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Abstract: In this paper, an eigenvalue problem is considered, i.e., the free vibration of photovoltaic (PV) modules. This structure
was selected for its peculiar layer contrast, which forms an anti-sandwich. The aim was to present an analytical procedure
for obtaining the natural frequencies of the PV modules over a range of temperatures. To this end, the layered structure was
homogenised into an equivalent single layer for which a closed-form solution is presented using the shear-rigid plate theory.
Moreover, the finite element method was applied to simulate the behaviour of the discrete layers in terms of mesh sensitivity.
By examining the findings and some benchmark values, it was found that the analytical procedure could provide a range for the
results. More specifically, the Reuss-Voigt range covers the possible values for the natural frequencies in the examined temperature
range. Moreover, the analytical method can predict the natural frequencies with a good accurracy in the temperature range of
—40 to 15°C. In contrast, the computational analysis seemed to provide very good results in return for a modest computational
effort. In conclusion, the provided analytical procedure could quickly determine the natural frequecies with a good accuracy in
the mentioned range.
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1 Introduction

Overview. Composite structures, due to their high specific properties, are used in various applications in which the vibration
of components is inevitable. Of our interest is the so-called anti-sandwich panels, which can be categorised under laminated
composites. An anti-sandwich consists of two stiff skin layers and a soft core layer (ABmus, 2019; Javanbakht et al., 2019). This
typical structure is used in manufacturing photovoltaic (PV) modules (ABmus et al., 2016).

Dynamic analysis. The dynamic performance of structures is measured by studying their vibrational behaviour. The inherent
dynamic property of a structure reveals itself under initial excitation (free vibration). The behaviour of the system in this
state depends on the natural frequencies of the system, which is obtained from a modal analysis. This information is used to
investigate more complex responses, e.g., forced excitation (cyclic/harmonic loads) or transient analysis (damped system under
impact) (Meirovitch, 2001).

Damage control/detection. The results of the dynamic analyses can be used in either damage control or damage detection in
PV modules. In the former case, the information is used for fine-tuning the geometric and material parameters during the design
process in order to restrict the dynamic response. In the latter context, studying the dynamic behaviour could reveal the extent of
damage in the PV modules. For instance, the resonance ultrasonic vibrations method is used as a non-destructive test to detect
microcracks (Dallas et al., 2007). In terms of damage control, both structural and functional failure modes are possible, and thus
are required to be covered in the investigations.

Structural failure. Structural damage could happen under either static or dynamic loading. Photovoltaic modules experience
most of the static loads during operation; a general solution for arbitrary loading condition is presented in (ABmus et al., 2017a).
More broadly, the dynamic response of the PV modules becomes significant under both pre-operating conditions (transportation-
induced vibrations during shipping (Reil et al., 2010) or during installation) and under service (vortex shedding from wind
impact (ABmus and Kohl, 2012)); experimental studies have shown that resonance could occur in such conditions (Afmus et al.,
2011) and cause failure in the module.

Functional failure. Dynamic loads could damage the functionality of the electrical components in PV modules, e.g., broken
interconnect ribbons, solar cell fracture or solder bond failure are possible, see (Ferrara and Philipp, 2012; Kontges et al., 2014;
Wohlgemuth, 2020) for various failure modes of this type. It seems that dynamic loads cause more functional damage than
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structural. For instance, a higher failure rate of the electrical circuits was reported under dynamic loads due to the loss of solder
contact (Koch et al., 2010).

Design requirements. The dynamic response of PV modules should be improved to alleviate any harmful stimuli. This is
done by some design alterations, which could provide some additional protection against vibration. For example, it was shown
that using silicone encapsulants, instead of ethylene vinyl acetate (EVA) copolymer, could better protect the solar cells under
dynamic loads (Mickiewicz et al., 2011). Therefore, standardised approaches are emerging in the literature to address the design
requirements.

