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Abstract: The present contribution is concerned with the effective mechanical parameters of polycristalline silicon used for solar
cells. Thereby, an analytical scheme for the prediction of elastic properties of polycrystals is reviewed, applied and verified.
Emphasis is on first-order bounds and derived estimates. Based on cubic symmetry of a single crystal the projector representation
is exploited for the description of the constitutive equations. The elasticity tensor is developed for several assumptions which
stem from rather classical homogenization schemes. This results in a rational representation and determination of linear elastic
material parameters of a homogeneous, macroscopically isotropic comparison material. The analytically determined parameters
are compared to experimental data. It is found that the present procedure reproduces the experimental results in very close
proximity.
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1 Introduction

Silicon is the most commonly used semiconductor material for solar cells in photovoltaic modules. The actual market share
is around 90% (Philipps and Warmuth, 2019). Basically a distinction is here made between mono- and polycrystalline silicon.
Although higher electrical efficiencies can be achieved with monocrystalline silicon, polycrystalline silicon is used more widely
with a market share of approximately 65%. This is not least due to its cheaper production (Philipps and Warmuth, 2019) whereby
in principle several fabrication methods are possible (Petersen, 1982). During the service life of photovoltaic modules, the built-in
solar cells are exposed to different mechanical loading scenarios. To name two extremes as an example, high snow loads at low
temperatures far below freezing point or high wind loads at temperatures above 60 degrees Celsius can occur. The specification
of the temperature is important here since the solar cells are embedded in an encapsulant whose material is strongly temperature
sensitive. Solar cells should be able to withstand these stresses for periods of at least 20 years. From an engineering point of view,
strength analyses are necessary therefore. Such analyses are of immense importance since failures at solar cells are correlated
with power loss and decreased energy harvest (Köntges et al., 2014).
In present work we will focus on polycrystalline silicon. Aggregates of silicon consist of monocrystals obeying a cubic symmetry.
Due to the complexity of geometrical models for such aggregates, the necessity often arises to work with a comparison medium
for the discrete microstructure. It is in particular advantageous to work with effective properties during the design process for
structural analysis. According to Petersen (1982), the effective Young’s modulus of polycrystalline silicon is around 150⋅103 to
170⋅103 N/mm2, referring to various sources. This is certainly a very broad range (ΔY = 20 ⋅ 103 N/mm2), which means that results
of strength analysis will spread over an equally broad area. This is why there are various efforts to substantiate effective values
of polycrystalline silicon, cf. (Hopcraft et al., 2010).
In mechanics, computational and analytical methods for such estimations have proven successful, cf. Böhm (2020). The attraction
of an analytical method lies in its usually simple handling and the rapid attainment of results, at least in comparison to computational
methods. In the context of analytical homogenization methods, first-order (Voigt, 1889; Reuss, 1929) and second-order (Hashin
and Shtrikman, 1962a,b) estimates, self-consistant estimates (Christensen and Lo, 1979) and statistical methods (Kröner, 1958)
exist. Basic reviews of different methods to determine effective elastic parameters are presented in Kröner (1972) or Lobos
Fernãndez (2018). If the morphology of the microstructure is sufficiently isotropic first-order estimates deliver results with
sufficient accuracy. The following assumptions are made in the course of present investigations.

• We consider silicon mono- and polycrystals where physical and geometrical linearity is a reasonable assumption in the
elastic range.

• The silicon monocrystal possesses a cubic crystal symmetry.

• The crystal orientation of the bulk features a uniform distribution.

• The interaction of the crystals and the influence of the distribution functions of the crystal interfaces and the crystal edges
on the symmetry of the macroscopic elastic behavior are neglected.

The consideration of a uniform distribution of the crystal orientation is equivalent to an isotropic crystal orientation function.
Morphological investigations of solar cells showed crystallographic textures with no evidence of preferred orientation Stokkan
et al. (2018), at least in the preferential range of moderate cooling rates during production, cf. Yang et al. (2015). The
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above mentioned assumption does therefore not contradict physical reality. In context of a preferably accurate prediction for a
polycrystal consisting of cubic monocrystals, a discrete number of crystals is necessary to guarantee statistically isotropy of the
bulk. Following Elvin (1996) this is around 230 crystals while rds (2003) provides a specific equation obeying the convergence of
the prediction error via the increase of the number of crystals. Compared with Basore (1994), this restriction seems sufficiently
fulfilled with polycrystalline silicon solar cells. Nevertheless, these values do not seem to bound the possible crystal numbers. It
is important to note that the present analytical approaches are based on an infinite number of crystals (Hill, 1952). The resulting
approximations therefore loose quality with decreasing crystal numbers. However, since the contrast of the elastic properties
of the components made of polycrystalline silicon is comparatively small, the first-order estimates incorporating the restrictions
named above result in comparatively close approximations.

