwards, details on the finite element analysis of the steam turbine rotor are given in Sect. 4. The section
starts with a detailed description of the FE model, the meshes, as well as the boundary conditions. Subsequently, we examine the
numerical performance of implicit and explicit time integration. We conclude the section by discussing the obtained temperature,
stress, and strain fields in the rotor in detail. Finally, Sect. 5 gives a brief summary of the findings and identifies areas for further
research.
Note that we make use both of direct tensor notation as well as matrix notation in this papers. While scalars are represented by
italic letters, e.g. a, italic lowercase bold letters are used for vectors, e.g. a=ai ei . We symbolize tensors of second order by italic
uppercase bold letters, e.g. A = Ajk e j ⊗ ek , and represent fourth-order tensors by upright uppercase double struck letters, for
example A= Apqrs ep ⊗ eq ⊗ er ⊗ es . Throughout the paper, Einstein’s summation convention is applied, while Latin indices
(e.g. i, j ) take the values 1, 2, 3. Considering Cartesian coordinate systems with orthonormal bases, e.g. {ei}, we introduce the
dyadic product:

a ⊗ b=ai bj ei ⊗ e j , (1)

as well as the double scalar product between two tensors of second order and the analogous formulation for a fourth and a
second-order tensor:

A: B=
(
Ajk e j ⊗ ek

)
: (Bno en ⊗ eo) = AjkBk j , (2)

A: B=
(
Ajklm e j ⊗ ek ⊗ el ⊗ em

)
: (Bno en ⊗ eo) = AjklmBmle j ⊗ ek . (3)
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Here, it is worth noting that frequently, the double scalar product between two second-order tensors or a fourth and a second-order
tensor is formulated in a different way in literature, cf. e.g. Itskov (2019). Switching to a vector-matrix notation, we represent
vectors by upright lowercase sans serif bold letters, such as a. Matrices are symbolized by upright uppercase sans serif bold
letters, e.g. A.

2 Constitutive Model

2.1 Binary Mixture Formulation

In the following, the governing equations of the binary mixture model are presented, based on the papers Naumenko et al.
(2011a,b); Naumenko and Altenbach (2016); Eisenträger et al. (2018b). Since it is a binary mixture model, two constituents are
taken into account: a “soft” and a “hard” part. While the soft constituent is related to regions with a low dislocation density, such
as the interior of subgrains, the hard phase comprises the areas with a high dislocation density, i.e. the subgrain boundaries. Let
us introduce the index �k∀ k = {s, h} to distinguish the variables related to the different constituents.
Since the constitutive model will be utilized to simulate the thermo-mechanical behavior of practical components in power
plants, the mixture model is formulated with respect to geometrically linear processes. Furthermore, due to this restriction,
the involved computational effort decreases significantly. As already pointed out in Eisenträger et al. (2018b), in the case of
applications involving high strains, various similar constitutive models for rate-dependent inelasticity under large deformations
incorporating softening and hardening processes have been formulated, cf. Zhu et al. (2014); Shutov and Kreißig (2008). Because
only geometrically linear processes are considered, we introduce the linear strain tensor εεεεεεεεεεεεεεεεε. The iso-strain assumption represents
an important part of the mixture model, such that the strains in the two constituents are assumed to be equal:

εεεεεεεεεεεεεεεεε = εεεεεεεεεεεεεεεεεh = εεεεεεεεεεεεεεεεεs. (4)

The iso-strain concept, which is also often referred to as “Voigt model” in literature, provides a robust and straightforward
description of the material behavior. Nevertheless, one should point out that more sophisticated approaches are available as well
in case if the constitutive model should be refined. For instance, one could use the continuum theory of mixtures, cf. Atkin and
Craine (1976), to account for the interaction of the phases in the mixture. Furthermore, alternative models have been developed,
which are neither founded upon the Voigt model nor the iso-stress (Reuss) concept. Instead, these approaches provide results
that lie between the Voigt-Reuss bounds, for example the multiphase creep model presented in Raj et al. (1996).
The current constitutive model belongs to the group of unified material models, as introduced in Chaboche and Rousselier (1983).
Here, the total inelastic strain εεεεεεεεεεεεεεεεε in

k
describes instantaneous plastic strains as well as creep strains, which are time-dependent. Note

that the strains in both constituents are split additively into their elastic and inelastic portions, denoted by the superscripts �el and
�in, respectively:

εεεεεεεεεεεεεεεεε = εεεεεεεεεεεεεεεεεel
k + εεεεεεεεεεεεεεεεε in

k . (5)

In addition, we make use of Hooke’s law to describe the linear elastic behavior of isotropic materials:

εεεεεεεεεεεεεεεεεel
k =
σmk

3K
I +

σσσσσσσσσσσσσσσσσ′
k

2G
(6)

or:

σσσσσσσσσσσσσσσσσk = Kεel
Vk

I + 2Gεεεεεεεεεεεεεεεεεel′
k , (7)

whereas the parameters G and K denote the shear and bulk modulus, respectively. Furthermore, we have introduced the Cauchy
stress tensor σσσσσσσσσσσσσσσσσ, the mean stress σm = 1

3 tr (σσσσσσσσσσσσσσσσσ), and the volumetric strain εV = tr (εεεεεεεεεεεεεεεεε), which are computed based on the stress
and strain tensors, applying the trace operator tr (�). The deviatoric part of a second-order tensor is marked by the prime
�′= � − 1

3 tr (�) I , and the identity tensor of second order is represented by I = ei ⊗ ei . It is worth mentioning that the mixture
model presumes an identical elastic behavior in both constituents, such that the same elastic material parameters are introduced
for both constituents in Eqs. (6) and (7).
As a common choice to compute the total stress in a mixture model, a mixture rule based on the volume fractions ηk of the
constituents is applied:

σσσσσσσσσσσσσσσσσ = ηsσσσσσσσσσσσσσσσσσs + ηhσσσσσσσσσσσσσσσσσh, (8)

while the following condition holds for the volume fractions due to conservation of mass:

ηs + ηh = 1 ∀ 0 ≤ ηk ≤ 1. (9)

In order to simplify the constitutive model, let us only consider the volumetric parts of the stress and strain tensors in the following
and apply the trace operator to Eqs. (4)–(6):

εV = εVh = εVs, (10)

εV = εel
Vk

+ εin
Vk
, (11)
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εel
Vk

=
σmk

K
. (12)

Within the classical theory of plastic deformations, it is commonly accepted to assume that the inelastic strains are not affected
by the spherical part of the stresses, i.e. εin

Vk
= 0 ⇒ εεεεεεεεεεεεεεεεε in

k
= εεεεεεεεεεεεεεεεε in′

k
. Considering this assumption and inserting Eqs. (11) and (12) into

Eq. (10) yield:

σm = σmh = σms = KεV. (13)

Due to the equal bulk moduli in both constituents, Eq. (13) reveals that the mean stresses are equal in the entire mixture. Thus,
one can restrict Eqs. (4) and (8) to the deviatoric parts of the stress and strain tensors:

εεεεεεεεεεεεεεεεε ′ = εεεεεεεεεεεεεεεεε ′
h = εεεεεεεεεεεεεεεεε ′

s, (14)

σσσσσσσσσσσσσσσσσ′ = ηsσσσσσσσσσσσσσσσσσ
′
s + ηhσσσσσσσσσσσσσσσσσ

′
h. (15)

Next, we determine the stress deviators σσσσσσσσσσσσσσσσσ ′
k

for both constituents based on Eq. (6). The obtained expressions for the deviatoric
stresses are inserted into Eq. (15), which yields the constitutive law for the elastic behavior of the entire mixture:

εεεεεεεεεεεεεεεεε =
σm

3K
I +

σσσσσσσσσσσσσσσσσ′

2G
+ εεεεεεεεεεεεεεεεε in, (16)

while εεεεεεεεεεεεεεεεε in represents the inelastic strain of the mixture:

εεεεεεεεεεεεεεεεε in ≡ (1 − ηh) εεεεεεεεεεεεεεεεε
in
s + ηhεεεεεεεεεεεεεεεεε

in
h . (17)

In addition, evolution equations for the inelastic strains Ûεεεεεεεεεεεεεεεεε in
k are formulated, following Naumenko et al. (2011a); Naumenko and

Altenbach (2016):

Ûεεεεεεεεεεεεεεεεε in
s =

3
2
Ûεin
vMs

σσσσσσσσσσσσσσσσσ′
s

σvMs

, (18)

Ûεεεεεεεεεεεεεεεεεin
h =

3
2
Ûεin
vM

σσσσσσσσσσσσσσσσσ′
h − σσσσσσσσσσσσσσσσσ′

σvM?

. (19)

Note that we have introduced the von Mises equivalent inelastic strain rates Ûεin
vMs

and Ûεin
vM for the soft part and with respect to the

entire mixture, respectively. Furthermore, the variable σvMs denotes the von Mises equivalent stress in the soft constituent, and
σvM? is the von Mises equivalent saturation stress:

Ûεin
vMs

=

√
2
3
Ûεεεεεεεεεεεεεεεεε in

s : Ûεεεεεεεεεεεεεεεεε in
s , (20)

Ûεin
vM =

√
2
3
Ûεεεεεεεεεεεεεεεεε in: Ûεεεεεεεεεεεεεεεεε in, (21)

σvMs =

√
3
2
σσσσσσσσσσσσσσσσσ ′

s:σσσσσσσσσσσσσσσσσ′
s, (22)

σvM? =

√
3
2

(
σσσσσσσσσσσσσσσσσ ′

h?
− σσσσσσσσσσσσσσσσσ′

)
:
(
σσσσσσσσσσσσσσσσσ′

h?
− σσσσσσσσσσσσσσσσσ′

)
. (23)

In above expressions, the term σσσσσσσσσσσσσσσσσ′
h?

stands for the saturation stress in the hard constituent. Additionally, the subsequent evolution

equation is utilized for the equivalent inelastic strain rate in the soft constituent Ûεin
vMs

:

Ûεin
vMs

= fσ
(
σvMs

)
fT (T) . (24)

Moreover, we formulate an evolution equation for the volume fraction of the hard constituent:

Ûηh = fη
(
σσσσσσσσσσσσσσσσσh, Ûεεεεεεεεεεεεεεεεε

in
h ,T

)
. (25)

Note that the volume fraction of the soft constituent can be computed by combining Eqs. (9) and (25). The one-dimensional
mixture model is visualized with rheological elements in Fig. 1, while we presume constant volume fractions in both constituents.

2.2 Formulation with Internal Variables

Since the mixture model has been described in the previous section in close reference to the microstructure, detailed microstructural
observations would be required for the calibration of the model. Though, for the discussed application and the considered heat-
resistant steel, we frequently only have access to the results of macroscopic material tests, such as high temperature tensile tests
or creep tests. Therefore, we introduce two internal variables, i.e. a backstress tensor βββββββββββββββββ and a dimensionless scalar softening
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elastic element

Hooke’s law:

σk = Eεelk
with E = Eh = Es = E (T )

inelastic soft element

constitutive law w.r.t.
inelastic strain rate:
ε̇ins = fεs(σs, T )

inelastic hard element

constitutive law w.r.t.
inelastic strain rate:
ε̇inh = fεh(σh, T )

one-dimensional iso-strain concept for binary mixture

εinsε
in
s

εinhε
in
h

Es

Eh

σ σ

Fig. 1: Iso-strain concept for a binary mixture with constant volume fractions of constituents, cf. Eisenträger et al. (2017)

variable Γ. The backstress is employed to describe kinematic hardening. The tensorial variable as well as the corresponding
equivalent von Mises variable βvM are computed according to the following equations:

βββββββββββββββββ =
ηh0

1 − ηh0

(
σσσσσσσσσσσσσσσσσ′

h − σσσσσσσσσσσσσσσσσ′) ∀ 0 < ηh0 < 1, (26)

βvM =

√
3
2
βββββββββββββββββ: βββββββββββββββββ ∀ 0 ≤ βvM ≤ βvM?, (27)

whereas the corresponding saturation values are marked with an asterisk:

βββββββββββββββββ? =
ηh0

1 − ηh0

(
σσσσσσσσσσσσσσσσσ′

h?
− σσσσσσσσσσσσσσσσσ ′

)
, (28)

βvM? =

√
3
2
βββββββββββββββββ?: βββββββββββββββββ?. (29)

In Eqs. (26) and (28), we make use of the parameter ηh0 , denoting the volume fraction of the hard constituent in the initial state:
ηh0 = ηh (t = 0). Moreover, it is demonstrated in Naumenko et al. (2011a) that the tensor βββββββββββββββββ can be interpreted as a backstress similar
to the well-known Armstrong-Frederick-type backstress, cf. Armstrong and Frederick (1966). To describe softening processes,
the scalar variable Γ with the corresponding saturation value Γ? is introduced in the following:

Γ =
ηh

1 − ηh

1 − ηh0

ηh0

∀ Γ? ≤ Γ ≤ 1, (30)

Γ? =
ηh?

