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Abstract:Nonlinear energy harvesting systems, consisting of a piezo cantilever beam with two additional magnets placed near
the beam’s free end, have received a lot of attention in the past decade. The most common approach to model this system is
to discretize the beam in space with one modal ansatz function and to assume a cubic restoring force caused by the magnetic
field. The magnets are positioned so that two stable equilibrium positions exist in addition to the unstable undeflected beam tip
displacement, i.e. the system is bistable. This modeling procedure results in a Duffing equation with a negative linear and a
positive cubic restoring term, which is capable to represent the bistability. However, its sufficiency is often just assumed without
thorough experimental validation of the mentioned presumptions.
In this paper the authors present the results of broad experimental investigations into the sufficiency of the Duffing equation as the
underlying model of the mechanical subsystem (beam and magnets, but for the sake of simplicity without piezos). Therefore, a
model is developed accordingly, following the approach of most publications, where a heuristic method is used to determine the
cubic restoring force of the system. The theoretical predictions of the Duffing like model concerning the dynamical response
to different harmonic base excitations are compared to experimental measurements done on a physical setup of the investigated
system. The results are generally in good agreement, however particular limitations regarding the model are observed, as there is a
shift of the occurring solutions to higher frequencies in the theoretical model compared to the experiments.
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1 Introduction

The term energy harvesting describes specific strategies to derive small amounts of available energy from external sources, which
would be otherwise lost. More specifically, vibrational energy harvesting systems use ambient vibrations to generate electric
energy [Priya (2007), Kim et al. (2011), Erturk and Inman (2011b)]. Commonly, the mechanical energy is transferred into electric
energy by the use of piezoceramics fixed on the corresponding bending structure. The tuning of such vibrating systems, as well as
other strategies to increase their efficiency, have been addressed in many publications, e.g. [Adhikari et al. (2009), Erturk et al.
(2009)]. Particularly due to the nature of real-world excitation processes [Lentz et al. (2017)], which can be partly stochastic or
have broadband frequencies, approaches have been made to use more than the discrete base frequency of any foremost linear
system [Pellegrini et al. (2013), Harne and Wang (2013), Daqaq et al. (2014), Wei and Jing (2017)]. About a decade ago [Erturk
et al. (2009)] has proposed the setup in figure 1, which has received great attention.

Fig. 1: Energy harvesting system. Modified figure of [Noll
(2018)] with added coordinate 1 for the base excitation.