Notation. Throughout the whole text, a direct tensor notation is preferred. First- and second-order tensors are denoted by
lowercase and uppercase bold letters, e.g., a and A, respectively. Fourth-order tensors are designated by uppercase blackboard
bold letters, e.g. A. In continuation, some operations between these tensors need to be defined which will be done based on a
three-dimensional orthonormal basis. For indices i, j, k, . . . ∈ {1, 2, 3} holds. The Einstein summation convention is applied.
Common operations are the dyadic product

a ⊗ b = aibj ei ⊗ e j = C , (1)

the scalar product

a⋅ b = aibj ei⋅ e j = aibi = c, (2)

the composition of a second- and a first-order tensor

A⋅ a = Almaiel ⊗ em⋅ ei = Aliaiel = d , (3)

the composition of two second-order tensors

A⋅ B = AlmBnoel ⊗ em⋅ en ⊗ eo = AlmBmoel ⊗ eo = D , (4)

the double scalar product between two second-order tensors

A∶ B = AlmBnoel ⊗ em∶ en ⊗ eo = AlmBlm = d , (5)

the double scalar product between a fourth- and a second-order tensor

A∶ B = ApqrsBnoep ⊗ eq ⊗ er ⊗ es∶ en ⊗ eo = ApqrsBrsep ⊗ eq = E , (6)

the double scalar product between two fourth-order tensors

A∶B = ApqrsBtuvw ep ⊗ eq ⊗ er ⊗ es∶ et ⊗ eu ⊗ ev ⊗ ew = ApqrsBrsvw ep ⊗ eq ⊗ ev ⊗ ew = F , (7)

and the fourfold scalar product between two fourth-order tensors

A∶∶B = ApqrsBtuvw ep ⊗ eq ⊗ er ⊗ es∶∶ et ⊗ eu ⊗ ev ⊗ ew = ApqrsBpqrs = g . (8)

The inverse of a tensor is defined by

A
−1⋅ A = A⋅ A−1 = 1 (9)

while the transposed of a tensor is given by

a⋅ A⊤⋅ b = b⋅ A⋅ a . (10)

Herein, 1 = ei ⊗ ei is the identity on first order tensors. For an orthogonal tensor, B
−1 = B

⊤ holds true. We furthermore
introduce the Rayleigh product which maps all basis vectors of a tensor simultaneously without changing components. It is
defined for a dyad and a tensor of arbitrary order. E.g., when applied to a tetrad, the product is

B⭐ A = Ai jkl(B⋅ ei)⊗ (B⋅ e j)⊗ (B⋅ ek)⊗ (B⋅ el) with Ai jkl = A∶∶ ei ⊗ e j ⊗ ek ⊗ el . (11)

The Frobenius norm of fourth-, second, and first-order tensors is defined as follows.

∥A∥ = [A∶∶A]
1
2 ∥A∥ = [A∶ A]

1
2 ∥a∥ = [a⋅ a]

1
2 (12)

Overlined quantities indicate effective measures.
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2 Theoretical Background

Silicon is a brittle material. Its mechanical behaviour is characterised by linear elasticity until fracture. This legitimates the use
of Hooke’s law. Considering a polycrystalline aggregate, the linear relation between stress T and strain E holds true for every
single crystal.

T = C∶E (13)

Using the eigenprojector representation, it is possible to represent the stiffness tensor C as a linear combination of eigenprojec-
tors PJ and eigenvalues λJ (Halmos, 1958; Mehrabadi and Cowin, 1990).

C =
Z

∑
J=1

λJPJ (14)

In general, the number of distinct eigenvalues λJ ofC is in the range 2 ≤ Z ≤ 6. Any admissible set of projectors fulfil subsequent
projector rules (Rychlewski, 1995).

PJ ∶PJ = PJ PJ ∶PL = O ∀ J ≠ L ∑PJ = Isym PJ ∶∶PJ = NS (15)

Herein, NS is the number of dimensions of the subspace. In the case of cubic symmetry (superscript c), this method results in
Z = 3 distinct eigenvalues and projectors.

Cc = λc
1P

c
1 + λ

c
2P

c
2 + λ

c
3P

c
3 (16)

The projectors are expressed as follows (Rychlewski and Zhang, 1989).

Pc
1 =

1
3

1 ⊗ 1 Pc
2 = D − Pc

1 Pc
3 = Isym − (Pc

1 + P
c
2) (17)

The second and the third cubic projectors contain the anisotropic portion

D =
3

∑
i=1

gi ⊗ gi ⊗ gi ⊗ gi = Q⭐
3

∑
i=1

ei ⊗ ei ⊗ ei ⊗ ei (18)

where gi ∀ i = {1, 2, 3} denote the orthonormal lattice vectors of the single crystal, which are related to a fixed (sample)
reference basis ei ∀ i = {1, 2, 3} by means of an proper orthogonal tensors Q, e.g. gi = Q⋅ ei . Furthermore, 2Isym =
ei ⊗ e j ⊗ (ei ⊗ e j + e j ⊗ ei) is the identity on symmetric second-order tensors. The eigenvalues are determined by the
projection of the constitutive tensor onto the space of the respective symmetry group.

λJ = C∶∶
PJ

∥PJ∥2
(19)

The three distinct eigenvalues in Eq. (16) are as follows with respect to the lattice vectors gi (Sutcliffe, 1992).

λ
c
1 = C1111 + 2C1122, λ

c
2 = C1111 − C1122, λ

c
3 = 2C2323 (20)

The degree of anisotropy of the cubic single crystals can be described as λc
3 − λ

c
2, turning to zero in the case of isotropy. By the

aid of the projector representation, it is trivial to determine the inverse of the stiffness tensor.

(Cc)
−1

=
1
λc

1
Pc

1 +
1
λc

2
Pc

2 +
1
λc

3
Pc

3 = Sc (21)

In analogy to Eq. (19), the eigenvalues are determined by taking the sclar product of the projectors and this compliance.

