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B-Spline meshing for high-order finite element analysis of multi-physics problems
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Abstract: Multi-physics problems often involve differential equations of higher-order, which cannot be solved with standard
finite element methods. B-splines as finite element basis functions provide the required continuity and smoothness. However,
the mesh generation for arbitrarily shaped domains is non-intuitively and traditional techniques often lead to distorted elements.
Here, isoparametric B-spline based meshes for curves, surfaces, and volumes are designed. The error of the homeomorphic
transformation into curved boundaries is estimated. For selected two and three-dimensional shapes, the knot vectors and the
control points are calculated. Exemplarily, a finite element analysis of a helical structure subjected to a chemo-mechanical
deformation with phase decomposition illustrates the proposed strategy.
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1 Introduction

Challenging engineering problems often involve weakly or strongly coupled fields, where mechanical parts have to account for
changes in temperature, electric fields, phase separation, chemical potentials, and solid-fluid interaction. Numerical simulations of
such problems often include partial differential equations (PDEs) of higher-order, e.g., mechanical deformations in combination
with Cahn-Hilliard diffusion (Stein et al., 2017), Kuramoto-Sivashinsky flow interfaces (Anders et al., 2012a), or high-order
topology-optimization and phase-field fracture (Borden et al., 2014; Dede et al., 2012; Hesch et al., 2016). From a numerical
point of view, the solution of such PDEs can be achieved in different ways. The simplest way is the finite difference method with
all their pros and cons, particularly their restriction to rectangular domains. This geometrical limitation can be overcome by the
finite element method (FEM) whereby standard techniques require mixed formulations of the high-order terms which come with
additional effort and, in part, unclear boundary constraints, cf. (Anders et al., 2012b). An efficient way to fulfill all continuity
requirements of the FEM is the choice of sophisticated basis functions, e.g., non-rational basis spline functions (B-splines) or
non-uniform rational B-spline functions (NURBS). These functions have become popular in the context of the Isogeometric
Analysis (IGA), cf. (Cottrell et al., 2009). However, the focus of the IGA is on the geometry description, which should comply
with shapes generated by computer-aided design. NURBS typically describe these models’ geometry and may go along with a
local C0-continuity, which is sufficient to solve classical second-order PDEs. In opposite to this concept, we refer here to the
weak formulation of high-order PDEs and apply splines as finite element basis functions. These basis functions offer adequate
accuracy, robustness, and, most importantly, versatility in terms of higher-order continuity and smoothness.

For finite element computation, we consider a system or a body with domain Ω and local material points at x ∈ Ω, which evolve
with time t. For (each component of) the unknown fields, we make an approximation of the form

uh(x, t) =
∑

A∈Ω

uA(t)NA(x) , (1)

where uA are the local values, and NA characterize the respective basis functions. The set A denotes the degrees of freedom in
the solution space Vh . The required continuity of the solution uh ∈ Vh ⊂ H k+1(Ω) can only be fulfilled by means of basis
functions NA, which are piecewise smooth and globally at least Ck-continuous. Lagrangian finite element basis functions provide
C0-continuity only, an enhancement by other polynomials is extremely elaborate, cf. (Zienkiewicz and Taylor, 2000), and so
spline functions are a natural choice as FEM basis functions of higher-order. They are defined recursively for a given degree
(order) p and provide adjustable continuity up to Cp−1.

In opposite to the classical node-based FEM, the geometrical mesh of B-spline basis functions differs from the control parameter
mesh. The latter is obtained by piecewise linear interpolation of the control points PA ∈ Rd , d is the coupled problem’s dimension.
The geometrical mesh consists of patches and knot spans. This duality makes the mesh generation for arbitrarily shaped domains
non-intuitively. In practice, the FEM mesh is often generated on a reference rectangle in two dimensions or a reference cuboid
in three dimensions and then mapped to the real shape. This results in computational domains with patchy refinements and
distorted elements, especially for circular domains or along holes. Figure 1 illustrates such a backward engineering, where the
wanted eighth of a ball — a four-faced shape — is derived from a uniformly meshed six-faced cube. Clearly, this procedure gives
wedge-shaped internal elements. Because the exploitation of symmetry is of limited use in multi-physics simulations, we prefer
to mesh the whole ball instead.
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Fig. 1: Backward engineering of a sphere section out of a tensor-product meshed cube: two faces of the cube are reduced to two
lines, one is curved. This procedure gives wedge-shaped internal elements.