1 − ηh?

1 − ηh0

ηh0

∀ 0 < ηh? < 1. (31)

Note that the new variable ηh? represents the saturation value for the volume fraction with respect to the hard constituent. In the
next step, we compute the stresses and inelastic strain rates of the individual constituents based on the new internal variables by
deploying the definitions in Eqs. (26)–(31) as well as the Eqs. (15), (18), (19), and (24):

σσσσσσσσσσσσσσσσσ′
h = σσσσσσσσσσσσσσσσσ′ +

1 − ηh0

ηh0

βββββββββββββββββ, (32)

σσσσσσσσσσσσσσσσσ′
s = σ̃σσσσσσσσσσσσσσσσ′, (33)
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Ûεεεεεεεεεεεεεεεεε in
h =

3
2
Ûεin
vM

βββββββββββββββββ

βvM?

, (34)

Ûεεεεεεεεεεεεεεεεε in
s =

3
2

fσ (σ̃vM) fT (T)
σ̃σσσσσσσσσσσσσσσσ′

σ̃vM
, (35)

while the effective stress σ̃σσσσσσσσσσσσσσσσ ′ and the corresponding von Mises variable σ̃vM have been introduced:

σ̃σσσσσσσσσσσσσσσσ′ =σσσσσσσσσσσσσσσσσ′ − Γβββββββββββββββββ, (36)

σ̃vM =

√
3
2
σ̃σσσσσσσσσσσσσσσσ′: σ̃σσσσσσσσσσσσσσσσ′. (37)

Afterwards, Eq. (16) is differentiated with respect to the time t:

Ûεεεεεεεεεεεεεεεεεin = Ûεεεεεεεεεεεεεεεεε −
∂

∂t

(
σm

3K
I +

σσσσσσσσσσσσσσσσσ′

2G

)

. (38)

By taking into account Eq. (6), we transform Eq. (5) with respect to the individual constituents in a similar way:

Ûεεεεεεεεεεεεεεεεε =
∂

∂t

(
σm

3K
I +

σσσσσσσσσσσσσσσσσ′
k

2G

)

+ Ûεεεεεεεεεεεεεεεεε in
k . (39)

Finally, above equation is referred to the soft constituent and inserted into Eq. (38). In addition, one replaces the stress deviator σσσσσσσσσσσσσσσσσ ′
s

and the inelastic strain rate tensor Ûεεεεεεεεεεεεεεεεε in
s by deploying Eqs. (33) and (35). Then, the equations are transformed until we obtain an

evolution equation for the inelastic strain εεεεεεεεεεεεεεεεε in in the mixture:

Ûεεεεεεεεεεεεεεεεε in =
3
2

fσ (σ̃vM) fT (T)
σ̃σσσσσσσσσσσσσσσσ′

σ̃vM
−
∂

∂t

(
Γβββββββββββββββββ

2G

)

. (40)

Note that the last term exerts only a slight influence on the inelastic strain rate at the beginning of inelastic deformation such
that it is neglected in the remainder, as also already done in Naumenko et al. (2011a); Eisenträger et al. (2017). Thus, Eq. (40) is
simplified as follows:

Ûεεεεεεεεεεεεεεεεε in =
3
2

fσ (σ̃vM) fT (T)
σ̃σσσσσσσσσσσσσσσσ′

σ̃vM
. (41)

Finally, the equations for the hard constituent are transformed in an analogous way: First, we evaluate Eq. (39) with respect to the
hard constituent and insert the resulting terms into Eq. (38). Thereby, the deviatoric stress σσσσσσσσσσσσσσσσσ ′

h and the inelastic strain rate Ûεεεεεεεεεεεεεεεεε in
h are

substituted using Eqs. (32) and (34), which results in an evolution equation for the backstress βββββββββββββββββ:

Ûβββββββββββββββββ =
1
G
∂G
∂T

ÛTβββββββββββββββββ + 2G
ηh0

1 − ηh0

(
Ûεεεεεεεεεεεεεεεεε in −

3
2
Ûεin
vM

βββββββββββββββββ

βvM?

)

. (42)

Furthermore, we adopt the evolution equation for the softening variable from Naumenko et al. (2011a):

ÛΓ = C [Γ? (σvM) − Γ] Ûεin
vM. (43)

Since the volume fraction of the hard constituent is replaced by Γ, see also Eq. (30), Eq. (43) expresses the continuous decline
of the softening variable towards its saturation value Γ? as the inelastic deformation increases. In this way, we can describe the
macroscopic softening of heat-resistant steels, which is based predominantly on the growth of subgrains. Note that this evolution
equation is restricted to proportional loading, and in case of non-proportional loading, one should resort to refined approaches,
as the model proposed in Silbermann et al. (2014).
The presented mixture model has been calibrated in Eisenträger et al. (2018a); Eisenträger (2018) based on the results of
macroscopic material tests on the heat-resistant steel X20CrMoV12-1, as presented in Eisenträger et al. (2017). The following
stress and temperature response functions have been found to describe the mechanical behavior of the heat-resistant alloy in a
robust way:

E (T) = C1 + C2T
3, (44)

G (T) = C3 + C4T
3, (45)

fT (T) = exp

(

−
Q

RT

)

, (46)

fσ (σ̃vM) = aσ sinh

(
σ̃vM

bσ

) [

1 +

(
σ̃vM

cσ

)mσ
]

, (47)

βvM? (σvM) =
2aβ

1 + exp
(
−bβσvM

) − aβ, (48)
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Tab. 1: Used constants and identified material parameters in the unified mixture model, cf. Eisenträger (2018)

variable value unit meaning equation

C1 2.23 × 105 MPa parameters in the temperature response function for
Young’s modulus

(44)
C2 −1.64 × 10−4 MPa K−3

C3 82.6 × 103 MPa parameters in the temperature response function for
shear modulus

(45)
C4 −2.87 × 10−5 MPa K−3

Q 540.6 × 103 J mol−1 activation energy in the temperature response functions for the
inelastic strain rate

(46)

R 8.317 J (mol K)−1 universal gas constant in the temperature response functions for
the inelastic strain rate

(46)

aσ 1.54 × 1024 s−1

parameters in the stress response function for the inelastic
strain rate

(47)
bσ 25.8 MPa
cσ 483.6 MPa
mσ 35.7 −

ηh0 0.17 − reference value for the volume fraction of the hard constituent (42)

aβ 80.0 MPa maximum value for the saturation backstress (48)

bβ 2.70 × 10−2 MPa−1 parameter in the evolution function for the saturation backstress (48)

C 5.0 − parameter in the evolution equation for the softening variable (43)

aΓ 1.0 −
parameters in the stress response function for the saturation
softening variable

(49)bΓ 1.30 × 10−2 MPa−1

cΓ 520.0 MPa

Γ? (σvM) =
aΓ

1 + exp [−bΓ (σvM − cΓ)]
. (49)

Note that a temperature response function for the Young’s modulus has been formulated since this material parameter is
straightforward to determine based on high temperature tensile tests. The bulk modulus K is obtained based on the Young’s and
shear modulus as follows:

K =
GE

3 (3G − E)
. (50)

Table 1 provides an overview of all constants and identified parameters. After all, the mixture model involves a total of 16
temperature-independent parameters, which is a relatively low number if we consider the remarkably wide ranges of applicability
with respect to temperatures (673 K≤T ≤ 923 K) and stresses (100 MPa≤σvM ≤ 700 MPa), as discussed in Eisenträger (2018).
To provide a basis for the derivations in the following sections, let us recall the governing equations of the mixture model:

• Hooke’s law for the linear elastic behavior of the mixture, assuming isotropy

σσσσσσσσσσσσσσσσσ = Kεel
V I + 2Gεεεεεεεεεεεεεεεεεel′, (51)

• the split of strains into the elastic and inelastic parts

εεεεεεεεεεεεεεεεε = εεεεεεεεεεεεεεεεεel + εεεεεεεεεεεεεεεεε in, (52)

• the evolution equation for the inelastic strain, cf. Eq. (41),

• the evolution equation for the backstress, cf. Eq. (42),

• the evolution equation for the softening variable, cf. Eq. (43).

In addition, initial conditions (ICs) must be taken into account. In order to simulate the behavior of an undeformed material, we
assume the following ICs:

σσσσσσσσσσσσσσσσσ (t = 0) = 0, βββββββββββββββββ (t = 0) = 0, Γ (t = 0) = 1. (53)

Since the presented mixture model will be used in partly coupled thermo-mechanical analyses, it is of particular importance to
check for thermodynamical consistency. In Eisenträger (2018), a proof for the thermodynamical consistency of the mixture model
in the present form is given based on the Clausius-Planck inequality. Note that the proof of thermodynamical consistency is
based on the assumption of stationary temperatures, which is deemed adequate considering the major applications, i.e. during the
start-ups and shut-downs of power plants, temperatures change relatively slowly. The interested reader is referred to Eisenträger
(2018), where further details on the derivation can be found.
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3 Numerical Implementation

The analysis of a real steam turbine rotor featuring complex geometry and boundary conditions represents the overall aim of this
contribution. Due to the complexity of the problem, the finite element method (FEM) is utilized as an established and versatile
computational approach. Therefore, the current section provides details on the integration of the calibrated mixture model into
the FEM.
In the previous section, it has been shown that the mixture model results in a system of five governing equations, i.e. Eqs. (51)
and (52) as well as three evolution equations with respect to the inelastic strain εεεεεεεεεεεεεεεεε in, the backstress βββββββββββββββββ, and the softening variable Γ,
cf. Eqs. (41)–(43). Note that displacement increments are usually prescribed in finite element calculations. The strains are
straightforward to compute using the first derivatives of the displacement, while the stresses and internal variables are obtained
based on the constitutive model — a process which is frequently referred to as stress update algorithm, cf. Belytschko et al.
(2000). For this purpose, an evolution equation for the stress tensor σσσσσσσσσσσσσσσσσ is derived in the following by differentiating Eq. (16) with
respect to time:

Ûσσσσσσσσσσσσσσσσσ = K ÛεVI + 2G
(
Ûεεεεεεεεεεεεεεεεε − Ûεεεεεεεεεεεεεεεεε in

)
+

(
∂K
∂T

+
2
3
∂G
∂T

)
ÛT
σm

K
I +

1
G
∂G
∂T

ÛTσσσσσσσσσσσσσσσσσ ′, (54)

whereby the inelastic strain rate Ûεεεεεεεεεεεεεεεεε in is computed by Eq. (41), involving the two internal variables. Next, we have to integrate the
obtained system of evolution equations, i.e. Eqs. (42), (43), and (54), with respect to time, while displacement or strain increments
are prescribed. To realize the time integration numerically, we can resort to two general classes of computational models for time
integration: explicit and implicit approaches. In order to predict an unknown equilibrium state with respect to the time step tn+1,
explicit methods only require quantities from the previous time step tn, cf. Wriggers (2008), which simplifies the implementation
of explicit methods significantly. However, this type of time integration method exhibits only conditional stability, such that the
stability is dependent on the selected time step size, cf. Luccioni et al. (2001).
Alternatively, implicit time integration methods can be used. Here, the variables for the new equilibrium state at the time step tn+1

are estimated by using not only the previous time steps, but taking into account the current and future time steps as well. This
procedure usually results in the solution of a nonlinear system of equations at every time step, cf. Wriggers (2008), which increases
the involved computational effort. Furthermore, the application of implicit time integration methods to nonlinear material models
can be cumbersome. However, implicit methods feature unconditional stability, i.e. the stability is independent from the increment
size, which represents a major advantage in comparison to explicit methods.
Since the previous considerations clearly show that both explicit and implicit methods feature different benefits and drawbacks,
the contribution at hand discusses the implementation of the mixture model into the FEM based on both types of time integration
methods. Note that Sect. 4.2 provides a detailed discussion of the accuracy and computational costs of both integration methods
with respect to the finite element analysis of the steam turbine rotor. As a well-known approach both for implicit and explicit
methods, we will make use of the backward and forward Euler methods for the numerical integration of the evolution equations.
Due to their straightforward formulation, these methods are frequently employed to implement nonlinear constitutive models, cf.
Hartmann and Haupt (1993); Hartmann et al. (1997); Kobayashi et al. (2003); Benaarbia et al. (2018).
In order to illustrate the general difference in explicit and implicit time integration, suppose that we would like to find a solution
for the ordinary differential equation ÛZ =F(Z, t) with respect to the unknown variable Z . The time increment Δt is prescribed,
and the variable Zn at the time step tn is known. As a typical implicit time integration approach, the backward Euler method
provides the solution at the time step tn+1 = tn +Δt as follows, cf. Simo and Hughes (1998); Belytschko et al. (2000); Zienkiewicz
and Taylor (2005); Wriggers (2008):