1
λJ

= S ∶∶
PJ

∥PJ∥2
(22)

First endeavors to determine the overall elasticity tensor of polycrystals were made by Woldemar Voigt and AndrÃąs (Endre)
Reuss. Voigt (1889) assumed a uniform, i.e., isotropic crystal orientation distribution function and a homogeneous strain field in
the aggregate. Reuss (1929) suggested an corresponing estimate based on a homogeneous orientation distribution function and a
homogeneous stress field. Generally, these volume averages are anisotropic. If and only if the polycrystal contains a sufficiently
large number of crystals, macroscopic homogeneity and isotropy results (Hill, 1952), i.e. the texture is vanishing. For such
isotropic microstructures, the crystals differ only with respect to their orientation. The approaches by Voigt and Reuss can be
written as follows.

CV = ∫
Q

f (Q)Cc(Q) dQ SR = ∫
Q

f (Q) Sc(Q) dQ (23)
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Herein f (Q) specifies the volume fraction dV/V of crystals with the orientation Q (Bunge, 1965) and dQ is the volume element
in SO3 (special orthogonal group). Obviously, CR ≠ CV holds. These arithmetic and harmonic means of the stiffness tensors
correspond to the assumption of homogeneous strain and stress fields, respectively. If only discrete orientations are of interest
as in the case of polycrystalline silicon, the average over the orientation space can be formulated as weighted sum of the crystals
volume fraction corresponding to the specific orientation and the affiliated elasticity tensor.

CV =
η

∑
γ=1

vγC
c
γ SR =

η

∑
γ=1

vγS
c
γ (24)

Herein, η represents the number of crystals under consideration. Both estimates result in macroscopically isotropic elasticity
parameters. In context of the elasticity tensor Cc, the coincidence of the second and third eigenvalue is a necessary and sufficient
condition for an isotropic material. Hence, expression (16) reduces as follows whereby Z = 2 holds true in view of Eq. (14).

C◦ = λ◦1P
◦
1 + λ◦2P

◦
2 (25)

We can furthermore introduce the isotropic compliance.

(C◦)
−1

=
1
λ◦1
P◦1 +

1
λ◦2
P◦2 = S◦ (26)

While the first projector coincides with the one of the cubic case (P◦1 = Pc
1), the second is determined as follows.

P◦2 = Pc
2 + P

c
3 = Isym − P◦1 (27)

Due to the isotropic nature of volumetric changes in case of cubic crystal symmetry, λ◦1 = λc
1 holds true (Hill, 1952). In the

isotropic case, λ◦2 = C1111 − C1122 = 2C2323 also holds. Considering the second eigenvalue for an isotropic comparison material
arising from the average theorems mentioned above, the second and third eigenvalue of the cubic symmetry have to be weighted
according to their deviator space dimensions, cf. Walpole (1984) and Rychlewski (1984). This requires an allocation for λ◦2 ,
either to the Voigt (homogeneous strain) or the Reuss (homogeneous stress) assumption (λV

2 ⊻ λR
2 ).

λ
V
2 =

2
5
λ

c
2 +

3
5
λ

c
3 λ

R
2 = [

2
5

1
λc

2
+

3
5

1
λc

3
]
−1

(28)

Above introduced stiffnesses constitute upper and lower bounds of the strain energy density (Nemat-Nasser and Hori, 1993). To
be exact, the Voigt bound is equal to the first-order upper bound, whereas the Reuss bound equals the first-order lower bound.
It was found by Hill (1952) that the range for the true effective stiffness C is bounded by the Voigt (arithmetic) and the Reuss
(harmonic) estimate. In the sense of positive definiteness (A∶C∶ A > 0 ∀ A ≠ 0) we can state the following.

CV ≥ C ≥ CR (29)

Hill (1952) suggested an arithmetic (H+) and an geometric mean (H-) of these isotropic bounds as good approximations, whereby
these statements are based on pure empiricism.

CH+ =
1
2
[CV+ CR] CH− = exp (

1
2
[logCV+ logCR]) (30)

The latter is usually ignored in the literature, c.f. Morawiec (2004). Herein, we can introduce logC = ∑ log(λJ)PJ and
expC = ∑ exp(λJ)PJ since J ∈ {1, 2} holds. Using such representation and considering the projector rules introduced in
Eqs. (15), Eqs. (30) can be easily transformed into the subsequent form.

CH+ = λH+
1 P◦1 + λH+

2 P◦2 CH− = λH−
1 P◦1 + λH−

2 P◦2 (31)

Herein, λH−
1 = λH+

1 = λ◦1 = λc
1 hold true since λV

1 = λR
1 is valid. For the second eigenvalues λH±

2 ∀± ∈ {+ ∨ −}, the arithmetic
and the geometric mean holds, respectively.

λ
H+
2 =

1
2
[λV

2 + λR
2 ] λ

H−
2 = [λV

2 λ
R
2 ]

1
2 (32)

Since the geometric mean is smaller than the arithmetic, but both values lie inbetween the bounds of Voigt and Reuss, following
representation holds.