All numerical simulation techniques come along with a certain error of the geometry approximation. Like stability and contact
problems, some simulations are very sensitive against geometric imperfections, and different strategies have been developed to
tackle these problems. For example, the NURBS based IGA provides a better geometry description (Predrag and Marinkovic,
2013). Also, surface reconstruction coupled with optimization algorithms for scattered 3D data points have been developed
(Makhlouf et al., 2019), but often specific assumptions are made like closed lines (Zhao et al., 2011) coupled with periodic
shape functions. The step to obtain 3D volumes from watertight trimmed surface patches is not trivial (Sederberg et al., 2008).
Alternatively, geometry approximation may improve when knots are free variables subjected to an optimization problem (Gálvez
and Iglesias, 2013; Dung and Tjahjowidodo, 2017); examples involve genetic algorithms (Gálvez et al., 2012) or level set
optimization (Noël et al., 2020). However, such schemes are numerically very expensive, require specialized software, and are
only feasible for a few specific problems. Moreover, in multi-field problems with moving boundaries, local deformations can
change with time over the entire domain, which indeed differs from the initial domain, as obtained, e.g., by the optimization
strategy proposed in (Xu et al., 2011). Adaptive strategies may be then applied to define the new knot positions, but they are
sensitive to the variation of the curvature and have a high computational cost (Li et al., 2005). Here instead, we aim for a uniform
initial mesh generation.

In this technical paper, we suggest a strategy to manually generate ‘good’ Ck-continuous meshes for basic geometrical forms,
specifically for a circular domain, a cylinder, and a sphere. The meshes are good in the sense that distorted elements are avoided,
the meshing is as uniform as possible and minimizes the geometrical discretization error in that way. For the finite element
approximation, we employ B-splines, which are a special case of NURBS, as basis functions of the whole domain.

The paper is organized as follows: In the following Section 2, we introduce the B-spline basis functions shortly. Here we also
outline the common technique of curve approximation. Section 3 is devoted to our proposed strategy for the isoparametric
FEM meshing of curved domains; the geometrical discretization error is estimated, and selected approximations are described in
detail. In Section 4, we present a numerical example, namely a deforming helical curve under chemo-mechanical loading. In the
Appendix, the control point positions for the presented meshes are listed.

2 Basics

We start considering a one-dimensional unit-length domain and introduce a local coordinate ξ ∈ [0, 1]. The set of non-decreasing
discrete values {ξ0, ξ1, . . . , ξN−1} := Ξ is called a knot vector; ξi is the i th knot, and ξ0 = 0, ξN−1 = 1. A knot may repeat with
multiplicity m. The unique subset Ξu = {ξu0 , ξ

u
1 , ..., ξ

u
Nu−1} ⊆ Ξ splits the domain into intervals (elements) and represents the

element corners, whereby the knots do not have to be equidistant.

Between two knots ξi and ξi+1, a piecewise-constant shape function of order zero is defined as an indicator function.

Ni,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise
∀i ∈ {0, . . . , N − 1} (2)

Univariate B-splines of order p > 0 are defined recursively by the Cox-de Boor formula (de Boor, 1972; Cox, 1972)

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ) ∀i ∈ {0, . . . , n− 1} (3)

and terminated with condition (2); a ratio of the form 0/0 is defined as zero. The number of knots N, the number of basis functions
n, and the polynomial order p are related by N = n+ 1 + p. The number of unique knots Nu can only be determined for specific
cases.
B-spline functions are linearly independent and establish a partition of unity,

n−1∑

i=0

Ni,p (ξ) = 1 ∀ξ ∈ [0, 1] . (4)

The support of each B-spline Ni,p is compact and contained in the interval
[
ξi, ξi+p+1

]
. Additionally, each spline is a non-negative

function, i.e., Ni,p (ξ) ≥ 0, for all ξ. From the partition of unity follows 0 =
∑

i ∇Ni,p .
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Fig. 2: Order elevation: Indicator function for knot vector Ξ = {0, 1} (left). Order elevation from Ξ = {0, 1} to Ξ = {0, 0, 1, 1}
together with linear basis functions N0,1 and N1,1 (middle). A second elevation from Ξ = {0, 0, 1, 1} to Ξ = {0, 0, 0, 1, 1, 1}
gives the three quadratic basis functions N0,2,N1,2, and N2,2 (right).

2.1 Finite element basis functions

In one dimension, the B-splines directly serve as basis functions, NA := Ni,p . For a knot vector Ξu without internal multiplicity
and order p = 1, the B-splines coincide with piecewise linear finite element basis functions, which are C0-continuous. For
higher-order, p ≥ 2, B-splines’ shapes and properties differ significantly from standard finite element basis functions. For
example, the quadratic B-Splines Ni,2 are globally smooth and C1-continuous. Each quadratic B-Spline spans over four knots.