Current standardised approach. The International Electrotechnical Commission (IEC) imposes the minimum design require-
ments on the PV modules that are manufactured in Europe—the UK implementation of these are published in British Standards.
The British code for terrestrial PV modules—BS EN 61215-1-2:2017 (equivalent to IEC 61215) (British Standards, 2017a)
and BS EN 61215-2-2017 (British Standards, 2017b) for crystalline silicon modules, and BS-EN-61646:2008 (equivalent to
IEC 61646) (British Standards, 2008) for thin-film modules—only demand a static load testing (uniform load) and a hail test
(spherical ice ball impact) as minimum design qualifications. Nevertheless, more attention was directed towards the dynamic
properties of the PV modules and their regularisation in the recent years. For example, the transportation testing procedure of
IEC 62759:2015 (British Standards, 2015) demands a dynamic loading test according to IEC 62782:2016 (British Standards,
2016) along with humidity freeze and thermal cycling. As the first step, the regulated design requirements are indispensable.
However, the behaviour of PV modules should be further understood—especially under unconventional circumstances. To this
end, a combination of analytical, numerical, and experimental methods are used.

Experimental efforts. In terms of physical experiments, natural frequencies are obtained under various conditions. An outdoor
setup was used in (Weiss et al., 2009) where the deflection of a panel was monitored under wind excitation. Fundamental frequency
of 9 and 12 Hz was obtained by means of Fourier Transformation. Moreover, an indoor acoustic test resulted in the range of
14.6-24.6 Hz for the natural frequencies of various PV modules including the outdoor test sample. It seemed that the acoustic
test provided more consistent results. A similar attempt was made in (ABmus et al., 2011) where by combining experiments
and finite element (FE) simulations, a range of 14.7-27.2 was reported for the fundamental frequency of various PV modules.
In (Pingel et al., 2009), the shaking table test was used to simulate the vibrations during transportation (5-500 Hz); it resulted in
a resonance frequency in the range of 1-15 Hz. It was also shown that reducing the wafer thickness would increase the failure
rate of the PV modules under dynamic loads. In (Kilikeviciene et al., 2019), it was experimentally shown that the impact of hail
could cause microcracking in PV modules and render them ineffective in terms of power generation. An experimental setup for
harsh weather conditions was introduced in (Visniakov et al., 2015), which considered induced frequencies up to 40 Hz; it was
found that the low frequency loads, which represent windy conditions, could cause damage to the crystalline structure of the PV
cells and reduce the performance of the modules. Therein, a fundamental frequency of 7.2 Hz was obtained experimentally while
the FE simulation resulted in 6.69 Hz. In (Kilikevicius et al., 2016), a similar setup was use to carry out an operational modal
analysis, which resulted in a fundamental frequency of about 16 Hz. In this study, it was again affirmed that low-frequency studies
could be used to simulate the excitations due to various wind speeds. Moreover, the damping characteristics of the PV modules
were considered in the experiments. It is worth mentioning that the variation in the geometry and material property of the PV
modules as well as the environmental parameters has resulted in a rather wide range of reported frequencies in the literature.

Computational efforts. The experimental efforts are valuable and necessary but they cannot cover all the possible cases;
moreover, they are expensive and time-consuming. Computational methods could, at least partially, reduce such costs—especially
when combined with analytical methods. For instance, FE analyses were carried out to obtain the mechanical/thermo-mechanical
response (Dietrich et al., 2010; ABmus et al., 2011; Sander et al., 2013; Beinert et al., 2019) of PV modules. The free vibration
of PV modules was simulated using the FE method in (Dallas et al., 2007; Visniakov et al., 2015; Kilikevicius et al., 2016).
A multi-scale FE analysis was carried out to study the distribution and orientation of microcracking in PV modules. In this
study, both of the functional and structural damage of PV modules were considered in coupled elastic-electric analyses. More
specialised approaches, such as the extended Layer-Wise Theory (XLWT) (Naumenko and Eremeyev, 2014), are used as the basis
of more computationally effective analyses, see (ABmus et al., 2017b,c).

Aim. All the aforementioned efforts were ideally seeking a balanced approach between complexity and computational cost.
Most of the studies were focused on the static loading conditions and the majority of dynamic studies were limited to experimental
setups. Herein, the aim is to provide a simple approximation method for the fundamental natural frequency of the PV modules.
To this end, an analytical formulation of the homogenised structure is set up and solved. It is hypothesised that the high contrast of
material properties might affect the accuracy of the results. Moreover, a computational prototype was developed to complement
the study. The current work is restricted to glass-encapsulant-glass structures with structural symmetry in the thickness direction.
However, it can be extended to other anti-sandwich structures.