Zn+1 = Zn + Δt F(Zn+1, tn+1) . (55)

In contrast, if we apply the forward Euler method as an explicit method to the same problem, the solution requires only variables
from the previous time step tn, cf. Simo and Hughes (1998); Belytschko et al. (2000); Zienkiewicz and Taylor (2005); Wriggers
(2008):

Zn+1 = Zn + Δt F(Zn, tn) . (56)

In the following, both methods are applied to the mixture model. The implicit time integration, including the stress update
algorithm and the consistent tangent operator, is presented in Sect. 3.1, while Sect. 3.2 focuses on the explicit time integration.
Whereas the derivations in Sect. 3.1 are based on Eisenträger et al. (2018b), the implementation of the mixture model using an
explicit integration method has not been presented in literature yet.

3.1 Implicit Time Integration

3.1.1 Stress Update Algorithm

To update the stresses and internal variables based on the implicit Euler method, let us apply Eq. (55) to the governing equations
of the mixture model. Using the backward Euler method, the strains, the temperature, the stress, and the internal variables are
updated as follows, cf. Belytschko et al. (2000):

�n+1 = �n + Δ�n+1 ∀ � =
{
εεεεεεεεεεεεεεεεε, εεεεεεεεεεεεεεεεε in,T,σσσσσσσσσσσσσσσσσ, βββββββββββββββββ, Γ

}
. (57)
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Note that in the remainder of this section all entities refer to the time step tn+1, if it is not stated otherwise. Additionally, the
evolution equations, cf. Eqs. (41)–(43), are transformed based on the backward Euler method:

Δεεεεεεεεεεεεεεεεε in
n+1 =

3
2
Δt fσ (σ̃vM) fT (T)

σ̃σσσσσσσσσσσσσσσσ′

σ̃vM
, (58)

Δβββββββββββββββββn+1 =
1
G

dG
dT
ΔTβββββββββββββββββ+2G

ηh0

1 − ηh0

(

Δεεεεεεεεεεεεεεεεε in −
3
2
Δεin

vM
βββββββββββββββββ

βvM?

)

, (59)

ΔΓn+1 =CΓ [Γ? (σvM) − Γ]Δεin
vM. (60)

Furthermore, we deploy Hooke’s law by reformulating Eq. (51):

σσσσσσσσσσσσσσσσσn+1 = Cn+1: εεεεεεεεεεεεεεεεεel
n+1, (61)

whereby the elastic stiffness tensor C and the fourth-order identity tensor I are introduced:

C =
1
3
(3K − 2G) I ⊗ I + 2GI, (62)

I =
1
2

(
ei ⊗ e j ⊗ e j ⊗ ei + ei ⊗ e j ⊗ ei ⊗ e j

)
. (63)

Next, we substitute the elastic strain in Eq. (61) by making use of the additive split of strains, cf. Eq. (52), under consideration of
Eq. (57):

σσσσσσσσσσσσσσσσσn+1 = Cn+1:
(
εεεεεεεεεεεεεεεεεn + Δεεεεεεεεεεεεεεεεεn+1 − εεεεεεεεεεεεεεεεε in

n − Δεεεεεεεεεεεεεεεεε in
n+1

)
. (64)

Now, a nonlinear system of equations, comprising Eqs. (64) and (57)–(60), has been derived and must be solved. Since the
solution of this system of equations is performed within a finite element code, we switch from tensor notation to the matrix
notation according to Voigt in the following. For this purpose, the stress vectors s and s̃, the backstress vector b and the strain
vector e are introduced:

s =
[
σ11 σ22 σ33 σ12 σ13 σ23

]T
, (65)

s̃ =
[
σ̃11 σ̃22 σ̃33 σ̃12 σ̃13 σ̃23

]T
, (66)

b =
[
β11 β22 β33 β12 β13 β23

]T
, (67)

e =
[
ε11 ε22 ε33 2ε12 2ε13 2ε23

]T
. (68)

The vectors for the stress deviators, the inelastic or elastic strains, and other incremental entities are formulated and named in an
analogous manner. To solve the nonlinear system of equations with the Newton-Raphson method, the equations are reformulated
as follows:

riσ = 0, (69)

riβ = 0, (70)

r iΓ = 0, (71)

while introducing the residual quantities riσ , riβ , and r iΓ

riσ = − en+1 + ein
n + C−1

n+1sin+1 + Δeini
n+1, (72)

riβ = − bn + bi
n+1 − Δbi

n+1, (73)

r iΓ = − Γn + Γ
i
n+1 − ΔΓ

i
n+1. (74)

Note that �i denotes the iteration index. Furthermore, the elasticity stiffness matrix C and its inverse C−1 in Voigt notation have
been introduced. Within the application of the Newton-Raphson method, Eqs. (69)–(71) are linearized, cf. Wriggers (2008):

Ai
n+1Δpi+1

n+1 = −rin+1, (75)

whereby the vector pi+1
n+1 summarizes the updated values of the primary solution variables, and the vector ri

n+1 comprises the
corresponding residual quantities:

pi+1
n+1 =

[
si+1
n+1 bi+1

n+1 Γi+1
n+1

]T
, (76)

rin+1 =
[
riσ riβ r iΓ

]T
. (77)

The solution of Eq. (75) provides the vector of increments Δpi+1
n+1, which is used to update the stress, the backstress, and the

softening variable:

pi+1
n+1 = pi

n+1 + Δpi+1
n+1. (78)
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The matrix Ai
n+1 in Eq. (75) contains the derivatives of the residuals with respect to the primary solution variables s, b, Γ,

cf. Eisenträger et al. (2018b). The derivatives of the residuals can be calculated based on Eqs. (72)–(74). Since the resulting
expressions are lengthy, the equations are not repeated here for the sake of brevity. The interested reader is referred to Eisenträger
et al. (2018b), where the derivatives are presented in detail. Next, the system of equations (75) is solved via the Newton-Raphson
method. Note that further details on this point can also be found in Eisenträger et al. (2018b); Eisenträger (2018). After solving the
system of equations, the primary solution variables are updated based on Eq. (78), such that the current values of the stress sn+1,
the backstress bn+1, and the softening variable Γn+1 are known.

3.1.2 Consistent Tangent Operator

Additionally to the update of the primary solution variables, the consistent tangent operator (CTO) must be provided to implement
a nonlinear constitutive model into the FEM, cf. Simo and Taylor (1985); Hartmann et al. (1997). As before, if not indicated
otherwise, all variables refer to the time step tn+1 in the remainder of this section. Let us introduce the matrix D for the CTO as
follows:

D =
∂s

∂e

�
�
�
�
n+1
. (79)

To determine the derivative of the stresses with respect to the strains, the implicit function theorem is utilized, cf. Ghorpade and
Limaye (2010). Consequently, by introducing the implicit function f:

f(sn+1, bn+1, Γn+1, en+1) = sn+1 − Cn+1

(
en+1 − ein

n − Δein
n+1

)
, (80)

Eq. (64) is formulated in a matrix notation as follows:

f(sn+1, bn+1, Γn+1, en+1) = 0. (81)

The inelastic strain increment Δein
n+1 in Eq. (80) is obtained while making use of Eqs. (57)–(60). Based on the implicit function

theorem, the CTO is computed in the following way:

D =
∂s

∂e

�
�
�
�
n+1

= −

(
∂f

∂sn+1

)−1
∂f

∂en+1
, (82)

whereby the arguments of the implicit function f are omitted for the sake of brevity. Computing the derivatives based on Eq. (80)
results in:

D =

(

A1 + Cn+1
∂Δein

n+1

∂sn+1

)−1

Cn+1, (83)

while the derivative of the inelastic strain increment with respect to the stress is determined based on Eq. (58):

∂Δein
n+1

∂sn+1
=

3
2
Δt fT (T)
σ̃vM

[
3
2

(
1
σ̃vM

∂ fσ(σ̃vM)
∂σ̃vM

−
fσ(σ̃vM)

σ̃2
vM

)

s̃′ (s̃′)T + fσ(σ̃vM)

(

A1 −
1
3

A2

)]

, (84)

with the auxiliary matrices A1 and A2:

A1 =














1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1














, A2 =














1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0














.

Using the commercial FE code ABAQUS, the stress update algorithm, presented in Sect. 3.1.1, and the CTO are implemented into
the FEM via a user material (UMAT) subroutine. The accuracy and numerical performance of the implemented constitutive model
based on the implicit Euler method have been examined in detail, considering several benchmarks for uniaxial and multiaxial
stress and deformation states, cf. Eisenträger et al. (2018b); Eisenträger (2018).

3.2 Explicit Time Integration

3.2.1 Stress Update Algorithm

The current section presents the stress update algorithm of the mixture model based on explicit time integration, i.e. the forward
Euler method is applied. In general, the following considerations are in close agreement to the derivations for the implicit Euler
method in Sect. 3.1.1. For the time integration of the governing equations based on the explicit Euler method, we apply Eq. (56)
to the constitutive equations. If not stated otherwise, all entities refer to the time step tn in the remainder of this section. As before,
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it is assumed that all principal variables are known for the equilibrium state at the time step tn. Applying the forward Euler
method, results in the following system of equations, which is directly formulated in a matrix notation for the sake of brevity:

�n+1 = �n +Δ�n ∀ � =
{
e, ein,T, s, b, Γ

}
, (85)

Δein
n =

3
2
Δt fσ (σ̃vM)

fT (T)
σ̃vM

s̃′, (86)

Δbn =
1
G

dG
dT
ΔTb+2G

ηh0

1 − ηh0

(

Δein −
3
2

Δεin
vM

βvM?

b

)

, (87)

ΔΓn =CΓ [Γ? (σvM) − Γ]Δεin
vM, (88)

sn+1 =Cn+1

(
en + Δen − ein

n − Δein
n

)
. (89)

Note that in contrast to the implicit time integration, the application of an explicit method does not result in a nonlinear system
of equations. Instead, Eqs. (85)–(89) directly provide the values of the primary solution variables, i.e. sn+1, bn+1, and Γn+1, with
respect to the current time step tn+1.