For two- and three-dimensional domains, multivariate B-spline functions can be derived by tensor products of univariate functions.
The shape functions in two dimensions read in the two directions 1 and 2 with corresponding coordinates ξ(1) and ξ(2)

NA(ξ
(1), ξ(2)) := Ni1,p1 (ξ

(1)) ∙ Ni2,p2(ξ
(2)) with A = i1 + i2n1 , (5)

and in three dimensions

NA(ξ
(1), ξ(2), ξ(3)) := Ni1,p2(ξ

(1)) ∙ Ni2,p2 (ξ
(2)) ∙ Ni3,p3(ξ

(3)) with A = i1 + i2n1 + i3n1n2 , (6)

where the functions Ni j,p are defined analogously by the Cox-de Boor recursion formula (3) for the corresponding polynomial
order p and nj control points in the j ∈ {1, 2, 3} direction. The equations illustrate that the global index A of our shape functions
NA is directly associated with the control mesh’s indices i1, i2, i3.

2.2 Meshing and curve approximation

A linear combination of univariate B-spline basis functions Ni,p approximates a spatial curve C by

Ch(ξ) =
n−1∑

i=0

Ni,p(ξ)Pi , (7)

where the control points Pi do not depend on ξ and typically do not lie on the curve. The finite element approximation (7) is
isoparametric in the sense that the same basis functions Ni,p are used for both description of geometry and approximation of
unknown field vales uh in (1).

For finite element meshing, let us start with a one-element straight line and two knots Ξ = {0, 1} for simplicity. This knot vector is
sufficient to define the indicator function N0,0 of Eq. (2), see Fig. 2 (left), but not sufficient to define higher-order basis functions.
A continuous finite element mesh requires shape functions of at least p = 1, which can be obtained by order elevation. To do so,
the multiplicity of all knots in Ξ is increased by one, which gives Ξ = {0, 0, 1, 1}. With recursion formula (3), this results in the
linear shape functions N0,1 and N1,1 of Fig. 2 (mid). Another order elevation from Ξ = {0, 0, 1, 1} to Ξ = {0, 0, 0, 1, 1, 1} raises
the order to p = 2 and results in the quadratic shape functions N0,2,N1,2, and N2,2, see Fig. 2 (right).

A mesh refinement, i.e., additional finite elements, can now be designed by knot insertion. With ξi < ξj < ξi+1, a new1 position
ξj is inserted in the knot vector Ξ and splits the corresponding interval. Each inserted knot adds a shape function of the current
order p. In our example, starting with the quadratic shape functions N0,2,N1,2 and N2,2 and inserting a knot at ξj = 1/3 gives
a new quadratic shape function N3,2; see Fig. 5 (mid) and Fig. 4. However, this additional knot also modifies the former shape
functions since they are defined recursively via formula (3). The modification is repeated with every knot insertion; see Fig. 5
(right).

By using both the knot insertion and the order elevation technique, the three refinement strategies (h, p, k) are possible: h-
refinement maintains the order and constructs a finer mesh, i.e., element size h is reduced; p-refinement maintains the mesh and
increases the order, i.e., p is increased; k-refinement refines the mesh and elevates the order (first h is reduced and then p is
increased). We emphasize that order elevation and knot insertion do not commute.

1Technically, the ’new’ position can coincide with an existing knot to generate a kink but we aim for a continuous differentiable geometry description here.
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Fig. 3: Knot insertion: Open knot system with Ξ = {0, 0, 0, 1, 1, 1} and quadratic basis functions (left). Insertion of a knot at
ξ3 = 1/3 (middle) and at ξ4 = 2/3 (right) and corresponding quadratic shape functions Ni,p=2. The elements are indicated
by black markers in the green stripe below the shape functions.

Fig. 4: Modification of basis functions due to knot insertion at ξ = 1/3

We can now specify the number of unique knots to be Nu = n− 1, or equivalently Nu = N − 2 − p. For Nu equidistant unique
knots, we obtain a uniformly partitioned domain with elements of length 1/(Nu − 1). For repeated knots with multiplicity m, the
continuity reduces to Cp−m at that knot. If the first and the last knot repeat m = p+ 1 times, then the system is called an open
knot system. Such open knot systems are required to define boundary values of uh .

Traditionally, during knot insertion, the shape of the parameterized geometry is not modified. New control points at the edges
are defined as Pnew

0 = P0 and Pnew
n = Pn−1, and the intermediate control points are calculated by the convex combination

Pnew
i = αiPi + (1 − αi)Pi−1 1 ≤ i ≤ n− 1 (8)

where the weight αi = (ξj − ξi)/(ξi+1 − ξi) is constructed from the distances of the newly inserted knot ξj to its nearest neighbors
ξi and ξi+1. In that way, the underlying geometry does not change during refinement. That is, for a linear connection P0 − P1 and
order p = 1, all further refined control points lie on the straight line or, as depicted in Fig. 6, for a bow described by three control
points and p = 2, the refined mesh has the same curvature.