Fig. 2: Nonlinear restoring force with unstable trivial solution
and two stable equilibria F̂1/2.
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It consists of a base frame and a ferromagnetic cantilever beam that bends under base excitation 1, with attached piezoceramic
patches. The beam is clamped to an external structure, which excites the system by its motion. A characteristic feature of this
particular system is its nonlinear behavior due to the magnets near the free end of the beam. In figure 2 the nonlinear restoring
force is shown with its three equilibrium positions, at which the restoring force vanishes. Only the two non-zero equilibrium
positions F̂1/2 are stable, which is the reason for the system to be called bistable. It has shown, as many other nonlinear systems, to
be superior in efficiency to its linear counterpart when the excitation is not mono frequent but somehow distributed around the
system’s base frequency and when the beam orbits both stable positions ([Erturk and Inman (2011a), De Paula et al. (2015)]).
In order to model this energy harvesting system, it can be divided into three subsystems which are the bending beam structure,
the restoring force caused by the magnetic field induced by the permanent magnets and the electrical part, which consists of the
piezoceramics and the connected electrical circuit. The basic structure of the bistable cantilever beam with magnets, but without
piezoceramics, was already described in [Moon and Holmes (1979)]. This part will be referred to as the mechanical subsystem in
this paper. Hence, for the sake of simplicity, no piezoceramics are considered in the modeling and in the experiment in order to
have the focus on the nonlinear magnetic restoring forces.
The key component of this mechanical subsystem is the cantilever beam, which is regularly modeled as an Euler-Bernoulli beam.
The beam is discretized by its first linear eigenfunction (without magnets). This modeling has become the standard approach to
describe its dynamics by a single second order ordinary differential equation, which has been applied many times (as in [Litak et al.
(2010), Tam and Holmes (2014), De Paula et al. (2015), Noll et al. (2019a)]). The question if more than one ansatz function is
necessary, is addressed in another paper by the authors [Noll et al. (2019b)]. Its conclusions are that the use of the first linear
eigenfunction of the beam is suitable in most cases and the second linear ansatz function only has a small geometric share in cases
of super harmonic responses. Following the standard modeling procedure, the magnets are replaced by a single transverse force
that is applied at the tip of the beam and is assumed to be of a cubic polynomial type with vanishing quadratic term. This results in
the Duffing equation with negative linear and positive cubic restoring force (see e.g. [Lentz (2018)]), which is a minimal model to
describe bistability. A lot of varied systems with different arrangements of magnets (see e.g. Westermann et al. (2013); Lan and
Qin (2017)]) or even other nonlinear mechanisms finally end in a Duffing equation. Most of the publications about comparable
bistable configurations follow this approach, or simply state a Duffing equation as the underlying model, as in [Litak et al. (2010)]
or [Lentz and von Wagner (2015)]. The model parameters are then found heuristically in a manner described in the following.
The displacement of the nontrivial equilibrium positions and the corresponding frequency of free vibration of small amplitude
are needed. They provide the necessary information to determine the restoring parameters. This can (only) be done when an
experimental setup exists, or corresponding assumptions regarding the system are made.
In [Noll et al. (2019a)] the authors have tried to apply an alternative procedure, where no existing experimental setup would
be needed to determine a model by a direct computation of the restoring force. Therefore, the magnetic field was simulated by
a two-dimensional FEM-approach with subsequent numeric force computation, where linear magnetic material behavior (i.e.
constant permeability) is assumed. However, the resulting model in that case could not satisfyingly meet the conditions of matching
equilibrium positions and corresponding frequencies. In contrast, the agreement of the equilibrium positions and frequencies are
always achieved when using the aforementioned heuristic method. It yields a model that is a good approximation when the beam
tip is in the vicinity of the stable equilibrium positions. However, in other ranges of the beam tip displacement, as for example the
unstable equilibrium with zero displacement, this might not be a good approximation.
In this paper, dynamic experiments are described, investigating the system’s steady state response for different harmonic base
excitations with varying frequency and amplitude. In the following section, the experimental setup is introduced. The results will
be compared to predictions of a model that is found according to the heuristic method, described in the second next section.

2 Experimental setup

The main focus is on the mechanical subsystem (figure 3) of the energy harvesting system, that consists of a cantilever beam
(dimensions: 250 × 20 × 1 mm) and permanent magnets (dimensions: 5 × 20 × 10 mm). No piezoceramics are considered in the
presented investigations, as mentioned in the introduction. The distance between the beam tip in the undeflected state and the top
side of the magnets is about 6 mm and the gap between the magnets is 12.7 mm. The beam made of ferromagnetic steel is modeled
according to section 3 as an Euler-Bernoulli beam and therefore mechanically characterized by its mass per length ` and bending
stiffness ��. Further it is magnetically characterized by its relative permeability. There are some indications that the material of
the beam is not linear regarding its magnetic properties, i.e. it shows a distinct hysteresis depending on the strength of the applied
external magnetic field [Noll et al. (2019a)]. The magnets are made of NdFeB (Neodymium) with remanence �r = 1.35 T. The
overall system has the physical properties given in table 1.

Tab. 1: Physical properties of the experimental setup (cf. figure 3).

property value
first circular eigenfrequency of the beam when no magnets are present l0 2c 13.4 Hz
displacement of the nonzero equilibrium positions F̂1/2 +6.97 mm
(distance from the undeflected position when permanent magnets are present) −6.97 mm
circular frequency of the oscillation in equilibrium positions with small amplitude l 2c 14.9 Hz

2c 14.6 Hz
damping ration with magnets in equilibrium positions � 0.0013

0.0019
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Fig. 3: Mechanical subsystem of the investigated energy harvesting system.