Outline In the following sections, the homogenisation procedure of the PV modules is elaborated. Then, the shear-rigid plate
theory is revisited to obtain the closed-form solution for the eigenvalue problem of PV modules. Finally, a computational prototype
is analysed in terms of sensitivity of the results to mesh density and temperature change. Then, the results are benchmarked
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Fig. 1: Abstraction of the geometry and the resulting dimensions for a PV module

against some reported values from the literature and discussed. The final section concludes the findings and suggests some
research pathways.

2 Homogenisation of Photovoltaic Modules
2.1 Simplifying the Physical Structure

Geometry. The physical structure of a silicon PV module is illustrated in Fig. 1. Solar cells are embedded in a polymeric
core layer, which is covered by front and back skin layers. The contribution of the embedded metallic solar cells to the overall
bending and membrane stiffnesses of the laminate can be neglected (Naumenko and Eremeyev, 2014). Thus, a symmetrical
anti-sandwich laminate can adequately represent the mechanical behaviour of a PV module. The dimensions of the PV module
is L} x Ly x h where the overall thickness h is the sum of the thickness of the front (h¢), back (hy), and core (h;) layers. In this
study, a symmetrical structure is assumed for the PV module whose dimensions are listed in Tab. 1. The front or back layer in a
symmetrical photovoltaic module is addressed as a skin layer, e.g., the hs represents the thickness of the skin (hy = hy = hy).

Boundary Conditions. In Fig. 2, the cross-section of a PV module is illustrated. The embedding (often aluminium) frame
holds the laminate by a soft sealant. This fixture allows for small rotations, and thus a moment-free constraint can represent this
arrangement. Mathematically, this is equivalent to a plate that is simply-supported along the edges:

owX,0) = w(X, L) =0
o e ol W0 2w ) o e
w(O, X2) = w(L1, Xz) =0

M1(0, X3) = My(L1, X)) =0 ° (1b)

VX, € [O, Lz] :{

where w is the deflection (displacement along X3-axis) of the plate midplane; M; and M, are the bending moments acting on the
planes with normals X; and X;, respectively.

Tab. 1: Geometric parameters

Layer(s) L; [mm] L, [mm] hy [mm]
Skin 1620 810 3.2
Core 1620 810 1.0
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Fig. 2: Cross section view of typical bedding of a PV laminate in a frame and mechanical analogue

2.2 Material Properties

The skin layers of PV modules (front/back layers) are made of glass while the core layer is the EVA polymer, see Tab. 2. The
outer layers are denser than the core layer #s /p. ~ 2.69 but more importantly, a high contrast of order about £s /e, ~ 10* is observed
for their elastic moduli. The Poisson’s ratios ¥s /.. ~ 0.73 denotes similar values for the skin and core layers.

BS standards for both crystalline and thin-film modules (British Standards, 2017b, 2008) require thermal cycling from —40 to
85°C for no more than 6 hours. The module temperatures can vary in natural weathering between —20°C (alpine) and +60°C
(desert), which is well covered the mentioned range. While the material properties of the skin layers (glass) and the solar cells
(polycrystalline silicon) can be deemed temperature-independent, the thermal sensitivity of the polymeric encapsulant cannot be
ignored, see (ABmus et al., 2016).

In the current study, the Poisson’s ratio and mass density of the EVA were assumed to be temperature-independent and the
respective room temperature properties were used, see Tab. 2. In contrast, the elastic modulus of the EVA is specified as a
function of temperature. Using the discrete data that is provided in Tab. 3, the following piecewise linear interpolations were
obtained for the elastic modulus of the core layer:

—16.056 + 377.046 for -40<6<23
Ee(0) = { —-0.129746 + 10.8778 for 23 <6 <80 ° @

where 6 is the ambient temperature and E.(6) returns the elastic modulus of the core in N/mm?, see Fig. 3. It is worth mentioning
that increasing the temperature from —40 to +80°C reduces the elastic modulus to 0.05% of its initial value. This reduction
happens in a very high rate up to +23°C but after this point, continues with less intensity. Moreover by increasing the temperature,
the E/k, ratio approaches zero, and thus the elastic modulus contrast is magnified. For instance, at the highest temperature, the
elastic modulus of the skin becomes about 1.4 - 103 times that of the core layer.