Independent of the geometry, a new set of control points arises after the knot insertion process, and so a different set of unknowns
is used for the refined mesh. Therefore a spline approximation is neither hierarchical nor refers to previous nodal positions like
in Lagrangian finite elements.

3 Isoparametric approximation of a curved geometry

This section will outline a strategy to generate the B-spline mesh for a given analytically described boundary geometry. For
simplicity, we suggest to define continuity requirements and the order of approximation at first. Here, we will mostly refer to
C1-continuous quadratic B-spline meshes, but the outlined strategy also works for other demands.
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Fig. 5: Traditional curve approximation by quadratic basis functions: the control points Pi are shown as red dots. Insertion of the
knots ξ3 = 1/3 (middle) and ξ4 = 2/3 (right); the newly calculated control points Pi do not change the curvature.

3.1 One-dimensional curve approximation

Without loss of generality, we describe a differentiable curve C with cartesian coordinates. The aim is now to approximate C(x, y)
by a parametric curve C(ξ) together with a set of control points Pi ,

C =

(
x
y

)

=

n−1∑

i=0

PiNi(ξ) (9)

with Pi =
(
Px
i , P

y
i

)T and for i ∈ {0, ..., n− 1}. We choose the following procedure:

B Define positions (xi, yi) on curve C associated with the unique knot values ξui partitioning the curve into nel = n − 2
elements.

B At the boundary for an open knot system, curve and control points coincide:

P0 = C(x0, y0) ≡ C(ξu0 ) (10)

Pn−1 = C(xn, yn) ≡ C(ξun ) (11)

B At the positions (xi, yi), calculate the slope

mi := ∂xC |xi , (12)

and formulate the tangents’ equations ti(x) = yi + mi(x − xi).

B Consider neighboring points i − 1 and i and determine the remaining control point coordinates from the corresponding
tangents’ intersection:

ti(x) = yi + mi(x − xi)

ti−1(x) = yi−1 + mi−1(x − xi−1)

}
ti=ti−1
−−−−−→ Px

i =
yi−1 − yi + ximi − xi−1mi−1

mi − mi−1
→ Py

i = ti(P
x
i ) (13)

B Continue for all i ∈ {1, ..., n− 2}.

Example: control points of a quarter circle. We chose here x ∈ [0, 1] to model the arc of a unit circle described by the
analytical function x2 + y2 = 1 or the curve

C =

(
x

(
1 − x2) 1

2

)

.

First, the arc is partitioned into nel elements using a uniform open knot vector Ξ and the corresponding unique knot vector Ξu ,
which read

Ξ = {ξ0, ξ1, ξ2, ..., ξN } = {0, 0, 0, 1/nel, 2/nel, ...nel−1/nel, 1, 1, 1} , nel ≥ 1,

Ξu = {ξu0 , ξ
u
1 , ...ξ

u
n } = {0, 1/nel, 2/nel, ...nel−1/nel, 1} .

The boundary is fixed at ξu0 = 0 and ξun = 1 and so

P0 =

(
1
0

)

, Pn−1 =

(
0
1

)

.
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Fig. 6: Approximation of a quarter circle with nel = 2, 3 and 16 elements and n = 4, 5 and 18 control points (red dots), and
maximum deviation between parametric and analytical curve over the number of elements.

The nel elements shall have the same length, given by the corner positions xi = cos(ϕi) and yi = sin(ϕi) with ϕi = iπ/n. The slope
at point (xi, yi) is then

mi = −
xi
yi
,

which gives together with Eq. (13) the control points

Px
i =

yi−1 − yi − x2
i/yi + x2

i−1/yi−1

−xi/yi + xi−1/yi−1

, Py
i = yi − xi/yiPx

i , and Pi =

(
Px
i

Py
i

)

for all i ∈ {1, ..., n− 2}.
In Fig. 6, the approximation is illustrated for n = 4, n = 5 and n = 18 control points and nel = n− 2 elements. The control points
are shown as red dots. In the right plot of Fig. 6, the maximum difference of the parametric and the analytical curve is plotted for
different numbers of elements. From the double-logarithmic scale, it can be seen that for nel = 2, . . . , 512 elements the maximum
radial deviation Δr =


rana − rpar




2 is less than 10−3, . . . , 10−12, respectively.

Example: control points of cosine curve. Next, we parameterize a trigonometric function within x ∈ [0, π]. The analytical
function y = cos(x) or the curve

C =

(
x

cos(x)

)

shall be modeled with nel elements. As before, the boundary control points are defined by the functional values

P0 =

(
1
0

)

, Pn−1 =

(
0
1

)

.