3.2.2 Consistent Tangent Operator

Despite applying an explicit time integration method, the CTO must be provided as well to implement a nonlinear constitutive
model into the FEM. Following an analogous procedure as in Sect. 3.1.2 results in the following expression for the CTO in matrix
notation:

D =

(

A1 + Cn+1
∂Δein

n

∂sn

)−1

Cn+1, (90)

In contrast to Eq. (83), the derivative of the inelastic strain increment with respect to the stress is calculated with respect to the
time step tn, such that Eq. (84) is also evaluated with respect to the step tn. The stress update algorithm in Sect. 3.2.1 and the
CTO for explicit time integration are also implemented via the UMAT subroutine into ABAQUS. However, as it has already been
discussed at the beginning of Sect. 3, explicit integration methods are only conditionally stable, such that if the time increments
exceed a certain threshold, the so-called “critical time step size”, the solution might become unstable. In order to circumvent this
issue, the UMAT subroutine compares the current time increment to a critical time step size Δtcrit and provides a warning message
if the current time step exceeds the critical value. To estimate the critical time step size for the mixture model, we have adopted
the approach presented in Cormeau (1975), where the critical time step size is derived for a related constitutive approach, i.e. a
von Mises viscoplasticity model with zero yield stress, suitable for the creep analysis of metals and employing similar stress and
temperature response functions as presented in Sect. 2.2. Based on Cormeau (1975), the critical time step size is determined as
follows:

Δtcrit =
2

3Gaσmσ fT (T)
σ̃1−mσ

vM (91)

4 Finite Element Analysis of a Steam Turbine Rotor

4.1 Numerical Model: Procedures, Mesh, and Boundary Conditions

The thermo-mechanical behavior of the steam turbine rotor is analyzed within a partly coupled finite element analysis, using the
commercial FE code ABAQUS. In a first step, a thermal analysis is conducted in order to obtain the temperature field based on the
heat transfer due to the inhomogeneous and instationary steam temperatures. Afterwards, the temperature distribution is utilized
as input for the subsequent structural analysis with the binary mixture model, which provides the resulting strain and stress fields.
This type of partly coupled thermo-mechanical analysis is frequently applied, particularly to avoid the high computational effort
of a fully coupled analysis, cf. e.g. Nayebi et al. (2012); Sun et al. (2013); Benaarbia et al. (2018). To the knowledge of the authors,
the results of a fully coupled thermo-mechanical analysis of a turbine rotor have not been presented in literature yet. Furthermore,
it is questionable whether the mechanical deformations exert a significant influence on the temperature field assuming moderate
inelastic deformations in components in practice. However, also due to the lack of experimental data and measurements under
operating conditions, this issue remains an open question. Future research could therefore concentrate on the development of a
fully coupled thermo-mechanical model and the comparison of partly and full coupled approaches for the analysis of turbine
rotors.
In the present analysis, all computations for the structural analysis are conducted twice, considering explicit and implicit time
integration, as described in Sect. 3.1 and 3.2. Both time integration methods are critically examined with respect to the involved
computational effort as well as the accuracy in Sect. 4.2. In the following two sections, the employed FE models, i.e. the meshes
as well as the boundary conditions, are described both for the thermal and structural analysis.

4.1.1 Thermal Analysis

Figure 2 presents the FE model with the boundary conditions for the thermal analysis of the steam turbine rotor. The top left
picture shows the geometry of the rotor, which refers to a real component used in power plants. Note that the geometry data has
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Fig. 2: Finite element model, mesh, and boundary conditions for the thermal analysis.

been provided by Siemens AG, Power and Gas Division, MÃĳlheim an der Ruhr, Germany. Furthermore, Siemens AG has also
given advice concerning the applied thermo-mechanical boundary conditions in order to account for the operating conditions in
power plants. As depicted in the top left picture in Fig. 2, the rotor is mounted at the left and right-hand side. In the center, hot
steam is lead in and redirected towards the turbine blades. Note that the blades themselves are not included in the thermal analysis,
cf. the top right picture, to reduce the computational effort.
The axisymmetric mesh is shown in the top right picture in Fig. 2. From the ABAQUS element library, the 8-node heat transfer
element DCAX8 with quadratic shape functions has been chosen. The depicted mesh comprises 2391 elements and 7636 nodes.
In order to simulate the heat transfer based on the prescribed outer steam temperature T over the outer surface of the rotor (marked
in blue color in the top right picture) inside the rotor, the ABAQUS user subroutine FILM is utilized. Thereby, we prescribe
the steam temperature and the heat transfer coefficient κth, which both depend on the time and change along the longitudinal
coordinate zof the rotor. The dependence of the steam temperature and the heat transfer coefficient on the normalized longitudinal
coordinate ẑ is illustrated in the bottom left picture. As to be expected, the outer temperature attains its maximum near the steam
inlet of the rotor. Note that cooling systems are installed near the mountings such that the temperature decreases and the heat
transfer coefficient increases at the left and right-hand side of the rotor.
Finally, the temporal variation of the maximum steam temperature and heat transfer coefficient is shown in the bottom right
diagram. As the graph for the maximum temperature shows, a total of 11 thermal cycles is taken into account. The first cycle
represents a cold start with a significant increase in temperature. After reaching the maximum temperature, the temperature is
held constant over 20 hours (“holding stage”). Afterwards, the temperature decreases to an intermediate level and is again held
constant over 12 hours. Finally, the temperature increases again from the intermediate level until the maximum is reached (warm
start). Thus, 11 cycles, including one cold start and 10 warm starts, are taken into account, which allows for a comparison of
the different starting procedures as well as the analysis of the cyclic behavior. In total, the simulated time span accounts for 446
hours. In contrast to the varying temperature, the maximum heat transfer coefficient κthmax increases only at the initial start to
account for the large differences in temperatures and heat transfer. Afterwards, the maximum heat transfer coefficient is assumed
to be constant due to the intermediate temperature differences in the following cycles. Note that the temporal variation of the
lower levels of temperature and heat transfer coefficient, cf. the bottom left diagram, is described by scaling the lower levels
proportionally depending on the current maximum value.

4.1.2 Structural Analysis

The FE model and the boundary conditions for the structural analysis are explained in Fig. 3. As before, the top left picture displays
the steam turbine rotor in practice. The top right picture shows the finite element mesh, whose nodal positions and topology are
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Fig. 3: Finite element model, mesh, and boundary conditions for the structural analysis.

adopted from the thermal analysis, although a different element, suitable for structural analysis, is chosen, i.e. the element CAX8
from ABAQUS’ element library. Like the heat transfer element DCAX8, the quadrilateral element CAX8 features 8 nodes and
uses quadratic shape functions.
As already pointed out, the temperature field obtained in the preceding thermal analysis is imported as thermal boundary condition
in the structural analysis. Furthermore, the instationary and inhomogeneous steam pressure p is prescribed along the outer surface
of the rotor marked in red, cf. the top right picture of Fig. 3. Similar to the steam temperature, cf. Fig. 2, the variation of the
steam pressure with respect to the normalized longitudinal coordinate ẑ of the rotor is given in the bottom left picture of Fig. 3.
As one would expect, the spatial variation of the steam pressure is in close agreement with the spatial change of temperature,
cf. the bottom left diagram in Fig. 2. Note that the change of the maximum steam pressure pmax with respect to time is given in
the bottom right diagram in Fig. 3. In analogy to the proportional scaling of the temperature levels, the lower levels of the steam
pressure p1 and p2 are adapted as well such that the ratios p1/p = 0.025 and p2/p = 0.1 remain constant over time.
In addition, a time-dependent rotational frequency ω is provided to simulate the various starting and shut-down procedures, cf.
the pictures in the right-hand side in Fig. 3. In order to reduce the involved computational effort, the rotor blades are not modeled
explicitly. Instead, they are represented by the centrifugal load pr, which varies linearly from the minimum value prmin at the steam
inlet to its maximum prmax , in order to account for the increasing length of the rotor blades. Note that this representation of the
blades by centrifugal loads is a commonly applied procedure, cf. Wang et al. (2016); Zhu et al. (2017); Benaarbia et al. (2018).
To complete the overview on the mechanical boundary conditions, the maximum centrifugal load prmax is shown depending on
time in the bottom right diagram in Fig. 3.

4.2 Explicit and Implicit Time Integration

Before the obtained temperature, stress, and strain fields in the rotor are presented in detail in Sect. 4.3, we will compare the
performance of the explicit and implicit Euler method for time integration. Note that this is rarely done with respect to a complex
simulation of a realistic component such as a steam turbine rotor, although reducing the involved computational costs in practical
simulations is of crucial importance, particularly if instationary and cyclic loads are taken into account. In order to compare both
time integration methods, several structural analyses are conducted using the ABAQUS implementations of the time integration
methods presented in Sect. 3. ABAQUS’ automatic time stepping algorithm is used, and the maximum time step size Δtmax is
varied systematically, i.e. Δtmax = {0.10 h, 0.05 h, 0.01 h}, both for implicit and explicit time integration, such that a total of six
different structural simulations is conducted. All structural simulations are based on the same temperature field, which is obtained
in the preceding heat transfer analysis with lowest maximum time step size Δtmax = 0.01 h. For all simulations, a Windows 7 (64
bit) desktop computer with Intel Core i7-58205 processor (clock rate 3.30 GHz) and 16 GB RAM is used.
Figure 4 comprises all required data for the comparison of the time integration methods. The top diagram shows the von Mises
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stress at the point P1, which has been chosen due to its particular position at notch root directly under the steam inlet, as indicated
in the sketch in the background of Fig. 4. In the diagram, the von Mises stress is displayed depending on the simulated time, which
covers all 11 cycles. Furthermore, the von Mises stress is normalized with respect to the maximum equivalent stress σP1

vMmax
at

the point P1. Note that since all FE simulations yield very similar results such that the different curves could not be distinguished
with the naked eye, here we only show the result of one representative simulation, i.e. the analysis involving implicit integration
with lowest maximum time step size Δtmax = 0.01 h for the sake of illustration. The curve shows a total of 22 significant local
stress maxima, whereby two maxima each refer to one cycle including start-up (first maximum), holding phase, and shut-down
(second maximum). The presented curve is extracted for all six structural simulations and serves as basis to define the von Mises
stress error ΔvM as follows:

ΔvM =

∫ (
σref

vM − σnum
vM

)2
dt

∫ (
σref

vM

)2
dt

, (92)

whereby the variable σnum
vM is replaced by the simulation results for explicit and implicit integration considering the variations in

time stepping:

σnum
vM =

{
σINT

vM (Δtmax = 0.10 h) , σINT
vM (Δtmax = 0.05 h) , σINT

vM (Δtmax = 0.01 h)
}

∀INT = {exp, imp} .

In addition, σref
vM = σ

imp
vM (Δtmax = 0.01 h) holds, i.e. the simulation results obtained with implicit time integration and smallest

time steps are used as reference solution. The superscripts �imp and �exp indicate variables obtained via implicit and explicit
time integration, respectively. Note that the integrals in Eq. (92) are evaluated numerically using the trapezoidal rule. To ensure
equal time steps in the numerical solution σnum

vM and the reference solution σref
vM for applying the trapezoidal rule, the values of the

numerical solution are interpolated linearly to the time steps provided by the reference solution.
The bottom left diagram in Fig. 4 shows the above defined stress error depending on the total CPU time tCPU both for explicit
and implicit time integration. In addition, the corresponding data is given on the right-hand side of Fig. 4 in tabular form. As one
would expect, a direct correlation is found between the prescribed maximum time step size Δtmax and the required computational
time tCPU, i.e. the lower the maximum time step size, the longer the computational time. Furthermore, the tables show that both
methods converge, i.e. the stress error decreases with decreasing time step size. Whereas we can only observe a slight reduction
in the stress error for implicit integration, the stress error for explicit integration decreases significantly until a similar accuracy
as for implicit integration is reached. Note that since the simulation with implicit integration and lowest maximum time step size
has been chosen as reference solution, the corresponding stress error is exactly zero. Furthermore, one should point out the overall
small size of the stress error, which never exceeds 0.1%.
Interestingly, we cannot observe a significant difference in computational times, especially in case of a coarser time stepping,
between the implicit and explicit Euler methods. Although implicit integration requires the solution of a nonlinear system
of equations, which increases the computational costs in general, as discussed at the beginning of Sect. 3, this increase in
computational time is negligible for the discussed problem, i.e. the thermo-mechanical analysis of a steam turbine rotor. Note
that the discussed increase in computational time is only significant for a very fine time stepping (Δtmax = 0.01 h), which is futile
for implicit integration due to the negligible increase in accuracy. Overall, we recommend using the implicit Euler method for
the considered initial boundary value problem for two main reasons: Firstly, we can obtain a high level of accuracy in results
already with a relatively coarse time stepping, which results in a reasonable computational time. Secondly, one should consider the
unconditional stability of implicit methods, which is a significant advantage compared to explicit methods, cf. the discussion at the
beginning of Sect. 3. On the other hand, the implementation of implicit time integration methods requires more effort compared to
the straightforward formulation of explicit methods, compare Sect. 3.1 and 3.2. One should take this into account while choosing
the time integration method: if few changes to the constitutive model are to be expected, implicit integration methods should be
preferred. However, if more flexibility is required and changes must be implemented quickly, explicit integration methods are
the right choice. Last but not least, we would like to point out that the previous considerations hold for the presented analysis of
the steam turbine rotor. One should keep this in mind while transferring the previous conclusions to other initial boundary value
problems. Furthermore, all statements hold only for the implicit and explicit Euler method.