Note that in general there are two different circular frequencies l for small vibrations in each stable equilibrium, due to an
undesired but unavoidable asymmetry of the experimental setup. For the heuristic modeling later, the average will be taken. Same
applies to the damping ratios � that are found by determining the logarithmic decrement from time signals of free beam vibrations.
In order to measure the quantities in table 1, the setup shown in figure 4 is used. It consists of several devices to realize a
harmonic base excitation and devices to measure the beam’s response in form of its beam tip displacement. Also, the actual base
excitation occurring at the base frame is measured. To determine the static (and later dynamic) displacement of the beam tip a
laser triangulation sensor (ALLSENSE AM500-50) is used. It is attached to the moving base frame (cf. figure 3), hence directly
provides the relative displacement of the beam tip with respect to the permanent magnets, which are fixed within the moving
aluminum framework. The harmonic signal of the base excitation is generated by MATLAB R2018a and further processed by a
measurement box (Datatranslation DT9837A) that provides the desired voltage signal for a shaker (LDS V406/8-PA100E) after
amplification (LDS PA 100E Power Amplifier). The shaker is attached to a vibration table, containing four leaf springs as support,
on which the system in figure 3 is placed. The vibration table has a notable dynamic of its own, which has an influence on the base
excitation. The base frequency of the vibration table is about 6 Hz, which is not very far from the considered range of frequencies
in experiments later. The range will be 7 Hz to 18 Hz and is chosen around the first eigenfrequency of the beam of 13.4 Hz. Hence,
the transfer function of the vibration table is not constant within the considered range of frequencies and needs to be regarded. The
measurement box provides a voltage signal that is amplified and provided to the shaker.

Fig. 4: Experimental setup of the energy harvesting system placed on a vibration table excited by a shaker, with measurement
devices and related data acquisition tools.
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The shaker generates a force proportional to this signal, to excite the vibrating table. Since a harmonic base excitation of a certain
amplitude � is desired, that is independent of the circular excitation frequency S, the signal provided by the measurement box
needs to regard the dynamics of the vibration table. To confirm that the specified signal of the excitation concurs with the actual
base motion it is measured by a laser vibrometer (OptoMET Nova Basis), that determines the velocity ¤1 of the base frame. The
base excitation, that is proportional to the acceleration ¥1, is then found from this measurement by a numerical differentiation of the
time signal of the discrete velocity values. The reason it is measured is that the base excitation occurring at the base frame is not
always concurring with the specified signal generated in MATLAB. There is a bias in magnitude and a phase shift of roughly crad
originating from the dynamics of the vibration table. Also, the authors have observed that there are cases in which the beam, due to
its inertia, has a retroactive effect on the actual base excitation. Especially when the beam tip exhibits large orbits around both
of its stable equilibrium positions, deviations of the actual base excitation from the desired specified signal are probable. The
measurements later to be shown in detail are chosen due to their fairly harmonic base motion.
All measurements are done in the steady state of the system, which is assumed to be reached after a 60 seconds transient response
of the system. Subsequently the measurements are done for 10 seconds with a sample rate of 10 kHz. The sampling is performed
after a suitable lowpass filter applied by the measurement box.

3 Modeling of the mechanical subsystem

The different aspects of the overall system can be, to a certain extent, modeled separately and in different levels of complexity.
Two existing publications of the authors deal with particular parts of the energy harvesting system which are: first, the magnetic
field, the thereby caused magnetic restoring force and the resulting corresponding stationary behavior of the system (equilibrium
positions and corresponding frequencies of small free vibrations) in [Noll et al. (2019a)] and second, the spatial discretization of
the beam using only the first linear eigenfunction of the beam in [Noll et al. (2019b)]. In both publications the beam has been
modeled as an Euler-Bernoulli beam structure, that bends under excitation. The beam displacement is described by a partial
differential equation for the beam displacement F depending on the beam coordinate b and time C as given in many continuum
dynamics textbooks. Following the classical discretization process as in [Noll et al. (2019a)], the mixed Ritz ansatz

F(b, C) = G(C) q(b), (1)

where G is the time dependent modal coordinate. q is the first eigenfunction of the linear beam, b ∈ [0, !] the beam coordinate and
! the total length of the beam. q is chosen to be 1 at b = !, hence G concurs with the beam tip displacement F̂ = F(!, C) (cf.
figure 1). It yields the ordinary differential equation of motion given by

¥G(C) + 2�l ¤G(C) − UG(C) + VG3 (C) = 6 ¥1(C). (2)

Compared to [Noll et al. (2019a)] the term on the right-hand side is added, since in this paper dynamic experiments of the driven
Duffing oscillator are performed considering a base excitation, while in [Noll et al. (2019a)] the static behavior and free vibrations
were investigated. The coefficient 6 is determined accordingly and given by

6 = −
∫ !