The remaining control points are calculated from the intersecting tangents. The slope mi = − sin(xi) can be expressed with the
identity sin2(x) + cos2(x) = 1 as mi = −(1 − y2

i )
1/2. It is zero for y = ±1 which gives for a one element domain the constant

tangents t0 = 1 and t1 = −1, which do not intersect. Using Eq. (8), we get an intermediate value for P1, which gives the straight
line, as shown in Fig. 7 (left). We need at least one additional tangent to find intersections. So we divide the arc into nel = 2
elements (or n = 4 control points) and chose x1 = π/2, y1 = 0 to obtain m1 = −1. In this way, the new tangent is t1 = −(x − π/2),
and the new tangent t2 is the old tangent t1 = −1. At the intersection of the neighboring tangents t0 = t1 and t1 = t2, we find the
new control points

P1 =

(
π
2 − 1

1

)

and P2 =

(
π
2 + 1
−1

)

,

respectively. The result is shown in Fig. 7. This procedure has to be repeated in each interval and for several inserted knots ξj ,
j = 1, . . . , Nj , until the wanted accuracy is reached.

3.2 Two-dimensional surface approximation

Because a curve can just map the boundary, we now consider a two-dimensional domain, originally meshed uniformly with square
elements, Fig. 3. At the left boundary (at ξ = 0) only the basis function N0,2 is equal to unity, N0,2(ξ = 0) = 1, and all other basis
functions are zero at that position. The same situation is given at the right boundary ξ = 1 and Nn,2 = 1. For now, let us focus on
the left boundary of a two-dimensional square domain given in the horizontal direction at ξ(1) = 0. Then, ξ(2) is the free variable
in the vertical direction. The surface

S(ξ(1), ξ(2)) =
∑

A

PANA(ξ
(1), ξ(2)) =

n1∑

i1=0

n2∑

i2=0

Pi1,i2Ni1(ξ
(1))Ni2(ξ

(2)) (14)

6
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Fig. 7: Approximation of a cosine curve with nel = 1, 2 and 16 elements and n = 3, 4 and 18 control points (red dots), and
maximum deviation between parametric and analytical curve over the number of elements.

can be reduced at the left boundary ξ(1) = 0 to

S(ξ(1) = 0, ξ(2)) =
∑

i1

∑

i2

Pi1,i2 Ni1 (ξ
(1) = 0)

︸         ︷︷         ︸
≡1 if i1=0, else 0

Ni2(ξ
(2)) =

∑

i2

P0,i2Ni2(ξ
(2)) = C(ξ(2)) (15)

and similar expressions at the other boundaries. The resulting equation (15) is similar to that of a single curve given in Eq. (9).
The surface boundary control points P0,i2 can be treated like the control points Pi of the one-dimensional curve. We will do this
here for the example of a square mesh with n1 = 5, n2 = 5; see Fig. 8 (left). This square shall be mapped to a round disc.

We identify first the domain’s length with the circle’s diameter (or zoom the square domain uniformly to obtain the wanted
diameter). Then we consider the control points P0, P4, P20, and P24 as fixed boundary points. The remaining points at the
boundary are now moved according to the one-dimensional algorithm of Section 3.1.

Inside the circular disc, different control point arrangements can be thought off. In the simplest case, the nine internal control
points are left unchanged. This results in a somewhat distorted mesh, as displayed in Fig. 8 (mid). A more regular mesh is
achieved when all internal control points are moved to straight lines, i.e.,

Px
21 = Px

16 = Px
11 = Px

6 = Px
1 , Py

15 = Py
16 = Py

17 = Py
18 = Py

19, and so on. (16)

The corresponding mesh is displayed in Fig. 8 (right), and all control point coordinates are listed in the appendix.

We remark that for quadratic B-splines, the set of control points describing the contour of one element is given by the nine
surrounding control points, e.g., the center element in Fig. 8 is determined by P6, P7, P8, P11, P12, P13, P16, P17, and P18. Therefore,
changing the position of the center control point P12 influences the structure of all nine elements, while changing P0 affects the
left bottom element only.

The effect of different internal control point arrangements is displayed in Fig. 9. Here the boundary is mapped as before, but inner
points are moved towards the center. This leads to an annular center element. Such a mesh can be used, for example, to account
for an inclusion or to simulate heating from a laser spot inside the body. The third transformation of Fig. 9 shifts the external
control points again. Then, the resulting contour is rectangular but with a round internal element.