4.3 Results

In the following, we will discuss various results of the thermo-mechanical finite element analysis of the rotor. Since the previous
section has shown that the structural analysis using implicit time integration for the evolution equations in combination with the
coarsest time stepping (Δtmax = 0.10 h) yields accurate results while demanding only for a relatively low CPU time, we will focus
on this particular analysis in the following.
Figure 5 shows contour plots of the temperature and normalized von Mises stress in the rotor at two particular points in time.
The first point in time under consideration (t = 10 h) refers to the highest temperature difference |TA − TB |, which occurs after
heating-up in the cold start. Note that TA represents the temperature at point A at notch root at the outer surface of the rotor, as
indicated in Fig. 5. The variable TB denotes the temperature at point B, which features the same longitudinal position as point A,
but is located at the axis of rotation, i.e. inside the rotor. The second point in time (t = 30 h) marks the end of the holding stage
during the first cycle. Moreover, the top picture in Fig. 5 depicts both temperatures depending on time. One can distinguish the
11 cycles clearly. Note that the graph with respect to the temperature TB is slightly shifted in positive direction of the time axis.
Furthermore, the highest temperature at point B is lower than the maximum temperature TA. Both observations can be explained
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Fig. 4: Comparison of explicit and implicit time integration methods. Top: Normalized von Mises stress at point P1 vs. time.
Bottom left: von Mises stress error vs. CPU time. Bottom right: CPU times and von Mises stress error as tabular data.

by the interior position of point B and the relatively slow heat transfer over the outer surface into the rotor. In addition, the chosen
points in time are indicated by the red (t = 10 h) and blue (t = 30 h) vertical lines in the top picture in Fig. 5.
After 10 h, i.e. at the end of the heating-up and before the beginning of the holding stage, the highest absolute temperature
difference between points A and B is attained (217 K). The two contour plots below the top picture refer to this point in time.
It is worth noting that the two different starting procedures influence the temperature and stress fields significantly. Whereas
the maximum temperature difference during the cold start accounts for 217 K, the highest temperature difference during the
subsequent warm starts is significantly lower (112 K at t = 50 h, for example). In addition, one observes that during heating-up
(and cooling-down) the temperature gradient is mainly effective in radial direction. Contrarily, in holding stage temperatures
change primarily in longitudinal direction, as can be seen in the fourth picture from the top. Moreover, the large temperature
differences during the cold start induce very high stresses in the rotor, cf. the third picture in Fig. 5. As one can observe, high
stresses affect the rotor blade area, i.e. the part of the upper surface of the rotor, where the rotor blades are mounted, cf. Fig. 3.
This is an issue of high importance since steam turbine rotors usually have several notches in this area to mount the rotor blades.
Due to the stress concentration at the notches, the actual stresses in this area could exceed the results presented in this paper.
These findings are also confirmed by Wang et al. (2016), where it is demonstrated that the total damage in the rotor concentrates
near the blade grooves as well as the steam inlet notch zone. Last but not least, the bottom picture in Fig. 5 shows the contour plot
of the normalized von Mises stress at the end of the holding stage in the first cycle (t = 30 h). Since the temperature difference
accounts for only 13 K, the stresses in holding stage are significantly reduced compared to the stresses in the rotor after the cold
start.
Based on the obtained contour plots of the von Mises stress in Fig. 5, the three critical points P1, P2, and P3 have been chosen, cf.
also the sketch in Fig. 6. While the first two points are located in the central notch at the steam inlet of the rotor, the third point is
at the outer surface in the rotor blade area. Figure 6 shows the normalized von Mises stress in these points over time. It becomes
obvious that the absolute highest stresses occur during the heating-up in cold start (4 h ≤ t ≤ 10 h). During the subsequent cycles,
i.e. the warm starts, the stresses in cooling-down stage are significantly higher than the corresponding stresses while heating-up,
which is due to the relatively fast cooling-down of the steam turbine rotor. Furthermore, we can observe a continuous decrease in
the stress maximum in all three specific points throughout the cycles. This behavior is attributed to softening, which is taken into
account by the employed mixture model. After all, the point P2 is most critical because the highest stresses occur at this location.
Therefore, the subsequent considerations will focus on this point.
Next, stress and strain components are analyzed at the point P2. While Fig. 7 displays the normalized stresses and strains at this
point over time during the first two cycles only, Fig. 8 provides information on the same variables over the entire computed time,
i.e. 11 cycles. The tangential, the circumferential, and the normal components are given with respect to the displayed coordinate
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system in the sketch in the top diagram of Fig. 7. Note that these components also represent the principal stresses and strains
at the point P2. Figure 7 provides a detailed view of the first two cycles. We can observe that the absolute highest stresses and
strains occur during the heating-up in the cold start (4 . . . 10 h). Whereas the rotor is compressed during the cold and warm starts,
stresses and strains are in tensile regime during cooling-down, e.g. at t ≈ 35 h and t ≈ 75 h. As has also been stated before,
starting with the second cycle (the first warm start), the stresses during cooling-down (t ≈ 75 h) exceed the corresponding stresses
during heating-up (t ≈ 50 h). Moreover, the stresses decrease constantly during the holding stage (15 . . . 30 h), while the strains
increase simultaneously. This indicates creep and relaxation, which are to be expected due to the constant operating conditions
during holding stage.
Figure 8 displays the same variables over all 11 cycles. The top diagram clearly shows a slight, but continuous decrease in
the maximum values of the circumferential and tangential stresses throughout all cycles. Once more, this decrease in the stress
amplitude reveals the occurrence of softening in the material. In addition, the lower diagram provides information on the
dependence of the normalized mechanical strains on time. Analogously to the stress components, we can observe a continuous
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Fig. 5: Contour plots of temperature and normalized von Mises stress in the rotor after 10 h (cold start) and 30 h (holding stage).
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Fig. 8: Normalized stresses and strains at the Point P2 over time during all 11 cycles.

increase in the maximum tangential and circumferential strains as well as a steady decrease in the minimum values of the normal
strain. Thus, the absolute strain values increase during the cycles, and the steam turbine rotor is affected by ratcheting due to
the cyclic loads. Note that qualitatively similar simulation results with respect to the stresses and strains have been obtained in
Naumenko et al. (2011b); Eisenträger (2018), while analyzing a rotor with idealized geometry.

5 Summary and Outlook

The contribution at hand has presented results of a thermo-mechanical analysis of a steam turbine rotor using a mixture model. The
mixture model has been chosen because it provides a robust description of the complex mechanical behavior of high-chromium
heat-resistant steels, including rate-dependent inelasticity, (kinematic) hardening, and softening. Furthermore, the model offers
three advantages to other approaches: a small number of parameters, the calibration based on simple macroscopic material
tests, and its applicability to wide ranges of stress and temperature. Note that the mixture model results in a coupled system of
three evolution equations with respect to the inelastic strain, a backstress, and a softening variable. In order to solve this system
numerically while implementing the mixture model in the FE code ABAQUS, the current paper applied both the implicit and
explicit Euler method and provided detailed information on the derivations of the corresponding stress update algorithms and the
consistent tangent operators. This revealed one major advantage of explicit integration methods compared to implicit approaches,
i.e. the straightforward implementation of explicit integration methods, which requires significantly less effort in transforming the
governing equations compared to implicit approaches.
Next, the paper demonstrated the applicability of the mixture model to a complex thermo-mechanical problem by analyzing a
steam turbine rotor with complicated geometry in step with actual practice. Special emphasis was put on the accurate description
and close-to-practice implementation of the boundary conditions. Within the preceding thermal analysis with ABAQUS, the
temperature field in the rotor was obtained based on the prescribed instationary steam temperatures and heat transfer coefficients.
The temperature distribution served as input for the subsequent structural analysis with the mixture model. Furthermore, the
simulation covered 11 thermo-mechanical cycles to account for the creep-fatigue loads in real power plant components.
Afterwards, the numerical performance of the explicit and implicit Euler method has been examined in detail by varying the
time step sizes systematically. Especially for coarser time stepping, a significant difference in computational times could not
be observed. Furthermore, it has been found that both methods result in small stress errors. For the considered boundary value
problem, we recommended the implicit Euler method due to two reasons: a high level of accuracy in results, while requiring
an acceptable amount of computational time, and the unconditional stability of implicit integration. However, one should keep
in mind that the application of implicit methods requires significantly more effort in deriving the equations such that explicit
integration schemes should be preferred in cases of frequent changes in the constitutive model.
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Finally, we focused on the simulation referring to the largest time step (0.10 h) based on implicit time integration and discussed the
corresponding results in detail, with special emphasis on the influence of the different starting procedures (warm and cold starts). It
was found that the highest temperature gradients in the rotor occurred in radial direction directly after the cold start. Furthermore,
the maximum temperature gradient during the cold start significantly exceeded the highest temperature difference during the
subsequent warm starts (217 K in comparison to 112 K, respectively). Consequently, the large temperature differences during the
cold start induce significantly higher stresses in the rotor, compared to the stress state during the warm starts. Furthermore, it
has been found that particularly in the rotor blade area high stresses occurred, which should be taken into account in a lifetime
assessment of a steam turbine rotor. Throughout the thermo-mechanical cycling, the steam turbine rotor is affected both by
softening and ratcheting, which is accounted for by the binary mixture model.
Thus, the presented constitutive model provides a robust description of the mechanical behavior of steam turbine rotors. The
obtained stress and strain fields could serve as a basis for a subsequent damage analysis to assess the lifetime of power plant
components under realistic boundary conditions. Since it is possible to extend the binary mixture model by a damage variable,
cf. Naumenko et al. (2011a), this will be the subject of a forthcoming paper. Additionally, one should consider the application of
extrapolation techniques to the presented analysis of the steam turbine rotor such that one could predict the long-term mechanical
behavior based on the simulation of only a few initial thermo-mechanical cycles. Due to the involved computational costs, this
represents an issue of high importance, and the accuracy of proposed extrapolation techniques should be examined carefully.
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Abstract: High-frequency synchronized vibrations in the friction contact constitute one known triggering mechanism of certain
types of NVH phenomena in automotive brakes. Towards an improved understanding of the associated physical processes,
vibrations of contact patches in the tribological boundary layer are computed using the Abstract Cellular Automaton simulation
program. Various studies are presented, each illustrating unique types of local phenomena and observable global behaviors. For
example, simulations are carried out on multiple timescales, enabling investigations into the emergence of global patch coverage
states and the resulting vibrational behavior in the tribological contact. Relevant means for analyzing and interpreting these results
are introduced, including a qualitative visual representation scheme, frequency analyses of the global coefficient of friction, and
a new method for quantifying the synchronization of multiple oscillating bodies.
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1 Introduction

Friction-induced vibrations are prevalent in many fields, and are often linked to unwanted noise, vibration and harshness (NVH)
events Leine et al. (1998). One widely researched example is the NVH behavior of automotive braking systems, e.g. high-frequency
squeal Hamabe et al. (1999); Van de Vrande et al. (1999); Hoffmann et al. (2002); Popp (2005); Ostermeyer (2008, 2010); Wernitz
and Hoffmann (2012). Of the many phenomena related to brake squeal, synchronized vibrations in the friction contact have been
identified as one potential triggering mechanism Ostermeyer (2010).

Measurement-based investigations can offer insights into such synchronized vibrations. They reveal isolated information regarding
the behavior of a particular complete test system under specific conditions, sometimes leading to new insights into trends within
limited parameter ranges. In order to better understand the fundamental tribological phenomena within the contact area, approaches
combining theory and simulations are often employed.

The Abstract Cellular Automaton (ACA) simulation program is used to simulate the entire tribological contact between a brake
pad and disc Ostermeyer and Merlis (2018). Based on patch theory Ostermeyer (2001), the ACA simulates the development,
destruction, and further dynamics of contact structures in the boundary layer. This enables an efficient, targeted analysis of the
elements of the brake system that predominantly influence the global tribological behavior, while also allocating appropriate
computational resources to further system components Ostermeyer and Merlis (2018).