0 q(b) db∫ !

0 q2 (b) db
. (3)

The excitation is chosen to be a base excitation of a constant amplitude � of the form ¥1(C) = � cosSt.
In order to get the specific kind of restoring term, that is −UG(C) + VG3 (C), the assumption has been made that the magnetic force is
a cubic polynomial of the beam tip displacement. Further, a linear modal damping has been inserted with the damping ratio �. In
cases where U and V are both positive, bistability is existent with the two nontrivial equilibrium positions G1/2 on each side of the
undeflected beam position

G1/2 = ±
√
U

V
. (4)

Further, if considering oscillations within these two equilibrium positions with small amplitude the circular frequency for free
vibrations in each of the stable equilibrium position can be determined after linearization by

l =
√

2U. (5)

When a physical setup is available the model parameters can be determined and are given in table 2 for the setup in figure 3.

Tab. 2: Model parameters of corresponding experimental setup given table 1.

parameter l [1/s] � [−] U [1/s2] V [1/s2] 6 [1/m]
value 92.7 0.0016 4275.6 8.8 · 107 −1.57
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The parameter l and � are found as the average of their values from an analysis of the time signals of free beam vibrations in each
stable equilibrium when the magnets are applied. Even though the beams’s circular eigenfrequency l0 = 2 c13.4 1/s has no direct
significance for the setup with magnets, it is taken to define the frequency ratio [ as

[ =
S

l0
, (6)

which is used later. U and V are found according to (4), (5) and 6 by equation (3). This approach is of a heuristic nature and
therefore an experimental setup needs to be present first to find the according model parameters. This is an essential drawback of
this approach, since these quantities need to be measured every time the setup is changed (e.g. the distance between the magnets).
On the other hand, an advantage is that the model gives a good approximation of the physical setup when the beam tip is near one
of the stable equilibrium positions. The approach ensures, that the equilibrium as well as the corresponding frequency of the
model concur with those of the setup (except for possible asymmetries which cannot be covered by an uneven cubic force model).
In the next section the experimental results are presented, and a comparison is done to the predictions of the Duffing model.

4 Experimental results and comparison to theory

In this section experimental results are shown and compared to the predictions provided by the corresponding Duffing model
equation (2) with parameters in table 2. The setup is excited by different harmonic base excitations, which differ in acceleration
amplitude and frequency. The beam tip displacement is measured, as well as the actual excitation. It is common to look at the
phase diagram of the solution, which is a trajectory in the state space, that shows the velocity of the beam tip over the beam tip
displacement (see figure 5). For that, the beam’s velocity is to be determined from the measurement of the beam tip displacement,
which is achieved by a numerical differentiation done using the central difference quotient. Since the signal of the beam tip
displacement is noisy and a numerical differentiation increases noise, it is necessary to lowpass filter the signals. This is done using
a Butterworth lowpass filter with cut-off frequency of 90 Hz (5 times the largest excitation frequency). This frequency is chosen as
a compromise between a low cut-off frequency to get smooth results and a high cut-off frequency to remain the characteristics of
the phase trajectory. Also, sub and super harmonics are to be expected. The super harmonics, which can be several multiples of the
excitation frequency, could be eliminated by a filter with a too low cut-off frequency.
The solution that occurs depends on the initial conditions since the system is nonlinear, what means that for one excitation different
types of solutions are possible. One approach to distinguish different solutions is to consider the turning points of the beam tip
throughout the measurement time. In figure 5 the turning points are marked. More specifically: when the velocity changes in
sign, the beam is changing the direction it travels. If all those occurring turning points (and therefore all beam tip displacements
also) have the same sign (either all exclusively positive or negative) the solution is called intrawell (in blue). If the sign switches
periodically with a period not being larger than a defined threshold, the solution is labeled as interwell solution (red). If there
is a very large number of turning points (in this work set to be greater than 25) with positive and negative signs the solution is
considered to be chaotic, even though it might be possible it is a periodic solution with a very large period.