Cmax ≥ CV ≥ CH+ ≥ CH− ≥ CR ≥ Cmin (33)

However, in the literature it is often referred that the choice of the arithmetic mean is reasonable, due to a better agreement
with experiments. We will deal with this proposition in a subsequent section. The orientational dependencies of the Young’s
modulus for a stiffness tensor C with arbitrary material symmetry can be presented considering the tensile direction d, where d is
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Fig. 1: Spatial plot of Young’s modulus Y(d) of a single crystal and isotropic approximation Y□ of the polycrystalline aggregate

parametrized in spherical coordinates with ∥d∥ = 1 (Hayes, 1972; Rychlewski, 1995). Since from an experimental standpoint, the
Young’s modulus, defined as the ratio of stress and strain in d, is measured in most cases, we confine further spatial comparisons
of the different estimates to this measure.

Y(d) = [(d ⊗ d) ∶ S□∶ (d ⊗ d)]
−1

∀□ ∈ {V,R,H+,H−} (34)

However, results of estimations based on Eq. (25) with eigenvalues (28) or (32) are isotropic approximations. Hence, it is possible
to determine its orientation-independent engineering parameters.

Y□ =
3λc

1λ
□
2

2λc
1 + λ

□
2

ν
□ =

λ
c
1 − λ

□
2

2λc
1 + λ

□
2

∀□ ∈ {V,R,H+,H−} (35)

Herein, Y is Young’s modulus and ν is Poisson’s ratio. Furthermore, the bulk K and the shear G moduli arise naturally.

3K = λc
1 2G

□ = λ□2 ∀□ ∈ {V,R,H+,H−} (36)

Subsequent relations emerge.

Y
□ =

9KG□

3K + G□ ν
□ =

3K − 2G□

2(3K + G□)
∀□ ∈ {V,R,H+,H−} (37)

The procedure often quoted as Voigt-Reuss-Hill average merely results in engineering parameters of the arithmetic mean
(Y□
, ν

□
,K□
,G□ ∀□ ∈ {H+}).

Note that the whole procedure presented here is based on the second and third eigenvalue of the cubic system solely. As a result,
the approximation of the isotropic elasticity and compliance tensor simplifies to the following expression.

C◦ = λ1P1 + λ
□
2 P

◦
2 ∀□ ∈ {V,R,H+,H−} (38)

Within the eigenspaces, all calculations can be traced back to scalars. This method is therewith easy to handle compared to
laborious operations by application of the vector-matrix-notation, as often referred to in the literature. This simplicity and
elegance is based on the projector representation.

3 Application and Results

When evaluating the results of the estimations described in the previous section, values for the cubic parameters of a single crystal
are considered, which originate from Hosford (1993).

C1111 = 166.2 ⋅ 103 N

mm2
C1122 = 64.4 ⋅ 103 N

mm2
C2323 = 79.7 ⋅ 103 N

mm2
(39)

This results in subsequent eigenvalues.

λ
c
1 = 295 ⋅ 103 N

mm2
λ

c
2 = 101.8 ⋅ 103 N

mm2
λ

c
3 = 159.4 ⋅ 103 N

mm2
(40)
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Tab. 1: Young’s modulus Y and Poisson’s ratio ν of different estimates, bounds and their spans

Ymin Ymax YV YR YH+ YH−
Δ

min max
Y Δ

VR
Y Δ

H±
Y

130.200⋅103 188.260⋅103 166.141⋅103 159.773⋅103 162.971⋅103 162.933⋅103 58.060⋅103 6.368⋅103 38.133

νmin νmax ν
V

ν
R

ν
H+

ν
H−

Δ
min max
ν Δ

VR
ν Δ

H±
ν

0.062 0.363 0.218 0.229 0.223 0.223 0.300 0.011 6.5 ⋅ 10−5

(Y in N/mm2, ν is dimensionless)

A common measure to quantify the extent of anisotropy in a cubic system is the Zener ratio ZR = λ
c
3/λc

2 (Zener, 1948). If
materials are isotropic, ZR = 1 holds true. For material parameters of monocrystalline silicon listed in Eq. (40), ZR ≈ 1.57
results. Compared to other cubic materials (e.g. copper, silver, gold, lead), the degree of anisotropy for monocrystalline silicon
is moderate. For further anisotropy measures and physical explanations, cf. Ranganathan and Ostoja-Starzewski (2008).
For the further examinations we mainly refer to Young’s modulus as it is more significant in comparison to Poisson’s ratio and
also has the broadest application in materials technology. The directional dependence of a single silicon crystal according to
Eq. (34) shows the following parameters where seven directions are under consideration. Due to the crystallographic equivalence
of some directions, only three of them are characteristic.

Y(d) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

130.2 ⋅ 103 N
mm2 if d = gi

169.4 ⋅ 103 N
mm2 if d = ni

188.2 ⋅ 103 N
mm2 if d = nS

(41)

Here, the normals

n1 =
(g1 + g2)√

2
, (42a)

n2 =
(g1 + g3)√

2
, (42b)

n3 =
(g2 + g3)√

2
, and (42c)

nS =
(g1 + g2 + g3)√

3
(42d)

have been introduced. Thereby, ni ∀ i = {1, 2, 3} are face diagonals (⟨110⟩, ⟨101⟩, and ⟨011⟩) while nS is a space diagonal
(⟨111⟩) of the cubic primitive cell. Again, gi ∀ i = {1, 2, 3} are directions of the crystals orthonormal basis (⟨100⟩, ⟨010⟩,
and ⟨001⟩). Angle brackets used here refer to Miller indizes (Miller, 1839). The orientation dependent Young’s modulus can
be plotted according to the procedure discussed in Nordmann et al. (2018)1, which is based on the work of Rychlewski (1995)
and Böhlke and Brüggemann (2001). In doing so, we derive the graphical representation given at the left-hand side of Fig. 1.
This plot visualizes the directional dependence of Young’s modulus for a single crystal. It becomes obvious for cubic silicon, that