The current work presents studies performed using the ACA towards analyzing the high-frequency (HF, on the order of 1 kHz and
above) vibration states that occur in the friction contact of automotive brakes, as discussed for example in Wernitz and Hoffmann
(2012); Ostermeyer (2010); Otto and Ostermeyer (2018). To this end, the vibrations of the contact patches are modeled and
simulated using this tool.

A particular focus is set on the synchronized stick-slip-like motion of these contact areas along the direction of friction. While
synchronization has already been the subject of research in various contexts Lachaux et al. (1999); Sinkkonen et al. (1995);
Palva et al. (2005); Slagter et al. (2009); Stefański et al. (2007); Perlikowski et al. (2008), this work aims to analyze synchronized
friction-induced vibrations with the complexity of an entire pad-disc contact. The authors presuppose that appreciable synchronized
vibrations of the patches can occur in the tribological boundary layer, and that the resulting HF oscillatory character of the global
coefficient of friction can trigger undesired NVH events in automotive brake systems, as supported by Ostermeyer (2008); Lee and
Gesch (2009). For example, synchronously oscillating patches may excite vibrations in the brake disc, which can then generate
audible pressure fluctuations. Under these assumptions, such synchronization states are detected and characterized in this work.
The stability of these phenomena is not considered within the scope of this work.

First, the simulation program and the associated models used in these investigations are presented and explained. A full pad-disc
contact is simulated on multiple time scales, modeling both the development and HF vibrations of contact structures. A friction
model is chosen which induces relevant vibrations, enabling a simple numerical investigation of emergent synchronization states.
A new means of quantifying the synchronization of many oscillating bodies is then introduced. Results of the simulative studies
and analyses are then presented. Finally, the work is summarized and potential steps for further advancements are suggested.
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2 Materials and Methods

2.1 Simulating Vibrations in Tribological Contacts

2.1.1 Simulation Program

The ACA efficiently simulates the tribological processes in brake contacts by concentrating the computational effort on the
patches, and minimizing calculations of the surrounding surfaces Ostermeyer and Merlis (2015, 2018). By assigning each patch
to an entry on a linked list, the ACA is capable of rapidly simulating the tribological behavior of the contact between a brake disc
and an entire brake pad.
The fundamental functionality of the ACA on the long timescale (LF: Δt = 0.01 s) has been validated in previous works
Ostermeyer and Merlis (2015, 2018). The ACA simulation program is capable of producing results comparable to those attained
using classical, grid-based cellular automata Ostermeyer and Merlis (2015). It has also been shown that the ACA generates
complex macroscopic friction behaviors with simple local friction assumptions. For example, thermoelastic instabilities have
been successfully simulated with Coulomb friction implemented at all contact surfaces Ostermeyer and Merlis (2015, 2018), with
good correspondence to documented measurement results Lee and Barber (1994); Severin and Dörsch (2001). The ACA enables
explicit comparisons of the unique interactions between the dynamics of the effective friction radius, the coefficient of friction,
the global braking torque, and the patches in the tribological interface Ostermeyer and Merlis (2018).
This work focuses on specialized investigations of patch vibration dynamics in the tribological contact. This is a known pheno-
menon, measured for example in Wernitz and Hoffmann (2012); Otto and Ostermeyer (2018). The ACA simulations will provide
an aid towards investigating relevant synchronization states in detail. Within the scope of this work, this will be carried out on a
strictly theoretical level for developing analysis methods. Physical measurements for motivating and verifying the specifics of the
processes and phenomena will be the subject of future research.

2.1.2 Simulation Model

The simulations of friction-induced vibrations in the tribological boundary layer presented in this paper are based on the
fundamental model of brake friction introduced in Ostermeyer (2001). The theory that contact plateaus, or “patches,” are
primarily responsible for the global friction behavior of brake systems has been the basis of several cellular automaton-based
simulations of the associated boundary layer Ostermeyer and Müller (2008); Wahlström (2014). These programs focused on
simulating the life cycles of several patches, and the resulting effects on the tribological system. Furthermore, in order to simulate
friction-induced vibrations in brake systems, simplified lumped-mass models representing the contact plateaus (or micro contacts)
and the associated elastic couplings have been implemented Ostermeyer (2008, 2010). These simulations typically assume a given
patch coverage state in the boundary layer, and compute the vibrations within an area that is much smaller than that of a full-scale
brake pad. The ACA is capable of combining these two approaches: the development of a patch coverage state is simulated for
the entire contact between a brake pad and disc, and the resulting friction-induced vibrations are then computed.
As shown in Figure 1, a lumped element model based on the one presented in Ostermeyer (2010) is implemented, enabling
analyses of the patches’ vibrational behavior Ostermeyer and Merlis (2018).

…

disc

…
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Fig. 1: Simplified Schematic Diagram of the Elastic Coupling Model for Patches Pi−1, Pi , and Pi+1 (Potential Coupling between
Pi−1 and Pi+1 not shown, reprinted from Ostermeyer and Merlis (2018))

The effective mass mi of a given oscillating body encompasses the masses of the corresponding patch Pi and a small volume of the
surrounding pad matrix material. This mass is approximated as proportional to the patch volume, typically within 0.75–3.0 mg.
The effective spring stiffnesses in the normal (N) and tangential (T) directions are calculated as functions of the patch contact
area A according to Eq. 1, Eq. 2, and Eq. 3

ki,N = KN

√
Ai (1)

ki,T = KT

√
Ai (2)

ki, j = KC

√
Ai ∙ Aj

D0,ij
, (3)
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with KN = 2.39 ∙ 109 N m−2 , KT = 1.87 ∙ 109 N m−2 , and KC = 7.96 ∙ 108 N m−2 based on the results of finite element method
(FEM) parameter studies. The elastic coupling between two patches is neglected if the unloaded distance between them D0,ij

exceeds 5 mm Ostermeyer and Merlis (2018).
This spring stiffness model reflects the assumption that the patches are cylindrical in form. This is consistent with the overarching
modeling approach of the ACA, in which the shape of the patches is not taken into account. This approximation is considered
adequate as a first approach. In the future, a more detailed spring stiffness model may be implemented, e.g. based on the
Boussinesq-Cerruti solution Love (1892); Peng and Zhou (2012).
In the ACA, patches are elastically coupled to all neighboring patches within the aforementioned unloaded distance. Therefore,
a spring ki−1,i+1 could also be in effect, directly coupling patch Pi−1 with Pi+1 (not shown in Figure 1). This elastic coupling
is implemented based on the proximity of neighboring patches along the two-dimensional boundary layer. The forces and
displacements in the radial direction, perpendicular to the local relative motion of the disc, are neglected. Thus, the complete
three-dimensional system is used towards establishing the conditions of the elastic coupling between patches, and the dynamic
vibration analysis is implemented based on the two-dimensional system shown in Figure 1, neglecting vibrational effects and
explicit couplings between patches in the normal direction Ostermeyer and Merlis (2018). For a simple consideration of a slightly
damped system, the damping constants c are selected such that the damping ratio of each patch is equal to 10−6. Patches are
assumed to be small relative to the brake disc; the disc’s rotation effectively results in a translational excitation on the patches’
surfaces.
In physical systems, vibrations in the contact can be induced via various phenomena, for example mode coupling and stick-slip.
It is supposed that patches exhibit micro stick-slip behavior as a result of a constant static friction coefficient which is greater
than that of kinetic friction. This “true” stick-slip behavior is numerically challenging to implement on the scale of a full pad
with hundreds or thousands of patches. To simulate this in a numerically sound and computationally achievable way, friction
between the patches and disc is approximated with a falling friction curve over sliding speed, as shown in Eq. 4 and Figure 2. The
macroscopic friction behavior of brake systems can exhibit both positive and negative gradients with respect to sliding speed,
depending on the pad. A negative friction gradient is not the cause of the NVH behavior currently associated with mode coupling
phenomena. The friction rule used here (Figure 2) has been selected as a simple means for inducing vibrations in the contact,
aiding in the current investigations of local synchronization states in the boundary layer.
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Fig. 2: Friction Rule Implemented at Patch-Disc Contacts (evaluated at M = 0.8)

This friction rule is designed such that the ratio FF/FN is differentiable at all sliding speeds, preventing numerical difficulties
as the relative velocity passes zero, as implemented in Ostermeyer (2008). It is chosen in order to impose a friction curve that
slowly decreases with increasing sliding speeds within the range of the average relative velocity between pad and disc for a
given simulation. This condition is used for convenience, ensuring that the system is capable of exhibiting local stick-slip-like
friction-induced vibrations of the contact plateaus. Thus the goal of characterizing synchronization states can be approached.
This may ultimately be applied to various types of synchronized vibrations, regardless of the driving mechanism or friction
assumptions.
For simplicity, Coulomb friction is implemented at points of contact between the disc and the brake pad matrix material,
encompassing all parts of the pad’s surface where patches are not present. For these pad-disc contacts, μpad = 0.3 is implemented.
For M = 0.8, the friction rule implemented for the patches asymptotically approaches μp = 0.4 at its extrema, ensuring a nonzero
difference between the friction coefficients of the pad-disc and patch-disc interfaces.
The global friction coefficient is computed as the ratio between the total sum of all local friction forces and the total sum of all
local normal forces, as described in Ostermeyer and Merlis (2018). When there is no contact between the pad and disc, e.g. during
pauses between brake applications, the convention μ = 0 is established for the output data. In this work, the effective friction
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radius is defined as the radial component of the centroid of the friction forces, and the friction torque is computed as the sum of
all local friction moments about the disc’s center.

2.1.3 The Multi-Timescale Problem

The time constants of the tribological processes simulated in the ACA span several orders of magnitude. To account for this, the
ACA functionality is carried out on two distinct timescales. On the slower “low-frequency” (LF) timescale, processes such as
patch dynamics, thermal effects, wear, and normal force distribution are computed with a time step Δt = 0.01 s. As high-frequency
(HF) patch vibrations cannot be resolved on this timescale, they are computed on the HF timescale, with adaptive time steps on
the order of Δt ∼ 10−9 s. During HF simulations, all LF processes are neglected and the associated simulation parameters are
held constant. In multi-timescale simulations, the state of the ACA is saved at one or several instants during an LF simulation, and
then processed on the HF timescale. Such simulations enable investigations e.g. into the effects of load history on friction-induced
vibrations and synchronization. Stand-alone HF simulations can also be carried out, in which a pre-defined patch coverage state
is assumed. This is useful for investigating specialized patch distribution cases.
The LF effects of patch dynamics on the global tribological behavior have often been discussed in the literature (e.g. Ostermeyer
(2001)), and the corresponding interdependencies within the ACA are presented in Ostermeyer and Merlis (2018). The analogous
HF interdependencies are summarized in Figure 3.