Fig. 5: Experimental phase diagrams and turning points (marker) of different solutions for a harmonic acceleration of amplitude
� = 3.81 m/s2 and different excitation frequencies. Upper left: 7 Hz / [ ≈ 0.52; upper right: 8.5 Hz / [ ≈ 0.64; lower left:
14 Hz / [ ≈ 1.05; lower right: 17 Hz / [ ≈ 1.27. Color code refers to the type of solution: intrawell solutions in blue,
interwell solutions in red and chaotic solutions in gray.
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Fig. 6: Experimental results: turning points of the beam tip for parallel existing steady state solutions for harmonic acceleration of
constant amplitude � = 3.81 m/s2 and different excitation frequencies. Color code corresponding to figure 5.

Another possible way of displaying the occurring types of solutions is the system response diagram in figure 6, which is especially
suitable to show the influence of the excitation frequency and is also used e.g. in [Lentz (2018)]. It shows all turning points of
different solutions that exist in parallel for excitations of different frequency but constant amplitude. As it can be seen, there are
different frequency ranges where more than one solution exists and some ranges, where only one solution has occurred during the
different experimental repetitions. For each frequency ten experiments have been made, sometimes having the same final steady
state and sometimes having different final steady states. The initial conditions of each experiment are not known nor reproducible,
which means they cannot be controlled. Hence, it is not possible to directly reproduce each experiment numerically, making a
comparison of the experiment to the Duffing model difficult. To deal with the lack of controllability of the entirety of the occurring
solutions in the experiments (and also numerics), many trials with different initial conditions are done to increase the chances of
various solutions, to allow a comparison between experimental and numerical results.
In figure 7, the results of numerical simulations of the model in equation (2) can be seen. It is found by a numerical integration
using the NDSolve-function of MATHEMATICA 11 with no changes of the default settings with respect e.g. to the integration
scheme, step size and precision goal. To get a better numerical conditioning, the differential equation for the modal coordinate
G is transformed to be in the magnitude of millimeter G̃ = 10−3G before solving for G̃ and transforming back. The sets of initial
conditions in this case need to be chosen and are set to be 126 different equidistant values for G̃ for C = 0 between −15 and 15
and zero velocity. The integration time is 1000 seconds and the last ten seconds are used to be analyzed for their turning points
analogous to the experimental data. For avoiding large arguments in the periodic cosine function and corresponding errors, the
values are set back in the range between 0 and 2c when exceeding this range.