2.3 Voigt and Reuss Bounds

The Voigt (Voigt, 1910) and Reuss (Reuss, 1929) bounds are the results of iso-strain and iso-stress assumptions, respectively. It
is assumed that various phases of the material undergo the same strain in the former case whereas in the latter case, every phase
experiences the same stress, see Fig. 4. In order to simplify the problem, working with a homogeneous medium is preferred.
The properties of such smeared continuum is based on its constituents, which are the layers of the PV modules in the current
context. The so-called rule of mixture and the inverse rule of mixture (Javanbakht et al., 2020a,b) could be used to obtain various
homogenised properties:

n

Oy = Z g, (3a)

i=1
-1
no#(i)
Or = [Z %l : (3b)

Tab. 2: Room-temperature material properties

Layer(s) Material Er [N/mm?] Vi [-] POk [¥e/m?]
Skin Glass 73 - 103 0.30 2500
Core EVA 7.90 0.41 930
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Tab. 3: Temperature-dependent material parameters of the EVA encapsulant; adapted from (Eitner, 2011)

6 [°C] —40 +23 +80
Ee [N/mm?] 1019.04 7.90 0.52
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Fig. 3: Temperature-dependent properties: (a) elastic modulus of the core, and (b) core to skin relative elastic modulus

with O € {E, v, p} denotes the material property of interest, and the (Oy) and (Or) subscripts denote the pertaining Voigt and
Reuss bounds, respectively; n is the number of phases in the material, ) is the volume fraction of the phase, and O is the
material property of the i-th phase.

The Voigt and Reuss bounds respectively represent the upper and lower bounds for the homogenised material properties. In
terms of PV modules, these bounds correspond to the direction along the layers (Voigt bound) and the direction perpendicular
to the layers (Reuss bound), see Fig. 4. Thus, the homogenisation process replaces the layered structure of the PV modules by
an anisotropic homogenised medium. In the following section, the homogenised material properties (elastic modulus, Poisson’s
ratio, and mass density) are expressed in terms of the layer thicknesses of the PV module.

- =

B front/back layer Voigt model Reuss model
[ ] core layer (& = const) (o~ = const)

Fig. 4: Underlying assumptions of bounds used for homogenization of photovoltaic composite structure

3 Eigenfrequency Analysis
3.1 Shear-rigid Plate Theory for a Homogenised Medium

Assumptions. In the foregoing section, the effective mechanical properties of a layered structure is obtained as a single
equivalent layer. Thereby, instead of any advanced layer-wise theories (Almus et al., 2017c; ABmus, 2019), any single-layer
plate theory could be used for determining the natural frequencies. The selection of an appropriate plate theory poses two main
considerations:

1. Slenderness hypothesis (with regards to shear rigidity), which decides between a shear-rigid or shear-deformable theories.
The thinness of a structural element can be quantitatively measured by defining the slenderness (S) of a body (see Fig. 8):

S:= with Ly, := min{L;,L,} and h:= Z h, 4
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which for a shear-rigid theory, is limited to S < 0.1 (Altenbach, 2008) or more restrictive values such as s < 0.05 (Ugural,
2010). Taking into account the geometric data from Tab. 1, S~ 9.25 - 1073 results, which underlines the assumption.

2. Geometrical linearity or nonlinearity of the problem; in the former case, the nonlinear geometrical terms are neglected, and
thus a zero strain is imposed at the mid-surface (Ugural, 2010). In engineering practice, geometrical linearity is ensured by
imposing a limit on the maximum deflection, e.g., deflections smaller than the empirical values of wp,x < 0.5H (Birman,
2011) or wmax < 0.2H (Altenbach, 2008). However, a limitation (much smaller than 10°) must be applied to the rotations
too (Reddy, 2006), i.e., for a complete linear geometry, small strain and small rotations must be guaranteed.

Considering the thinness of the PV modules and restricting the study to first order deformations, the Kirchhoff-Love plate theory
is deemed reasonable. By adopting the engineering approach (as opposed to the direct approach) towards the formulation of such
thin walled structures, all considerations are reduced to a reference surface, i.e., the mid-surface. Namely, the assumption of
plane stress state degenerates the 3D continuum to a 2D counterpart. In this regard, Kirchhoff-Love hypotheses (Kirchhoff, 1850;
Reddy, 2006) are adopted, which assume that the transverse normals

e remain straight after deformation,

e are rigid, and

e remain perpendicular to the mid-surface after deformation.
Herein, the following additional assumptions are made:

e geometrical linearity:

o infinitesimal cross section rotations, and
o infinitesimal strains;

e physical linearity: material behaviour is linear elastic;
e material homogeneity: all material points have the same physical properties; and
e material isotropy: there is no preferred direction for physical properties.