We remark that mapping a square to a circular domain is a homeomorphic transformation (Gamelin and Greene, 1999). Only
such homeomorphic transformations can be obtained by re-arranging control points. A counterexample is a plate with a hole that
cannot directly be mapped in this way. Here, the material parameter of the center element above could be adapted accordingly.
Alternatively, a section of the plate with a hole could be modeled, replacing the open knot boundary with periodic boundary
conditions. An ultimate counterexample, which is not realizable in this way, is a trefoil knot, which is homeomorphic to a torus.

3.3 Three-dimensional geometry approximation

For a three-dimensional body, the mapping is extended to a volume

V (ξ(1), ξ(2), ξ(3)) =
∑

A

PANA(ξ
(1), ξ(2), ξ(3)) =

n1−1∑

i1=0

n2−1∑

i2=0

n3−1∑

i3=0

Pi1,i2,i3Ni1 (ξ
(1))Ni2(ξ

(2))Ni3 (ξ
(3)) (17)

and, again, a homeomorphic transformation shall be found between a cube and the wanted body. The procedure is given
exemplarily for the two solids’ meshing: a full cylinder and a full sphere (ball), see Fig. 8. The cylinder can easily be extended
from the circular disc. A repetition of the disc’s control points in the axial direction gives a solid body mesh. An algorithm for
the control point determination of a ball is described in the following.
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Fig. 8: Mapping of a square mesh to a circular plate with adapted boundary and internal control points.

Fig. 9: Different two dimensional spline-based meshes and variation of internal control points.

Control point determination for a 3D ball We describe the control points’ positions with a cartesian coordinate system with
origin in the center of the structure. First, we set the eight cube corner-points on the unit sphere at coordinates (±1/

√
3,±1/

√
3,±1/

√
3).

They all have an equal great-circle distance with an inscribed angle of 2 ∙ arccos(
√

2/3) =̂ 70.52◦. Each great-circle arc, which
describes the shortest distance between two neighboring points on a sphere, then connects two corner points of the original cube.
The arcs’ remaining control points map like shown in Fig. 6 with the minor difference that the procedure needs to be applied to
an arc of 70.52◦, see Fig. 11 (left).
For further description, we employ the geometrical symmetry to reduce the number of control points that need to be calculated,
see Fig. 11; the remaining points follow by rotation or reflection at the symmetry planes. The control points at the surface are
determined in analogy to the two tangents intersection point algorithm of the one-dimensional case. On a surface, three tangent
planes are needed to intersect. The tangent plane of a surface is given by (x − p) ∙ n = 0 where p denotes the support-vector,
pointing from the origin to a specific point on the sphere, see the black lines in Fig. 11, and n is the outward normal of the plane.
On the unit sphere, we identify p = n. To determine a control point position P, we need three planes with normals n1, n2, n3

and solve (x − ni) ∙ ni = 0 for each i = 1, 2, 3 so that

x = N−1 ∙ (n2
1, n

2
2, n

2
3)
T = N−1 ∙ (1, 1, 1)T with N = [n1, n2, n3] . (18)

The new control point P is positioned at x, as indicated in Fig. 11 (right). We remark again that the inserted surface knot positions
have to be chosen carefully for a general geometry because parallel tangent planes do not give a solution. For different possible
arrangements of the inner control points, we refer to Section 3.2 and Fig. 8. For numerical reasons, we recommend to avoid
wedge-shaped internal elements. A possible choice of control points for a sphere is listed in the Appendix.

For a more refined mesh, either element subdivision can be achieved by using the knot insertion technique (8) with the given
control points (if the underlying mesh accuracy is sufficient) or the calculation procedure has to be repeated with more elements
and, therefore, higher resolution.

4 Example: diffusion induced deformation

Here we present briefly the FEM computation of a helical structure subjected to chemo-mechanical fields. The mechanical response
of the structure is determined by the phase decomposition of an initially homogenous binary mixture. Such a decomposition can
be observed after solidification, or while battery (de)charging, we refer to (Weinberg et al., 2018; Werner and Weinberg, 2019)
for more details.

The structure’s chemical state is described by the normalized concentration c and its mechanical response by the deformation
gradient F. The fields follow two coupled partial differential equations, namely the Cahn-Hilliard equation of diffusion Ûc =

∇ ∙ (M(c)∇δcΨ(c, F)) with a degenerate mobility term M , and the quasi-static balance of linear momentum ∇ ∙ (∂FΨ(c, F)) = 0
in the framework of finite elasticity. Both equations are based on the free energy density Ψ, which has the form

Ψ(c, F) = c ln(c) + (1 − c) ln(1 − c) +
5
2

c(1 − c) + κ |∇c|2 + Ji

[
K(c)

4
(J2

e − 1 − 2 ln(Je)) +
G(c)

2
(J−

2
3 tr(FTF) − 3)

]

(19)
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Fig. 10: Mapping of a cubic volume mesh to a cylinder and a ball.