Fig. 7: Numerical results: system response diagram in Fig. 6 found by numerical integration of the Duffing model. Color code
corresponding to figure 5.
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When comparing both outcomes in figure 6 and 7 similar characteristics can be seen. In both diagrams, there are three main
frequency ranges distinguishable: one at lower frequencies, where mostly intra- and interwell solutions (blue and red) occur in
parallel, another range, where interwell solutions (only red) exist solely and a third where chaotic solutions are probable and
also intrawell and interwell occur again. A difference between both diagrams is that in theory those three regions are shifted to
higher frequencies. In the experiment lower excitation frequencies (around about 10 Hz / [ ≈ 0.75) lead to the preferred large
interwell solutions and in theory, this range is slightly shifted to larger frequencies (around about 12 Hz / [ ≈ 0.9). The position
of this range is of high interest due to its high potential for energy harvesting purposes since the beam undergoes large periodic
deformations that cause high energy outputs. It is also noteworthy that the biggest region, where chaotic solutions were observed,
in experiment is around the eigenfrequency of the beam (13.4 Hz / [ = 1) and in theory again shifted to the right for larger
frequencies (14Hz / [ ≈ 1.05). Another difference is that in theory large interwell solutions occur for every considered frequency
but do not occur as often in the experiments. It shall be noted that the experimentally realized base excitation may differ from a
harmonic excitation due to different reasons explained in section 2. A measure of the amplitude of each actual base acceleration is
given by the Root Mean Square (RMS) value. The mean value of the acceleration amplitude � for all experiments (ten repetitions
for each of the 45 frequencies) in figure 6 is 3.81 m/s2 and the standard deviation of all values is 0.086 m/s2.
The results shown so far were generated for one specific amplitude of the base excitation. In the next step, different amplitudes are
considered. A map of the type of the solution (color code consistent to the figures above) that occurs for a single experiment with
an excitation frequency and amplitude is shown in figure 8. Again, the experimentally realized initial conditions are uncontrollable
and therefore again unknown. As it can be seen, the excitation amplitude is not uniformly distributed, due to influences of the
vibrating table. The actual occurring base excitation amplitude is determined by the RMS value of the measured base excitation.
The same rules to distinguish the type of solution are applied.
In figure 9 equivalent results of numerical simulations are shown. Again, time integration is performed using NDSolve in
Mathematica 11 with default settings. For a 1:1 comparison of the results, the same excitation and initial conditions would need to
be considered. This is impossible as described above as there are very restricted possibilities to control the initial conditions in the
experimental setup. For this reason, again more simulations are done as experiments to cover a broader range of initial conditions.
For simulations this is easier to perform as they are not as time consuming and can be done partly parallel.
For each excitation 25 simulations are performed, where the initial conditions are equidistant displacements G(C = 0) in the range
of [−3G1, 3G1] with zero velocity. Only if always the same solution occurred, a filled squared marker of corresponding color is
used. If the same solution occurs between 15 and 24 times out of 25, an diamond marker of the lighter color of the solution that
occurred the most is used. Further, no marker is used, if no solution appeared more than at least 15 out of 25 times. Note that, for
these criteria, chaotic solutions are less likely on the map and never occur 25 out of 25 times for a certain excitation. Consequently
no squared grey marker can be found, but grey diamond markers are to be seen on the map in the same regions chaos appeared
experimentally.
Again, when comparing both results, similar characteristics can be found. Overall, the model is in general suitable to predict the
experimental results, but in detail deviations can be found. In good agreement, for example, are the position of chaotic solutions
(grey) and that for small excitation amplitudes (below 2 m/s2), where mostly intrawell solutions exist. Differences are again
shifts of the different regions to higher frequencies in the model results, as can be seen in the large red region. Similar theoretical
investigations with maps of this kind can also be found in [Panyam et al. (2014)], which concur with the results of this paper.

Fig. 8: Map of experimental results of the system response for different excitation frequencies and different amplitudes of harmonic
acceleration. Only one experiment for each excitation is performed, wherefore only one solution occurred and uniquely
defines the color of the marker. Color code corresponding to figure 5.
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Fig. 9: Map of numerical results of the system responses found by time integration to be compared with figure 8. Color code
corresponding to figure 5.

5 Conclusions

Energy harvesting performed by a bistable cantilever beam has attracted much attention in the past years. In most of the
corresponding publications, the restoring force of the energy harvesting system is assumed to be of third degree, i.e. cubic. This
modeling leads to the bistable Duffing equation. Corresponding model parameters are found heuristically.
In this paper, the assumption, that the restoring force is a cubic polynomial depending solely on the beam tip displacement, is
investigated for suitability. Extensive experiments are performed to experimentally determine the system response for varying
harmonic base excitations. A comparison to numerical results by time integration of the corresponding Duffing model is presented.
The biggest issue is that the initial conditions cannot be controlled on the experimental setup that is used. Hence, the diversity of
the solutions is probably not fully represented. To overcome this limitation several experiments and many simulations with varying
initial conditions are done to increase the probability of occurrence of the respectively existing different solutions. In any case, the
final steady solution of the system is in the focus of interest. Although there is no guarantee that all possible solutions are found,
neither experimentally nor numerically, the occurring solutions are in good agreement and the results are broad enough for a
comparison of the general characteristics. In fact the results show that in general the model covers most of the characteristics that
can be seen in experiments but may have deviations. More specific, there might be a slight shift of the existence of solutions
towards larger frequencies in theory. This might lead to false predictions when optimizing an energy harvesting system by tuning it
to an existing harmonic excitation of a specific frequency. In general, the cubic restoring characteristics seems to be a good model,
if the requirements on the accurateness of the model are not too high. On the other hand, as e.g. described in [Lentz (2018)] or
[Noll et al. (2019a)], there may be specific cases where higher order approximations or in general extended modeling may be
necessary.
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