Formulation. Considering the aforementioned simplifications, the eigenvalue problem of an isotropic plate is restated for a
homogenised medium. In the course of this procedure, an overbar (O0) denotes the respective effective material property, i.e., it
can be either Voigt (Ov) or Reuss (Or) homogenised values. The governing partial differential equation of thin plates in canonical
form is

ER

KAAw(X;, %o, 1) + phan(X;, X, t) = 0 with K = —
12 (1 _y )

®)

where K is the flexural rigidity of the homogenised plate, w is the deflection of the plate midplane, t is time, and (A := V- V) is the
Laplace operator. First, the Bernoulli approach is used to multiplicatively separate the temporal (T) and spatial (W) components:

w(Xi, Xo, 1) = WXy, Xo) T(1), (6)
which must satisfy Eq. (5), and thus
AAW(X;, Xo) — 2*W(X;, %) = 0, with A% := %“’2, (7a)
T+’ T(t) =0, (7b)
where w is the angular frequency of the vibration. Consequently, the oscillation equation takes the following form:
KAAW(X, %) Tt _ 5 ®

_— = =w
PhW(X;, X) T(t)
The time dependency can be represented by the harmonic ansatz T = Asin(wt + &) where « is a constant denoting the phase shift.
Consequently, the temporal component of Eq. (6) is obtained:
w(X;, X, 1) = W(X|, X;) sin(wt + ). ®

The spatial component is the solution of the classic NaviEr problem (a simply supported plate at all edges under a distributed
load), i.e, a double Fourier series:

M N
WO X) = D) Wy sin (L@;) X, sin (:—:) Xo, (10)

m=1n=1
where W,,,, is the amplitude of the eigenmode shape mn whose magnitude can be scaled arbitrarily; moreover, m and n are the

number of mode shape half-waves along the X; and X, axes, respectively. Finally, substituting this solution into Eq. (7a) results
in

ofm ) [K
m,,=5(?+ﬁ) S ¥mn=(.23..) v
1 2
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Fig. 5: Convergence study of linear and quadratic elements for two temperature extremes: (a) in-plane mesh sensitivity, and (b)
through-thickness mesh sensitivity.

where f,,,, is the natural frequency of the mode with m x n half-waves. Note that the angular frequency is related to its linear
counterpart (f) viaw = 2n f.

In order to compare the results of the closed-form ( f,,,,, Ymn e {1,2,3}) and the computational solution (f;, Vi € {1,...,9}),
the pseudo index r is defined as

2+ (m=-1) ifm=1
r=q28 4y (m+1) ifm=2, vne{1,23}. (12)
ZE+(m+3) ifm=3

The transformation into a sorted sequence f; follows the f; : f. < f,.1) convention.
3.2 Computational Model

A 3D FE model was prototyped using the MSC MARC/MENTAT commercial FE package (Javanbakht and Ochsner, 2017, 2018).
A python script was used to populate the models for the convergence and parametric studies. The former provides a nominated
model that is used to obtain the natural frequencies in the Results section. Note that the same geometrical parameters and material
properties in Tables 1-3 were used. Moreover, the real geometry of the boundary, i.e., the frame, and the solar cells were not
considered in the computational models, see Figs. 1 and 2. However, solid elements were used to represent each layer discretely.

Convergence study. In order to remove the sensitivity of the results to the size of elements, the convergence of the fundamental
frequency was studies. Since 3D elements were used in the FE prototype, discretisation of the elements in the X;-X; plane
(planar), and then along the X3 axis (through-thickness) was considered. To this end, the planar element mesh density (y) is
defined as (Javanbakht et al., 2017a,b)

1
Y=g 13)
where ¢ is the length of the square element in the X-y plane. Linear (8-node isoparametric) and quadratic (20-node isoparametric)
elements were nominated for the analyses. The planar refinement of mesh was carried out uniformly over several mesh densities
(y = 1 —58.82) while no element subdivisions were carried out in the thickness direction. As depicted in Fig. 5a, the quadratic
elements outperformed their linear counterparts and realised a quick convergence for mesh densities above 10. It was found
that the linear elements required a higher mesh density to obtain an adequate h-type convergence. In this particular application,
quadratic elements seemed to obtain a p-type convergence (Hellen and Becker, 2013) by moderate mesh densities. Moreover, the
convergence rate seemed to be almost insensitive to the material contrast at different temperature extremes. In this step, the mesh
density of 52.63 !/m was selected to study the sensitivity of the quadratic elements in the thickness direction.