Y(nS) = Ymax and Y(gi) = Ymin (43)

hold true. Both values are elementary bounds of the single crystal elasticity. Material parameters determined according to the
procedure given in Sect. 2 are given in Tab. 1. There, additionally, the bandwidths spanned

• by the single crystal minimum and maximum values Δmin max
Y = Ymax −Ymin,

• by the Voigt and Reuss bounds Δ
VR
Y = YV −YR, and

• by the arithmetic and geometric means thereof Δ
H±
Y = YH+ −YH−

are given. The bandwidths of resulting Poisson’s ratios given there are determined in analogous manner. Considering the Young’s
moduli determined, the right-hand side of Fig. 1 visualizes the directional dependence of all estimates for the polycrystalline
aggregate. Clearly, since these estimates are isotropic approximations, the Young’s modulus body is spherical.

4 Comparison and Discussion

All further evaluations refer to Young’s modulus as it is the substantial parameter, at least in isotropic material engineering. On
the other hand, Poisson’s ratio of polycrystalline silicon has not been well studied experimentally and hardly any data is available.
Firstly, the bandwidths resulting from the bounding values determined here are shown in Fig. 2. Considering first the single

1See also: https://tinyurl.com/visualising-elastic-anisotropy
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Fig. 2: Spans of extremes and isotropic bounds as well as scattering of experimental results within these ranges (� - experiments)

crystal extremes we notice a large bandwidth (Δminmax
Y ≈ 58.0 ⋅ 103 N/mm2) which doubles the statements for Young’s modulus

scattering of Petersen (1982). The bandwidth of Voigt and Reuss bound is considerably smaller (Δminmax
Y ≈ 6.4 ⋅ 103 N/mm2, about

11% of Δminmax
Y ). Hill’s bounds span a comparatively small band of ΔH±

Y ≈ 38.1 N/mm2 which is around 0.6% of the Voigt-Reuss
bandwidth. For comparison we use experimental data from Michalicek et al. (1995). Unfortunately, in Michalicek et al. (1995),
no tolerance for these measurements is given. Following the compilations of Sharpe (2002), there is a minimal measurement
scattering of ±3 ⋅ 103 N/mm2 depending on the experimental method for determining the Young’s modulus. For visualizational
purposes we therefore use Yexp = (163.0 ± 3) ⋅ 103 N/mm2 as experimental reference in context of Fig. 2. Obviously, the effective
value of YoungâĂŹs modulus is slightly smaller than the mean of the experimental results, at least in the light of YH+ and
YH−. Thereby we can recognize that the scattering of these experiments lies in between Voigt and Reuss bound. However, these
bandwidths are juxtaposed comparatively in Fig. 2 on the right-hand side. We additionally can state the distances of Young’s
moduli in form of scalar values, indicating an absolute error.

d
□
Y = Y

□ −Y
exp ∀□ ∈ {max,min,V,R,H+,H−} (44)

The results are visualized in Fig. 3, left-hand side. Clearly, the distances to the extremes of the monocrystal are the largest.
Distances to Voigt and Reuss bounds are smaller by an order of magnitude. These bounds are almost symmetric around the
experimental mean. Hills averages are smaller by two orders of magnitude compared to Voigt-Reuss bounds. Both of Hill’s
averages are smaller than the experimental mean, i.e. we underestimate the experimental findings by present strategy. Obviously
the absolute value of Hill’s arithmetic mean dH+

Y is closest to the experimental mean. Ultimately this underlines the choice of the
arithmetic mean according to Hill (1952), at least for present investigations. For further comparison with respect to experimental
findings, we analyze the ratio between experimental mean and computed value of Young’s modulus.

YR□ =
Y□

Yexp ∀□ ∈ {max,min,V,R,H+,H−} (45)

Results of this ratio are visualized in Fig. 3, center. Minimum and Maximum values of the single crystal range around to the
experimental value with approximately +0.15

−0.20Y
exp. Voigt and Reuss bounds significantly reduce this ratios to around +0.02

−0.02Y
exp. This

is being undercut by Hill’s averages by two orders of magnitude ( −0.0002
−0.0004Y

exp). Here we can also identify the closest approximation

with YH+ to the experiments. We furthermore introduce the relative error of present estimates.

e
□
Y =

d□
Y

Yexp ∀□ ∈ {V,R,H+,H−} (46)

These measures are given in Fig. 3, right-hand side. It turns out that the error caused when working with Voigt and Reuss
estimates is below ±2%. This error is decreased to approximately −0.04% when working with Hill’s geometric mean and finally
to around −0.02% when applying Hill’s arithmetic mean.
In spite of all the numerical deviations determined here, we have to consider the scattering of the experimental results of around
±3 ⋅ 103 N/mm2. In this context we have to register ΔS±