Fig. 11: Determination of control points for a ball: great circle arc (upper line) and intersecting tangent planes (lower line).

where J = det(F) = JeJi(c) is the multiplicatively decomposed determinant of the deformation gradient (Werner and Weinberg,
2019). Elastic bulk and shear modulus K and G are given as a concentration-dependent convex combinations of the two species,
and κ is a constant surface coefficient.

The Cahn-Hilliard equation is a fourth-order PDE that requires at least C1 continuity for finite element approximation. Therefore
we meshed the structure with quadratic B-splines. Starting from a uniformly meshed rectangular block of 3×3×120 elements, we
derived the helical geometry as outlined in Sect. 3. The helix is initially loaded with c = 0.4, the ends are fixed, and it decomposes
with time then. In Fig. 12, the initial mesh and the deformed structure are displayed. It can clearly be seen that the deformation is
not uniform. As a consequence of the phase decomposition, the phases with a high concentration c show swelling and volumetric
expansion, whereas the phases with low concentration relax. This results in a rather triangular cross-section of the initially
circular helix. This deformation is magnified by the different stiffnesses of the material given by the concentration-dependent
(elastic moduli of the) material.

Fig. 12: Mesh of a helical structure and chemo-mechanical response: high concentration phases (red) induce swelling, low
concentration phases relax.

5 Summary

Standard FEM ansatz functions do not allow to solve high-order PDEs directly, and a natural way to achieve the required Cp

continuity is the use of B-splines of order p+ 1 as finite element basis functions. Such spline-based FEM comes at the expense of
a non-intuitive design of the geometrical mesh. Because multi-physics problems, especially with reaction-diffusion terms, require
a mesh without distorted elements, we present a strategy to obtain B-spline-based meshes for curves, surfaces, and volumes. For
curved objects, we determine the control points and estimate the error of geometry approximation.

The isoparametric B-spline based meshes are based on homeomorphic transformations which allow us to deduce elementary

9
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geometrical shapes from rectangular plate or cuboid solid tensor-product meshes. We present the knot vectors and the control
points for a circular plate, a cylinder, and a sphere for practical use. To show our strategy’s versatility, we adapt the presented
algorithm to mesh a helix structure and show the chemo-mechanically induced deformation due to phase decomposition.
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Appendix

In Table A.1, the control points for a round disc are given. The model is meshed with 9 square finite elements.

Knots and control points for a 3D-ball are presented in Table A.2. The volume mesh uses brick elements.

Tab. A.1: Control points PA = (Px
A
, Py

A
)T of a 3× 3 element round disc, where A = i1 + i2n1 and Ξ1 = [0, 0, 0, 1/3, 2/3, 1, 1, 1] ≡ Ξ2.

A Px
A

Py
A

0 -0.7071 -0.7071
1 -0.5176 -0.8966
2 0 -1.0353
3 0.5176 -0.8966
4 0.7071 -0.7071

A Px
A

Py
A

5 -0.8966 -0.5176
6 -0.5176 -0.5176
7 0 -0.5176
8 0.5176 -0.5176
9 0.8966 -0.5176

A Px
A

Py
A

10 -1.0353 0
11 -0.5176 0
12 0 0
13 0.5176 0
14 1.0353 0

A Px
A

Py
A

15 -0.8966 0.5176
16 -0.5176 0.5176
17 0 0.5176
18 0.5176 0.5176
19 0.8966 0.5176

A Px
A

Py
A

20 -0.7071 0.7071
21 -0.5176 0.8966
22 0 1.0353
23 0.5176 0.8966
24 0.7071 0.7071

Tab. A.2: Control points PA = (Px
A
, Py

A
, Pz

A
)T of a 3×3×3 element ball, where A = i1 + i2n1 + i3n1n2, knotvector in first direction

Ξ1 = [0, 0, 0, 1/3, 2/3, 1, 1, 1] and knotvector in the remaining directions Ξ2 = Ξ3 = Ξ1.