Individual Patch 
Motion

Individual Patch 
Radial Position

Global Effective
Friction Radius

Global Friction
Coefficient

Global Friction
Torque

Total Effect from
All Patches

Friction Force on 
Individual Patch

Total Effect from
All Patches

Fig. 3: General HF Interdependencies of Crucial Dynamics in the Tribological Boundary Layer

2.2 Quantifying the Synchronous Vibrations of Patches

In recent history, techniques for detecting and quantifying synchronized signals have been developed and widely employed in the
fields of neuroscience. Tools such as phase-locking statistics Lachaux et al. (1999) and the phase-locking factor Sinkkonen et al.
(1995); Palva et al. (2005); Slagter et al. (2009) primarily seek to determine the phase similarities of short, pulse-like oscillatory
signals. By detecting the synchronicity of all signals relative to one another, these tools have provided the means for much progress
in the associated fields.
The synchronization patterns of patches, however, are not necessarily uniform throughout the tribological interface. It is possible
for multiple groups, or “islands,” of patches to exhibit local synchronization behaviors. Depending on the sizes and distributions
of these groups, relevant NVH events may still be excited by such synchronization states. This may be the case even if the
synchronization islands have varying phase shifts and degrees of synchronicity in relation to one another. Some low-frequency
global stick-slip behaviors may also be related to these HF synchronization islands. In order to adequately detect and quantify
HF synchronization states of patches, an appropriate analysis tool is needed which is sensitive to such scenarios. Therefore, the
aforementioned phase-locking techniques are not appropriate for the current work. While work has also been carried out towards
analyzing nonuniform synchronization states, these are often developed for highly specified systems with a limited number of
oscillators Stefański et al. (2007); Perlikowski et al. (2008).
The Synchronization Index S( f ) is introduced as a scalar value that seeks to quantify the synchronization state in the global
contact area of an entire brake pad, encompassing many oscillating bodies. To this end, the motions of all patches are analyzed
in the frequency domain via a Fourier analysis. The Synchronization Index for a given frequency is computed based an ABC
Analysis Chu and Chu (1987); Partovi and Burton (1993) (also, Selective Inventory Control) of the phase angles of all patches
vibrating at that frequency. It is developed based on the hypothesis that one or multiple highly prevalent phase angles can be
indicative of synchronization. This is mathematically elucidated in the following description, in which a single arbitrary frequency
is considered. In practice, the analysis is carried out over a wide band of discrete frequency bins.
The number of patches with an oscillation component at the given frequency are represented by Φ. The Synchronization Index is
undefined for all frequencies at which fewer than two patches oscillate (Φ < 2). A set of 180 evenly spaced phase bins are defined
within the range [−π, π). Each bin is assigned a value G equal to the number of patches whose phase shift is within the bin’s
range. A pseudo continuous consideration of similar phase shifts is achieved through applying a weighted moving average filter
to the phase bins, using a Gaussian weighting function with a standard deviation of 2π

/
180 rad and a window size of 3 bins. The

processed bin data is then arranged in descending order, such that G1 ≥ G2 ≥ G3 ≥ ∙ ∙ ∙ ≥ G180.
The A group is separated from the B group at bin nAB, defined as the minimum value satisfying

nAB∑

i=1

Gi ≥ τAB ∙ Φ , (5)
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with the threshold value τAB. This is implemented with element precision rather than bin precision, i.e. nAB is not necessarily
integer value. The corresponding contribution SAB to the Synchronization Index is computed as

SAB =
nAB,max − nAB

nAB,max − nAB,min
. (6)

Here, nAB,max is the theoretical maximum value of nAB (worst case) for a given value of τAB, and nAB,min is the theoretical minimum
value of nAB (best case) for a given τAB, taking into account the effects of the weighted moving average filter.
An analogous computation is carried out for distinguishing the B and C groups:

nBC∑

i=1

Gi ≥ τBC ∙ Φ , (7)

SBC =
nBC,max − nBC

nBC,max − nBC,min
. (8)

The resulting Synchronization Index is computed as

S= SAB ∙ w + SBC ∙ (1 − w) , (9)

with the weighting factor w. The result is a frequency dependent quantity which varies between 0 and 1, with lesser values
resulting from more stochastic distributions of phase shifts, indicating poor synchronization, and greater values resulting from
nearly identical phase shifts, indicating substantial synchronization. The functionality of the Synchronization Index is illustrated
through theoretical minimal examples in the Appendix. For the preliminary analyses shown in this work, the parameter values
τAB = 0.5, τBC = 0.55, and w = 0.9 are chosen.
The Synchronization Index is developed as a practical tool for the comparison of HF synchronization states. It is not intended
to perfectly encapsulate all synchronization phenomena. It was designed to detect characteristic synchronization “islands” which
often come about in relevant HF vibration scenarios. While there are certainly limit cases for which the Synchronization Index
yields counterintuitive results (perhaps in the case of LF Schallamach waves), it is considered a useful tool to aid the interpretation
of the results relevant to the current work.

3 Results

As described in Section 2.1.3, the ACA can be used to implement various types of studies towards analyzing friction-induced
vibrations in tribological contacts. The results presented in this section are selected to exemplify various characteristic effects
which are observable under particular simulation (or braking) conditions. These studies are aimed towards studying synchronized
HF vibrations. Certain characteristic behaviors are investigated and identified towards inferring whether an NVH event may
potentially be triggered, as discussed in Lee and Gesch (2009); Ostermeyer (2010). No statement is made towards the longevity
of such behaviors based on these simulation results. To make such a claim would require HF simulations to be carried out over
many simulation seconds, simultaneously accounting for all relevant LF phenomena. The results presented here emphasize the
qualitative phenomena and dynamics rather than exact quantitative values.

3.1 Stand-Alone HF Simulations with Constant Parameters

First, stand-alone HF simulation results are presented in which predefined patch coverage states were implemented. The primary
purpose of these initial studies is to demonstrate that established behaviors observed in scaled-down systems (as presented in
Ostermeyer (2008, 2010)) can also be found in simulations of a full-scale brake pad. A parameter study was carried out over
patch area and the friction model, as summarized in Table 1. In each study HF1−4, 1758 patches were simulated in the contact

Ap,mean ≈ 0.05 mm2 Ap,mean ≈ 1.25 mm2

M = 0.8 HF1 HF2

M = 0.4 HF3 HF4

Tab. 1: Stand-Alone HF Parameter Study Names

and the average sliding speed 10 m s−1 was implemented (corresponding to a vehicle speed of about 84 km h−1). The patch
areas were pseudorandomly selected from uniform distributions. For the simulations with smaller average patch sizes (HF1,3),
the areas were selected within 0.02 ≤ Ap ≤ 0.08 mm2. The simulations with larger patches (HF2,4) employed areas based on
0.50 ≤ Ap ≤ 2.00 mm2. To heighten the effects of the patches’ motion, the normal load was selected such that all patches were
in contact with the disc, with the contact between the pad matrix and the disc minimized. This resulted in a surface pressure of
about 44 kPa (brake line pressure about 1.32 bar, FN = 487.2 N) for HF1,3, and for HF2,4 a surface pressure of about 1108 kPa
(brake line pressure about 33.2 bar, FN = 12.37 kN).
The time domain results from studies HF1 and HF2 are presented in Figures 4–5 and 6–7, respectively. In Figures 4 and 6 (top),
the synchronization behavior of the patches is clearly observable. As the patches vibrate along the arc of the disc’s rotation, the
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instantaneous direction of the patches’ motion is indicated through a color coding scheme. Red patches are moving with the local
motion of the disc, and blue patches are moving opposite to the disc’s motion.

It can be observed that macroscopic groups of patches move together in the same direction as their neighbors. These synchronized
islands exhibit periodic behaviors that correspond well to the global friction dynamics. Figures 5 and 7 show how the friction
coefficient’s dynamics relate to further global system dynamics. The effect of patch vibrations on the global friction torque is
expected to be more pronounced in the case of radially imbalanced synchronization patterns. Such cases should also be reflected
through the effective friction radius. In these figures, an impression of the patches’ motions is given through the sum of all patch
velocities. Here, the total of all absolute velocities in reference to the stationary brake pad is used, not the total sliding speeds.

Fig. 4: HF1: Influence of Patch Motion on Global Friction Behavior. (red) patches are moving with the local motion of the disc,
(blue) patches are moving opposite to the disc’s motion.

Fig. 5: HF1: Global Tribological Data
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time (s)

Fig. 6: HF2: Influence of Patch Motion on Global Friction Behavior. (red) patches are moving with the local motion of the disc,
(blue) patches are moving opposite to the disc’s motion.

Fig. 7: HF2: Global Tribological Data

As reflected in Eq. 3, the increase in patch area from HF1 to HF2 causes a stiffening of the coupling springs, yielding larger and
better-defined synchronization patterns.

The frequency spectra of these global tribological results are shown in Figure 8 for all studies HF1−4. Each amplitude spectrum
is presented as a dimensionless quantity through normalization with respect to the time signal’s DC offset. All Fourier analyses
shown in this work were preprocessed with a Hann window. The corresponding Synchronization Index results are shown in
Figure 9. At each relevant frequency bin, the quality of synchronization is represented through the Synchronization Index value,
and the prevalence of the synchronization corresponds to the number of patches with substantial oscillation amplitudes (Φ from
Section 2.2).
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(a)

(b)

(c)

(d)

HF1

µ ↑ 𝐴𝑝↓

HF2

µ ↑ 𝐴𝑝↑

HF3

µ ↓ 𝐴𝑝↓

HF4

µ ↓ 𝐴𝑝↑

Fig. 8: Frequency Spectra of Stand-Alone Simulations. All results normalized to the mean value of the raw data. Note that the
coefficient of friction and the friction torque exhibit very similar normalized behaviors; the corresponding curves are nearly
completely overlapping.
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HF2

µ ↑ 𝐴𝑝↑

HF3

µ ↓ 𝐴𝑝↓

HF4

µ ↓ 𝐴𝑝↑

Fig. 9: Synchronization Index Results of Stand-Alone Simulations

In Figure 8, similar characteristic peaks of the global friction coefficient, friction torque, and effective friction radius are revealed,
most of which are also present in the velocity spectra. The first peak of each velocity spectrum (around 73 kHz for HF1 and HF3,
and around 32.8 kHz for HF2 and HF4) is significantly more pronounced than the other output quantities. In all four studies, these
frequency peaks are followed by broad-band plateaus that are not observed in the other global outputs. These initial peaks and
plateaus correspond well to the Synchronization Index results. It can be inferred that the corresponding friction peaks are caused
by significant patch synchronization.
There are many peaks at higher frequencies in Figure 8 that do not correspond to any Synchronization Index results. These peaks
are likely caused by the motions of individual, highly influential patches, and may partially be artifacts of the numerical Fourier
transform.
Considering the effects of increased patch areas, the peaks of the HF2 and HF4 spectra have increased amplitudes, are narrower,
and occur at lower frequencies than those from HF1 and HF3, respectively. Based on the implemented spring stiffness models,

the approximate relationship between an isolated patch’s natural frequency and its area fp ∝ A
− 1

4
p is expected. This is in good

agreement with the frequency shifts observed in the spectral results and the Synchronization Indices.
The increase in patch area leads to more “spread out” Synchronization Index results, generally exhibiting increased prevalence
values. Comparing HF1 and HF2, this size increase does not appear to significantly affect the synchronization quality. The
synchronization quality increased significantly as a result of decreasing the friction coefficient for smaller patches. This effect
is not as substantial, however, for the larger patches. It is a reasonable result that lower friction coefficients yield higher valued
Synchronization Indices, as the friction forces are decreased relative to the forces of the coupling springs. As the patch areas
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influence both the coupling forces and the normal forces, the effect of patch area on the patch synchronization is nontrivial and
may be highly sensitive to certain relevant parameters.

Of these four studies, HF4 exhibits the best agreement between the Synchronization Index results and the friction frequency
spectrum. This may suggest an increased propensity for the triggering of an NVH event.

First interpretations of the combined effects of patch size and local friction values can also be made. Taking HF1 as a reference,
the HF4 results can be interpreted as a combination of the changes observed in HF2 and HF3. For example, the Synchronization
Index results of HF4 are more spread out than HF1 (influence of increased patch size), and are greater in value, especially at
higher frequencies (influence of decreased friction coefficient).

3.2 Stand-Alone HF Simulation with Varying Patch Area

To gain further insights into the effects of patch area on the global friction response, a specialized study was carried out with
nonconstant patch sizes. A patch coverage state comparable to that of HF1 was generated at the start of the simulation. The patch
areas were then gradually increased throughout the simulation once every 202 time steps, as indicated in Eq. 10

Ap,t+Δt202 = Ap,t + 10−6 ∙
√

Ap,t . (10)

This growth procedure was selected such that the final patch area distribution approximates that of HF2 for a simulation about as
long as HF1. The simulation parameters were identical to HF1, with the exception of normal pressure. The normal load from HF2

was implemented to ensure that all patches maintain contact with the disc through the end of the simulation.

This is a theoretical investigation towards gaining preliminary insights into the system’s transient response under varying
conditions. It is not intended to reflect realistic patch growth rates.

Due to the chosen loading and patch area conditions, contacts between the pad matrix and the disc have a dominating influence
on the global friction behavior at the start of this simulation. As the patches grow their effective spring stiffnesses increase,
causing the patches to carry an increasing portion of the normal load. By the end of the simulation, the friction behavior is
completely dominated by patch-disc contacts. This results in the development of the friction coefficient shown in Figures 10
and 11. The time domain global friction coefficient is shown alongside a corresponding short-time Fourier transform (STFT) in
Figure 10. In Figure 11 a continuous wavelet transform (CWT) of the same signal is shown, offering a continuous impression
of the development of the friction coefficient’s frequency signature. Here, the decreasing frequencies of the characteristic peaks
resulting from the increasing patch sizes are clearer to observe.