Y ≈ 6 ⋅ 103 N/mm2, dS+
Y ≈ 3 ⋅ 103 N/mm2, dS−

Y ≈ −3 ⋅ 103 N/mm2, YRS+ ≈ 1.0184,
YRS− ≈ 0.9816, eS+

Y ≈ 1.8⋅10−2, and eS−
Y ≈ −1.8⋅10−2 while the superscript index S± indicates the bounds resulting from

scattering. The error caused by the scattering in the experimental findings causes an error of around 1.8%. As already visualized
in Fig. 2 (center), this clarifies that the experimental findings vary in the range of the Voigt-Reuss bounds.
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Fig. 3: Distances and ratios of experimental to calculated solutions and associated relative error of Young’s modulus estimations

5 Summary and Conclusions

In the foregoing investigations we have predicted the elastic properties of polycrystalline silicon used for solar cells. The
predictions were determined by the aid of first-order estimates of analytical homogenization methods. These estimates are based
on assumptions for macroscopic homgeneity and isotropy for aggregates of cubic crystals. The whole procedure is based on
simplest bounds followed by empirical averages. Present homogenization approach is being applied by the aid of the eigenprojector
representation. The advantage of this approach is that we can reduce the tensorial quantities to scalar ones, i.e. this simplifies the
computation considerably. This is also an advantage in comparison to computations often done via laborious matrix computations,
cf. den Toonder et al. (1999). Based on the invariance of the first eigenvalue of the stiffness (or bulk modulus), the calculus is
reduced to the second and third eigenvalue, i.e. the computations reduce to Eqs. (28) and (32).
In context of the results gained therewith when applied to silicon we may conclude that it is sufficient to use Voigt and Reuss
bounds and determine the arithmetic mean value proposed by Hill. The latter one predicts the experimental value with sufficient
accuracy, i.e. for the given effective material properties, CH+ is a reasonable approximation for C̄. The quality of this prediction
can basically be improved by increasing the order of approximation. This means that the bandwidths of the upper and lower
bounds are becoming smaller and smaller. The application of such improvements remains contestable, at least in context of
the scattering of the Young’s moduli determined at polycrystalline silicon. For polycrystalline silicon, the results imply that the
procedure well known as Voigt-Reuss-Hill average provides sufficiently accurate results.
However, the use of silicon for mechanical structures is widespread, so the parameters for this material have been investigated
thoroughly. Therefore, the initial values of present calculations, cf. Eq. (39), may scatter to a certain extent (±500 N/mm2). In the
present treatise we waived the representation of the error propagation caused by the scattering of initial material parameters of
the monocrystal. This surely is a problem of experimental mechanics which also concerns the measurements on polycrystalline
silicon for solar cells. To counter this problem, sensitive measurements are required at both, the constituents forming the aggregate
and the aggregate itself, while one always has to consider the accuracy of the measurement equipment. This is also dependent on
the method used, e.g. tension, bending, resonance, indentation, ultrasonic, or bulge test respectively.
The morphology and topology of the material can have an important influence on the effective properties which cannot be
considered by the isotropic Voigt and Reuss estimates. For more precise computations, one will have to consider the crys-
tallographic texture, cf. Morawiec (2004). Hereby, the extent of anisotropic effects strongly depends on the degree of
crystallographic texture. However, in this case one must consider that both, Voigt and Reuss bounds are anisotropic, i.e.
∥Caniso∥ = ∥C□ − C◦∥ ≠ 0 ∀□ ∈ {V,R}. On the one hand this needs theoretical considerations for the analysis of textures,
which can be found in the literature Kocks et al. (1998). On the other hand, experimental investigations on crystal orientation
distribution functions of polycrystalline silicon aggregates used for solar cells are necessary to feed such models. Such studies
however, are absent.
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Appendix

A.1 Equivalent vector-matrix based procedure

In engineering, especially in the geometrically linear setting of classical continuum theory, a vector-matrix representation finds
broad application. This is possible since present mechanical problem is set in the space of symmetric tensors. To be exact, the
stress T = Ti j ei ⊗ e j and strain tensor E = Eklek ⊗ el are symmetric, i.e.

a⋅T = T ⋅ a T = T
⊤

Ti j = Tji

a⋅E = E⋅ a E = E
⊤

Ekl = Elk

and the constitutive tensor C = Ci jkl ei ⊗ e j ⊗ ek ⊗ el features left sub-symmetry, right sub-symmetry and major symmetry, i.e.

A ∶C ∶ B = B ∶ C ∶ A Cijkl = Cklij major symmetry

A∶C = A
⊤∶C Cijkl = Cjikl left subsymmetry

C ∶ A = C ∶ A⊤
Cijkl = Cijlk right subsymmetry

for arbitrary a, A, B. Due to the symmetries given we can uniquely assign vectors and matrices to these tensors. In accordance
with the operations in Sect. 2, we can then execute the algebraic operations analogously in a vector-matrix notation. To derive
such a representation we first introduce a six-dimensional basis (Brannon, 2018), which we will call Kelvin basis, cf. Thomson
(1856).

K i = ei ⊗ ei ∀ i = {1, 2, 3} (A.1a)

K3ND−i−j =

√
2

2
[ei ⊗ e j + e j ⊗ ei] ∀ i, j = {1, 2, 3} while i < j (A.1b)

Herein, ND is the number of dimensions under consideration (ND = 3). Obviously our ordering is in accordance with classical
Voigt notation (Voigt, 1889), while the normalization with

√
2 differs from the classical representation where only the symmetric

part is applied. Since the index of these second-order bases is running from 1 to 6, we introduce greek indices so that
Kα ∀α = {1, . . . , 6} holds. The Kelvin basis is orthonormal.