In the thickness direction, mesh densities (y = 200 —2500) were considered over which no considerable sensitivity was observed,
see Fig. 5b. Finally, the planar mesh density of 52.63 !/m and the through-thickness mesh density of 1250 !/m was selected to
carry out the parametric study.
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Fig. 6: Bounds of the elastic modulus of the composite behaviour at various temperatures: (a) Voigt bound, (b) Reuss bound, and
(c) Voigt-Reuss difference.

4 Results and Discussion

4.1 Homogenisation

The bounds for a layered PV module are obtained using the Egs. (3a) and (3b). Namely for a unit area of a PV module, the
volumes of various layers are taken to calculate the volume fractions of skin and core layers. Consequently, the elastic moduli are
obtained as follows:

Ev(0) = /s [2.E, + hE()], (14a)
 hEOE,
Er(0) = Sh ) + hE (140)

The graphical representation of these equations is presented in Fig. 6. It can be seen that as a result of the homogenisation process,
the material properties along the principal directions are quite different. The degree of anisotropy for the elastic modulus could be
simply represented by the AE = Ey — Eg difference (ABmus et al., 2020). By increasing the temperature from —40 to +23°C, the
bandwidth increases from 5.635 - 10* to 6.307 - 10* N/mm? and remains about the same value by further increasing the temperature,
see Fig. 6c. Namely, at lower temperatures, the smaller bandwidth for elastic modulus indicates a better approximation for its
range of possible values. However, from about the room temperature upwards there is only a slight increase in the bandwidth.

In terms of temperature-independent properties, the Voigt and Reuss bounds for Poisson’s ratio are

vy = Yn[2hgvs + heve] = 0.3149, (15a)
hvevg

= =0.3113, 15b
2hgve + hevg (15b)

VR

for which the parameters of Tab. 2 were used. The bandwidth of the Poisson’s ratio estimates is 3.6 - 1073, which indicates a very
good approximation. Similarly, the Voigt and Reuss bounds for effective mass density are obtained:

pv = n[2hsps + hepe] = 2287.83 kefm, (16a)

hocps

= = 2035.61 ke/m*. 16b
2hspe + heps / (16b)

PR

The bandwidth of the mass density is 252.22 ¥¢/m*, which indicates a reasonable approximation.
4.2 Natural Frequencies and Mode Shapes

Mode shapes. The first nine mode shapes of the smeared composite is illustrated in Fig. 7a and the respective room-temperature
computational results are depicted in Fig. 7b. It is evident that the proposed analytical procedure results in the same mode
shapes as the computational model. In the FE model, the layers of PV module were modelled discretely and compared to
the analytical procedure, the numerical effort does not seem to have any apparent advantages in detecting the mode shapes.
Additionally, the Lanczos algorithm was used for the numerical solution of the eigenvalue problem, which is prone to produce
spurious eigenvalues (Cullum and Willoughby, 2002). Thus, the analytical solution seems to be a better alternative in this sense.
Nevertheless, the visual comparison of the mode shapes serves as a preliminary validation for both methods.

Natural frequencies. The Kirchhoff-Love plate theory for the homogenised medium was used to obtain the natural frequencies
of the PV modules, see Tab. 4. Moreover, following a discrete modelling of the layers, the computational results are also presented
in the same table. The obtained natural frequencies from both methods are related to their counterpart by Eq. (12). In order to
develop a better understanding, two temperature extremes of —40°C and 80°C were considered along with the conventional room
temperature of 23°C. All the values of the Voigt homogenisation demonstrated a negligible change at various temperatures. On
the contrary, the Reuss bound showed a decrease by almost two orders of magnitude at all temperatures. This behaviour can be
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Fig. 7: Nine mode shapes of the photovoltaic module: (a) results of analytical solution, and (b) results of the computational
solution at room temperature

attributed to the high contrast of mechanical properties, see Fig. 6c. Meanwhile, the computational results showed a decrease in
the natural frequencies as the temperature increased up to +23°C where higher modes seemed to suffer a sharper decrease. Further
increase in temperature resulted in additional decrease in the natural frequency, which became milder at higher frequencies. It
can be concluded that while the Voigt bound seems to be insensitive to the material properties, the Reuss bound strongly reacts
to the change of properties. The FE results followed the Voigt bound up to +15°C after which declined towards the Reuss bound.
This behaviour can be attributed to the increase of the material contrast at higher temperatures.