A Px
A

Py
A

Pz
A

0 -0.5774 -0.5774 -0.5774
1 -0.4369 -0.6476 -0.6476
2 0 -0.7347 -0.7347
3 0.4369 -0.6476 -0.6476
4 0.5774 -0.5774 -0.5774
5 -0.6476 -0.4369 -0.6476
6 -0.4369 -0.4367 -0.8584
7 0 -0.5399 -0.9294
8 0.4369 -0.4367 -0.8584
9 0.6476 -0.4369 -0.6476

10 -0.7347 0 -0.7347
11 -0.5399 0 -0.9294
12 0 0 -1.0443
13 0.5399 0 -0.9294
14 0.7347 0 -0.7347
15 -0.6476 0.4369 -0.6476
16 -0.4369 0.4367 -0.8584
17 0 0.5399 -0.9294
18 0.4369 0.4367 -0.8584
19 0.6476 0.4369 -0.6476
20 -0.5774 0.5774 -0.5774
21 -0.4369 0.6476 -0.6476
22 0 0.7347 -0.7347
23 0.4369 0.6476 -0.6476
24 0.5774 0.5774 -0.5774
25 -0.6476 -0.6476 -0.4369
26 -0.4369 -0.8584 -0.4369
27 0 -0.9294 -0.5399
28 0.4369 -0.8584 -0.4369
29 0.6476 -0.6476 -0.4369
30 -0.8584 -0.4367 -0.4369
31 -0.4369 -0.4369 -0.4369

A Px
A

Py
A

Pz
A

32 0 -0.4369 -0.4369
33 0.4369 -0.4369 -0.4369
34 0.8584 -0.4367 -0.4369
35 -0.9294 0 -0.5399
36 -0.4369 0 -0.4369
37 0 0 -0.4369
38 0.4369 0 -0.4369
39 0.9294 0 -0.5399
40 -0.8584 0.4367 -0.4369
41 -0.4369 0.4369 -0.4369
42 0 0.4369 -0.4369
43 0.4369 0.4369 -0.4369
44 0.8584 0.4367 -0.4369
45 -0.6476 0.6476 -0.4369
46 -0.4369 0.8584 -0.4369
47 0 0.9294 -0.5399
48 0.4369 0.8584 -0.4369
49 0.6476 0.6476 -0.4369
50 -0.7347 -0.7347 0
51 -0.5399 -0.9294 0
52 0 -1.0443 0
53 0.5399 -0.9294 0
54 0.7347 -0.7347 0
55 -0.9294 -0.5399 0
56 -0.4369 -0.4369 0
57 0 -0.4369 0
58 0.4369 -0.4369 0
59 0.9294 -0.5399 0
60 -1.0443 0 0
61 -0.4369 0 0
62 0 0 0
63 0.4369 0 0

A Px
A

Py
A

Pz
A

64 1.0443 0 0
65 -0.9294 0.5399 0
66 -0.4369 0.4369 0
67 0 0.4369 0
68 0.4369 0.4369 0
69 0.9294 0.5399 0
70 -0.7347 0.7347 0
71 -0.5399 0.9294 0
72 0 1.0443 0
73 0.5399 0.9294 0
74 0.7347 0.7347 0
75 -0.6476 -0.6476 0.4369
76 -0.4369 -0.8584 0.4369
77 0 -0.9294 0.5399
78 0.4369 -0.8584 0.4369
79 0.6476 -0.6476 0.4369
80 -0.8584 -0.4367 0.4369
81 -0.4369 -0.4369 0.4369
82 0 -0.4369 0.4369
83 0.4369 -0.4369 0.4369
84 0.8584 -0.4367 0.4369
85 -0.9294 0 0.5399
86 -0.4369 0 0.4369
87 0 0 0.4369
88 0.4369 0 0.4369
89 0.9294 0 0.5399
90 -0.8584 0.4367 0.4369
91 -0.4369 0.4369 0.4369
92 0 0.4369 0.4369
93 0.4369 0.4369 0.4369
94 0.8584 0.4367 0.4369
95 -0.6476 0.6476 0.4369

A Px
A

Py
A

Pz
A

96 -0.4369 0.8584 0.4369
97 0 0.9294 0.5399
98 0.4369 0.8584 0.4369
99 0.6476 0.6476 0.4369

100 -0.5774 -0.5774 0.5774
101 -0.4369 -0.6476 0.6476
102 0 -0.7347 0.7347
103 0.4369 -0.6476 0.6476
104 0.5774 -0.5774 0.5774
105 -0.6476 -0.4369 0.6476
106 -0.4369 -0.4367 0.8584
107 0 -0.5399 0.9294
108 0.4369 -0.4367 0.8584
109 0.6476 -0.4369 0.6476
110 -0.7347 0 0.7347
111 -0.5399 0 0.9294
112 0 0 1.0443
113 0.5399 0 0.9294
114 0.7347 0 0.7347
115 -0.6476 0.4369 0.6476
116 -0.4369 0.4367 0.8584
117 0 0.5399 0.9294
118 0.4369 0.4367 0.8584
119 0.6476 0.4369 0.6476
120 -0.5774 0.5774 0.5774
121 -0.4369 0.6476 0.6476
122 0 0.7347 0.7347
123 0.4369 0.6476 0.6476
124 0.5774 0.5774 0.5774
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