Kα∶Kβ = δαβ (A.2)

A six-dimensional vector representation of stresses and strains is possible while the components are defined as follows.

Tα = T ∶Kα ∀α = {1, . . . , 6} (A.3a)

Eβ = E∶Kβ ∀ β = {1, . . . , 6} (A.3b)

Both vectors are related by a six-by-six-matrix which is based on the constitutive tensor. We can determine the coefficients of
this constitutive matrix by the following calculation rule.

Cαβ = Kα∶C∶Kβ ∀α, β = {1, . . . , 6} (A.4)

Due to the calculation rules shown, all indices of the vector-matrix notation (α, β) can be assigned to the tensor notation (i, j, k, l ),
and vice versa. Thus, the tensors T , E, C may also be written as follows.

T = Tα Kα (A.5a)

E = Eβ Kβ (A.5b)

C = Cαβ Kα ⊗ Kβ (A.5c)

We can achieve the vector-matrix representation of the constitutive law by the arrangement of the coefficients.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T1

T2

T3

T4

T5

T6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

sym C66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E1

E2

E3

E4

E5

E6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.6)

Herein, the matrix [Cαβ] takes the general anisotropic form. For the sake of completeness we provide the assignment of the
parameters with indices i, j, k, l and α, β. These are relations of the stresses

T1 = T11 T2 = T22 T3 = T33 T4 =
√

2T23 T5 =
√

2T13 T6 =
√

2T12 ,
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the strains

E1 = E11 E2 = E22 E3 = E33 E4 =
√

2E23 E5 =
√

2E13 E6 =
√

2E12 ,

and the constitutive coefficients for an aelotropic material

C11 = C1111 C12 = C1122 C13 = C1133 C14 =
√

2C1123 C15 =
√

2C1113 C16 =
√

2C1112

C22 = C2222 C23 = C2233 C24 =
√

2C2223 C25 =
√

2C2213 C26 =
√

2C2212

C33 = C3333 C34 =
√

2C3323 C35 =
√

2C3313 C36 =
√

2C3312

C44 = 2C2323 C45 = 2C2313 C46 = 2C2312

C55 = 2C1313 C56 = 2C1312

C66 = 2C1212 ,

while Cαβ = Cβα holds. This modified representation was already used, e.g., by Fedorov (1968). When introducing sans serif,
upright, bold minuscules for vectors and sans serif, upright, bold majuscules for matrices, we can write generalized Hooke’s
law of Eq. (A.6) in the form t = C e. Due to the normalization factor introduced in Eq. (A.1b), the following relations between
vector-matrix and tensor notation hold.

t
⊤

t = T ∶T e
⊤

e = E∶E t
⊤

e = T ∶E (A.7)

Furthermore, C features the same invariants, eigenvalues, and eigendirections as C and obeys the major symmetry (Nordmann
et al., 2018). The normalization also enables to apply operations like trace, determinant, matrix multiplications and so on at
componentens of six-by-six matrices.2 In context of cubic symmetry, the occupiedness of C reduces as follows when lattice basis
and (sample) reference basis coincide.

C
c =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C12 0 0 0

C11 C12 0 0 0

C11 0 0 0

C44 0 0

C44 0

sym C44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with

C11 = C1111

C12 = C1122

C44 = 2C2323

(A.8)

Obviously we can identify C11 = 1/3(λc1 + 2λc2), C12 = 1/3(λc1 − λc2), and C44 = 1/2λ
c
3 and find a projector representation for the

elasticity matrix in analogy to Eq. (16) (Halmos, 1958). As was introduced at the elasticity matrix in Eq. (A.4), we determine
matrix coefficients of the projectors also.

(Pαβ)
c
J = Kα∶P

c
J ∶Kβ ∀α = {1, . . . , 6} ∧ J = {1, . . . , 3} (A.9)

Ordering all coefficients, the cubic projectors are represented by six-by-six matrices as follows.

P
c
1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3

1
3

1
3

0 0 0
1
3

1
3

0 0 0
1
3

0 0 0

0 0 0

0 0

sym 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P
c
2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
3

− 1
3

− 1
3

0 0 0
2
3

− 1
3

0 0 0
2
3

0 0 0

0 0 0

0 0

sym 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P
c
3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

1 0 0

1 0

sym 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.10)

This representation holds only when the refence vectors of the orthonormal system are lattice vectors. In this context we can
write the constitutve matrix as sum of eigenvalues and corresponding projection matrices.

C
c = λc

1P
c
1 + λ

c
2P

c
2 + λ

c
3P

c
3 (A.11)

The compliance S = C
−1 is determined through S C

−1 = 1 while 1 is the identity matrix.

S
c =

1
λc

1
P

c
1 +

1
λc

2
P

c
2 +

1
λc

3
P

c
3 (A.12)

2For instance, the present strategy to reduce to a vector-matrix notation keeps us from an incorrect determination of the eigenvalues of the stiffness matrix as
done through various softwares circulating out there. However, when original Voigt notation is used, λJ (C) = λJ (C) has no general validity since the physical
parameters Ci jkl in C are not normalized with the metric.
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For the sake of completeness we give the cubic compliance in terms of the coefficients Cαβ .