Fig. 10: (top) Time Domain Signal of the Global Friction Coefficient, (bottom) STFT Development of Dominant Peaks in the
Frequency Signature of the Coefficient of Friction. STFT results are truncated below 10 Hz and then normalized to the
maximum amplitde of about 0.004 (corresponding to the largest peak around 69.1 kHz)
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Fig. 11: CWT of the Global Friction Coefficient Resulting from Friction-Induced Vibrations and Patch Growth

As observed in the time domain results (Figure 10, top), the DC offset and the slow increase of the friction coefficient each have
significantly greater magnitudes than the signal’s HF oscillations. To aid in the interpretation of the HF results, the results at
frequencies less than 10 Hz are omitted from all frequency domain output plots.
In both the STFT and CWT results, the emergence of individual dominant frequencies can be observed. The development of
frequency signatures from stochastic (low-amplitude oscillations over a wide frequency range) to periodic (one or multiple
dominant frequencies) is a documented triggering mechanism of NVH in brake systems Ostermeyer (2010). It is also relevant to
note that friction peaks at a given frequency may also contribute to the onset of perceivable NVH events at differing frequencies
Nishiwaki and Yamamoto (2018). It can be inferred that in physical brake systems, the transition from a pad-disc dominated state
to a patch-disc dominated state could be related to the triggering of squeal. The development of synchronization states in this type
of study will be investigated in a future publication.

3.3 Multi-Timescale Study

A multi-timescale study was carried out to investigate realistic braking scenarios that can potentially lead to relevant synchronized
vibrations. The normal load variation shown in Figure 12 was implemented on the LF timescale. Each application had a duration
of 10 seconds, separated by 5 second long pauses. The constant sliding speed v = 10 m s−1 and the friction model’s multiplicative
factor M = 0.8 were implemented throughout this study. HF analyses were carried out using the system states at the start and end
of each application. During the HF simulations the patches’ areas were held constant.
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Fig. 12: Vibration Study Procedure, Based on the SAE 2521J Brake Squeal Module SAE International (2006)

The patch coverage states, global friction frequency spectra, and Synchronization Indices from a selection of the HF analysis
results are presented in Figure 13.
Each point in the patch coverage state diagrams on left side of this figure represents a single patch. Based on a single simulation
time step, the color coding of the instantaneous direction of motion of these patches offers a qualitative impression of the emergent
synchronization patterns. While these patterns are not as clearly defined as those from the previous examples, a degree of local
clustering can be observed. The results from the end of Application 3 (fourth row) indicate a correlation between this local
clustering and the number of patches detected in the Synchronization Index analysis.
The friction coefficient oscillates with the greatest amplitudes during Application 3, in which a relatively low normal pressure
was applied. The maximum amplitudes occurred at the beginning of this application, immediately following a high-load brake
application. Here, the surface topography generated through Application 2 remains predominantly present, and is acted upon by
the loading conditions of Application 3. Therefore, the friction-induced vibrations in the contact come about based on a patch
coverage state similar to the one present at the end of Application 2, with excitation forces determined by the braking parameters
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of Application 3. The increased oscillation amplitudes and individual high-valued Synchronization Index results (represented by
yellow points) at the start of Application 3 may be of particular interest towards investigating brake squeal triggering mechanisms.
At the end of Application 3, several medium to high valued Synchronization Index data points are present with increased
prevalence (with regard to the number of associated patches). Some of these synchronization points are associated with amplitude
peaks of the friction coefficient.

Patch Coverage State

Fig. 13: Development of Multi-Timescale Results, Top Row: Beginning of Application 2, Second Row: End of Application 2,
Third Row: Beginning of Application 3, Fourth Row: End of Application 3, Bottom Row: Beginning of Application 4.
Patch Coverage State: (red) patches are moving with the local motion of the disc, (blue) patches are moving opposite to
the disc’s motion.

In general, significant interactions between the current braking parameters, load history, patch coverage state, synchronized
vibrations, and global friction coefficient can be inferred. Distinct peaks in the friction coefficient’s amplitude spectra occur at
frequencies corresponding to both high-valued and highly prevalent Synchronization Indices. The friction spectral peaks that do
not correspond to the Synchronization Index results are likely caused by the motion of individual, highly influential patches or
numerical artifacts of the Fourier transform.

4 Discussion

Significant friction oscillations associated with low normal pressures can be the result of patch-disc contacts dominating the
interactions. This was evidenced by the stand-alone HF simulation with varying patch area, and supported by the multi-timescale
study. This may have implications for the triggering of brake squeal with low normal loads, particularly when there are many
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patches present in the contact. This can come about if the low-load application causes the generation of many patches, or if a
low-load brake application immediately follows an application in which several patches were generated. This is one example of
the complex interactions between braking history and current braking parameters.
In general, the HF behavior at the beginning of a brake application is heavily influenced by the patch coverage state generated
in the previous application by the previous set of braking parameters. This patch state is then excited with a new set of braking
parameters. This new set of parameters may lead to an entirely different type of patch coverage state. In such a case, a variety of
potential HF vibrational behaviors may come about as the new set of braking parameters excites a continuously developing patch
state.
The exact influence of the Synchronization Index value, prevalence, and friction oscillation amplitudes on the triggering of NVH
are unclear, although it is suspected that all three of these have some effect. For improved understanding of these issues, the sizes
and spatial distributions of synchronization groups should be examined in the frequency domain, and the associated results should
be applied to FEM simulations of the bulk pad and disc components to determine the associated excited vibrational modes.
Verification measurements should also be carried out. The characteristic friction and synchronization behavior simulated within
the range 20–80 kHz is in good agreement with the measurements presented in Otto and Ostermeyer (2018).

5 Conclusions

Synchronized high-frequency patch vibrations are assumed to trigger squealing in automotive braking systems. Towards an
improved understanding of the influences on squealing, these synchronized vibrations have been investigated using the ACA
with the complexity of an entire pad-disc contact. Through a simplified model, it has been demonstrated how the onset of such
synchronized vibrations can plausibly come about as a result of the braking history and the current braking conditions. It was also
shown that the transition from a friction state dominated by pad-disc contacts to one dominated by patch-disc contacts can cause
spectral peaks of the friction coefficient, a known NVH triggering mechanism.
Various means of analyzing simulation results have been presented, including the Synchronization Index which quantifies the
synchronization of multiple oscillating patches. First results suggest that both the value and prevalence of the Synchronization
Index are related to peaks in the frequency spectrum of the global friction coefficient. The Synchronization Index is not sensitive,
however, to the spatial distribution of these bodies. Future works will introduce a new tool towards imaging the vibrations of
many bodies with a focus on emphasizing local synchronization groups. The Synchronization Index will be integrated into this
visualization scheme for a more robust interpretation of synchronization states. In this work, a preliminary set of Synchronization
Index analysis parameters was chosen. Future investigations should be carried out towards the optimization of these values.
The scope of the simulations shown in the present work was to establish that the ACA is capable of depicting high-frequency
synchronized vibrations. The Synchronization Index was introduced as a tool towards evaluating the associated phenomena and
testing hypotheses. As a first step, the potential of these tools was illustrated. In future investigations, the ACA and Synchronization
Index results should be validated with measurements.
Many aspects of the link between NVH and the high-frequency vibrations shown here are still not understood, although measu-
rements indicate a close connection. In this work, a tool has been developed that is intended to aid in the determination of these
correlations. Future investigations will consider realistic, spatially-resolved normal stresses on the pad. Further mesoscopic time
scales will be implemented, which can also describe the temporal stability of the synchronization states. The latter is certainly
necessary for detecting the triggering of low-frequency NVH oscillations. Additionally, this tool will be used towards identifying
macroscopically measurable dynamics of the coefficient of friction in connection with the “elementary” friction processes on the
individual patches. Thus, the local friction curve can be any arbitrary function of the velocity, if the vibrations of the patches are
generated via mode coupling effects.
Further works will focus on the implementation of the ACA towards studying the vibrational effects associated with start and stop
braking events. There, the transition between static and kinetic friction will come into the focus on both global and local spatial
scales.
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Appendix

The functionality of the Synchronization Index is illustrated here using minimal examples. Here, only one isolated frequency bin
is considered. To aid the presentation of these examples, only 10 phase bins are used rather than the 180 which are implemented
for the simulation results shown in this work. The effects of the weighted moving average filter are neglected here. The analysis
parameters are selected as follows: Φ = 100, τAB = 0.50, τBC = 0.55, w = 0.9.
The following four theoretical cases are presented:

1. Complete synchronization: All patches are perfectly synchronous with one another.

2. One highly synchronous group is present, comprised of 75 patches. The remaining 25 patches do not belong to this
synchronization island.

3. Multiple (3) synchronization islands are present, containing a total of 75 patches. The remaining patches do not belong to
any of these islands.
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4. Perfectly asynchronous: The patches’ vibrations yield a uniform distribution of phase shifts.

The phase angle distributions associated with these cases are presented in Table A.1 and Figure A.1.

Tab. A.1: Phase bin values for four theoretical synchronization scenarios. Bins are arranged in order of descending value.

Bin: G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

Case 1: 100 0 0 0 0 0 0 0 0 0
Case 2: 75 3 3 3 3 3 3 3 2 2
Case 3: 27 25 23 4 4 4 4 3 3 3
Case 4: 10 10 10 10 10 10 10 10 10 10

𝜏𝐵𝐶 Φ⋅

𝜏𝐴𝐵 Φ⋅

Fig. A.1: Phase bin values for four theoretical synchronization scenarios. The horizontal axis components of the intersection
points between the cumulative sum curves and the dashed lines correspond to the respective values of nAB and nBC

Based on Eq. 5–Eq. 9, the corresponding Synchronization Analysis results are shown in Table A.2.

Tab. A.2: Synchronization Index results for the theoretical synchronization scenarios

Results: nAB nAB,max nAB,min nBC nBC,max nBC,min SAB SBC S

Case 1: 0.500 5.000 0.500 0.550 5.500 0.550 1.000 1.000 1.000
Case 2: 0.667 5.000 0.500 0.733 5.500 0.550 0.963 0.963 0.963
Case 3: 1.920 5.000 0.500 2.130 5.500 0.550 0.684 0.681 0.684
Case 4: 5.000 5.000 0.500 5.500 5.500 0.550 0.000 0.000 0.00

These results illustrate the dependence of the Synchronization Index Son the synchronization state based on the associated phase
angle distributions.
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Nomenclature

Latin Symbols
A Area (Surface, Contact, Cross Sectional)

(
m2)

c Damping Coefficient
(
N s m−1)

D Distance (m)
f Frequency (Hz)
F Force (N)
G Bin Value (1)
k Spring Stiffness

(
N m−1)

K Constant Spring Stiffness Parameter
(
N m−2)

m Mass (kg)
M Constant Factor of the Friction Model (1)
n Characteristic Result of ABC Analysis (bins)
P Patch (1)
S Synchronization Index (1)
t Time (s)
v Relative (Sliding) Velocity

(
m s−1)

w Weighting Factor (1)
Greek Symbols
Δt Time Step (s)
μ Coefficient of Friction (1)
Φ Total Number of Patches (Patches)
τ Threshold Parameter (1)

Symbols, Abbreviations, and Acronyms
∝ Proportional to
~ On the order of
ACA Abstract Cellular Automaton
CWT Continuous Wavelet Transform
FEM Finite Element Method
HF High-Frequency
LF Low-Frequency
NVH Noise, Vibration, and Harshness
STFT Short-Time Fourier Transform
Subscripts
AB Distinguishing Group A from Group B
BC Distinguishing Group B from Group C
C Coupling
F Friction
i, j Arbitrary Index
max Maximum Value
mean Mean (Average) Value
min Minimum Value
N Normal
p Patch
pad Brake Pad Bulk Matrix Material
T Tangential
0 Resting, Unloaded

Image Credits

Figure 1: Reprinted from Ostermeyer and Merlis (2018) (https://doi.org/10.3390/lubricants6020044) under the terms and condi-
tions of the Creative Commons Attribution 4.0 International license
(CC BY 4.0, http://creativecommons.org/licenses/by/4.0/)
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