Fundamental frequency. In Fig. 8, the results of the analytical solution and the computational model are illustrated for the
fundamental frequency. As stated earlier, the Voigt bound seems to be insensitive to material contrast whereas the Reuss bound is
more sensitive in that sense. The Voigt and Reuss bounds mark a wide range for the possible results. Namely, the computational
results of the current study are in good agreement within the Reuss-Voigt range. More specifically, for the temperatures below
23°C, the Voigt bound matches the numerical results. By increasing the temperature, the computational results deviate from the
Voigt bound. Nevertheless, the analytical bounds confirm that the results are within the acceptable range.
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Fig. 8: Fundamental frequency results and the analytical bounds.

5 Final Remarks

Conclusion. The aim of the current study was to obtain a fast solution for the natural frequencies of PV modules. Although the
analytical solution was not able to pinpoint the exact values of the fundamental frequencies over the whole temperature range,
it provided a very good solution for the temperature range of —40 to 15°C. More specifically, the Voigt-Reuss range seemed to
contain both experimental and computational results. In contrast, the provided computational model was able to provide more
accurate results while demanding a sensible computational cost. The FE models were also able to mildly capture the effect of
material contrast as a result of temperature change. The fundamental frequency of the examined PV module ranged between
17.66-37.41 Hz by decreasing the temperature. The value of 28.77 Hz was obtained for the room temperature fundamental
frequency.

As many experimental efforts provide ranges for the natural frequencies rather than exact points, the introduced analytical method
could be used to obtain a valid range for the results. On the other hand, if the computational procedure is preferred, the mesh
sensitivity study recommends the use of quadratic elements and discrete modelling of the layers in order to alleviate the issue of
high material property contrast.

Contributions. The major contributions of the current work can be listed as follows:

1. A new analytical procedure was suggested to obtain a range for the fundamental natural frequencies of PV modules or

Tab. 4: Obtained natural frequencies from the analytical solution combined with the Voigt (fV), and Reuss (f®) homogenisation
schemes versus the results of the computational modelling (<)

Homogenisation Mode (mn)

scheme 11 21 31 12 2 32 13 23 33

Analytical results

f V. (=40°C) [Hz] 37.55 60.08 97.64 127.68 150.21 187.76 277.89 300.42 337.97
fv (+23°C)[Hz] 37.46 59.94 97.41 127.38 149.86 187.32 277.24 299.72 337.18
fV (+80°C) [Hz] 37.46 59.94 97.41 127.38 149.86 187.32 277.24 299.72 337.18

[

[

[

fR (=40°C) [Hz] 12.41 19.85 32.25 42.18 49.62 62.028 91.80 99.25 111.65
fR (+23°C) [Hz] 1.14 1.82 2.96 3.88 4.56 5.69 8.43 9.11 10.26
fR (+80°C)[Hz] 0.29 0.47 0.76 0.99 1.17 1.46 2.16 2.34 2.63

Computational results

fC (—40°C)[Hz] 3741 59.49 96.58 12697 14838 18434  273.67 29445 32934
fC (+23°C)[Hz]  28.77 42.12 62.77 78.46 8881 10607  146.88 15637  172.37
fC (+80°C)[Hz]  17.66  26.93 4226 5452  63.65 78.87 11560 12470  139.89
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possibly other anti-sandwich panels.

2. A clear computational procedure was described that can handle the high material contrast issue and produce more accurate
results.

3. An analytical approximation was provided for the fundamental frequency of the PV modules in the temperature range of
—-40 to 15°C.

Outlook. The current study can be extended by conducting a parametric study to cover various sizes of commercial PV modules;
considering the damping characteristics of the structure by considering the enclosing frame in the computational procedure or
introducing a damping coefficient in the analytical procedure. Temperature-controlled experiments would also be beneficial for
the validation of the extreme behaviours.
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