S
c =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S11 S12 S12 0 0 0

S11 S12 0 0 0

S11 0 0 0

S44 0 0

S44 0

sym S44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with

S11 =
C11 + C12

(C11 − C12)(C11 + 2C12)

S12 =
−C12

(C11 − C12)(C11 + 2C12)

S44 =
1

C44

(A.13)

Herein, S11 = (2λc
1 + λ

c
2 )/(3λc

1 λ
c
2 ), S12 = (λc

2 − λ
c
1 )/(3λc

1 λ
c
2 ), and S44 = 2/λc

3 hold. In analogy to the tensorial description we can give
representations of Voigt and Reuss homogenization schemes in matrix notation, cf. Eq. (24).

C
V =

η

∑
γ=1

vγC
c
γ S

R =
η

∑
γ=1

vγS
c
γ ∀ η ∈ N+ (A.14)

The isotropic constitutive law can be written as follows.

C
◦ = λ◦1 P

◦
1 + λ◦2 P

◦
2 (A.15)

Applying the isotropic projectors of Eq. (27) in Eq. (A.9) yields the components (Pαβ)
◦
J ∀ J = {1, 2}. The equivalent matrix

representation for isotropic projectors is then given as follows.

P
◦
1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3

1
3

1
3

0 0 0
1
3

1
3

0 0 0
1
3

0 0 0

0 0 0

0 0

sym 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P
◦
2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
3

− 1
3

− 1
3

0 0 0
2
3

− 1
3

0 0 0
2
3

0 0 0

1 0 0

1 0

sym 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.16)

Here again P
◦
1 = P

c
1 = P1 holds. The isotropic elasticity matrix can be presented as [Cαβ]

◦
= C

◦.

C
◦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C12 0 0 0

C11 C12 0 0 0

C11 0 0 0

C44 0 0

C44 0

sym C44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with

C11 =
Y◦(1 − ν◦)

(1 − 2ν◦)(1 + ν◦)

C12 =
Y◦
ν
◦

(1 − 2ν◦)(1 + ν◦)

C44 =
Y◦

2(1 + ν◦)

(A.17)

Herein, the material parameters Y◦ and ν◦ hold for all isotropic approximations ◦ ∈ {V,R,H+,H−}. Alternatively we can state
the three isotropic coefficients Cαβ in terms of K◦ and G◦,

C11 = K
◦ +

4
3

G
◦

C12 = K
◦ −

2
3

G
◦

C44 = G
◦
, (A.18)

or in terms of λ◦1 and λ◦2 .

C11 =
1
3
(λ◦1 + 2λ◦2) C12 =

1
3
(λ◦1 − λ◦2) C44 = λ◦2, (A.19)

The homogenization is here also based on the eigenvalues λcJ ∀ J ∈ {2, 3} while applying Eqs. (28) and (32). Again, λc1 = λ◦1 =
λ
□
1 ∀□ ∈ {V,R,H+,H−} holds. Finally we can present the results in form of constitutive matrices of the different estimates by

the aid of projectors.

C
□ = λ1P1 + λ

□
2 P

◦
2 ∀□ ∈ {V,R,H+,H−} (A.20)

The present procedure naturally yields identical results as given in Tab. 1.

A.2 Equivalence of different respresentations of Hooke’s laws

Engineers are usually confused about the projector representation of constitutive laws. We here want to verify the equivalence
of different representations of Hooke’s law, at least in the case of isotropy. We start with the projector representation of the
constitutive tensor

C◦ = λ◦1P
◦
1 + λ◦2P

◦
2 (A.21)
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while we want to point out that the isotropic projectors P◦1 and P◦2 map the strain tensor E into its dilatoric and deviatoric part,
respectively.

P◦1∶E = E
dil P◦2∶E = E

dev (A.22)

This dil-dev split is additive.

E = E
dil + E

dev (A.23)

We can thus write our constitutive law T = C◦∶E as follows.

T = λ◦1E
dil + λ◦2E

dev (A.24)

Using the relations of Eq. (36) yields a well-known form of Hooke’s law.

T = 3KE
dil + 2GE

dev (A.25)

In the light of (A.23) we can reformulate this representation.

T = 3KE
dil + 2G(E − E

dil) (A.26a)

= 3KE
dil + 2GE − 2GE

dil (A.26b)

= (3K −2G)Edil + 2GE (A.26c)

We already know that Edil = 1
3
[E∶ 1]1 holds and obtain the following representation.

T = (K −
2
3

G) [E∶ 1]1 + 2GE (A.27)

We furthermore introduce the first (λ = K − 2/3G, please note that this λ is without any index) and the second LamÃľ parameter
(μ = G), cf. Lamé (1852).

T = λ[E∶ 1]1 + 2μE (A.28)

We are aware that E∶ 1 = trE. However, Eq. (A.28) is known as LamÃľ representation, established in civil engineering. As the
relations

λ =
νY

(1 − 2ν)(1 + ν)
and μ =

1
2

Y

(1 + ν)
(A.29)

hold in the case of isotropy , we can also write the constitutive law in the form

T =
νY

(1 − 2ν)(1 + ν)
[E∶ 1]1 +

Y

(1 + ν)
E (A.30)

which seems to be more familiar to mechanical engineers.
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