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Abstract: In this study, the effect of addition of carbon nanotube on the nonlinear low-velocity impact response of carbon
fiber/epoxy composites is performed using the finite element method. The effective material properties of the multiscale
composites are calculated using Halpin-Tsai equations and fiber micromechanics in hierarchy. The governing equations are
derived based on higher-order shear deformation plate theory(HSDT) and von Kármán geometrical nonlinearity. The carbon
nanotubes are assumed to be uniformly distributed and randomly oriented through the epoxy resin matrix. Contact force between
the impactor and the plate is obtained with the aid of the modified nonlinear Hertzian contact law models. After examining the
validity of the present work, the effects of the weight percentage of single-walled carbon nanotubes(SWCNTs) and multi-walled
carbon nanotubes(MWCNTs), nanotube aspect ratio, volume fraction of fibers, plate aspect ratio and initial velocity of the
impactor on the contact force, indentation, and central deflection of CNT reinforced multi-phase laminated composite plate are
studied in detail.
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1 Introduction

Owing to the unique properties, carbon fiber reinforced composites are proper substitutes for traditional metals. Some mechanical
properties such as high strength to weight ratio, fatigue and wear resistance and formability of intricate shapes increase a
widespread use of composites in industries such as aerospace, automotive and military in which weight plays an important role.
To the best of author’s knowledge, there is no theoretical analysis on the impact resistance of CNTs/fiber/polymer multi-phase
composites carried out till now. The high susceptibility of damage to impact is one of the major concerns of CFRP composite
structures Rahman et al. (2015); Thostenson et al. (2001). In this regard, improving the impact resistance becomes an important
issue considering the critical applications of these materials. For improvement of the multi functionality of fiber-reinforced
composites, CNTs are an excellent candidate for nanoscale reinforcement. Their elastic modulus of over 1 TPa and tensile
strength of over 150 GPa make them much stiffer and stronger than steel while being three to five times lighter Kim et al. (2009).
Research groups have demonstrated that mechanical properties of composites can be strongly increased by adding a few weight
percent (wt. %) of either single or multi-walled carbon nanotubes Spitalsky et al. (2010); Sahoo et al. (2010).
A research on the development of advanced structural composites based on engineered CNTs/fiber/polymer multiscale composites
presented by Bekyarova et al. (2007); Kim et al. (2009) fabricated and characterized the CFRP composites modified with CNTs
via high-energy sonication. Thostenson et al. (2002) studied the effect of local nanotube reinforcement on load transfer at
the fiber/matrix interface of CNTs/fiber/polymer multiscale composites. Godara et al. (2009) investigated the effect of CNT
reinforcement on the processing and the mechanical behavior of CFRP composites. The CNT dispersion and its stability during
the processing steps and the final mechanical properties of composites are discussed in detail in their study. Green et al. (2009)
studied synthesis, mechanical, and thermo-mechanical behavior of carbon nano fiber/epoxy nano phased polymer matrix. Akgoz
and Civalek (2013) analyzed the buckling analysis of cantilever carbon nanotubes using the strain gradient elasticity and modified
couple stress theory. They concluded that the classical theory and modified couple stress theories are inappropriate to model the
buckling of CNT with smaller diameter even at higher modes.
Rafiee et al. (2014b) presented nonlinear free vibration of CNT/fiber/polymer multiscale laminated composite plates integrated
with piezoelectric layer. By using an analytical approach, Rafiee et al. (2014a) carried out modeling and stress analysis of
smart CNTs/fiber/polymer composite plates. Nonlinear flexural and dynamic response of CNT reinforced laminated composite
plates are analyzed by Bhardwaj et al. (2012). They used double Chebyshev polynomials to solve the problem. He et al. (2015)
investigated large amplitude vibration of fractionally damped viscoelastic CNTs/fiber/polymer multiscale composite beams.
A few studies have addressed the effects of CNTs on low-velocity impact of CFRP composites. Kostopoulos et al. (2010)
investigated the effect of MWCNTs on the impact and after impact behavior of carbon fiber reinforced polymer(CFRP). They
observed enhanced impact damage resistance at 0.5 wt.% CNT doped specimens and also, the post impact properties after
impact were improved for all CNT infused specimens compared with the control specimen. Soliman et al. (2012) presented the
low-velocity-impact response of thin carbon woven fabric composites reinforced with different weight percentages of MWCNTs.
It was observed that the MWCNTs enhanced the impact response, limited the damage size and energy absorption in the woven
carbon fiber composites. In all of these interesting works, experimental methods were carried out.
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Furthermore found that, a limited number of research works available theoretically/numerically on the low-velocity impact of
the CNT reinforced composite (CNTRC). However, all of these studies are performed for two-phase CNT-reinforced polymeric
composites. Rafiee and Moghadam (2012) simulated the impact and post-impact behavior of nanotube-reinforced polymer based
on a multi-scale finite element model software. Their results showed that the deflection of the composite with adding only 5%
volume fraction of CNT was much smaller than that of neat resin. Jam and Kiani (2015) presented the response of FGCNTRC
beams under low velocity impact based on the first order beam theory. Equivalent properties of the composite media are estimated
by applying a refined rule of mixture approach. Wang et al. (2014) analyzed the nonlinear low velocity impact response of
temperature-dependent nanotube-reinforced composite plates under thermal loading by applying the rule of mixture. They used
a two-step perturbation technique to solve the problem for simply supported plates.

Ebrahimi et al. (2020a) analyzed the thermal buckling analysis of magneto electro elastic porous FG beam in thermal environment.
Ebrahimi et al. (2020b) developed the bending analysis of magneto-electro piezoelectric nanobeams system under hygro-thermal
loading. Ebrahimi et al. (2020c) studied the dynamic characteristics of hygro-magneto-thermo-electrical nanobeam with non-
ideal boundary conditions. Ebrahimi et al. (2020d) reported the thermo-electro-elastic nonlinear stability analysis of viscoelastic
double-piezo nanoplates under magnetic field. Selvamani and Ebrahimi (2020) investigated the axisymmetric vibration in a
submerged, piezoelectric rod coated with thin film. Ebrahimi et al. (2015) reported the thermo mechanical vibration behavior
of FG nanobeams subjected to linear and non-linear temperature distributions. Demir et al. (2016) studied the determination
of critical buckling loads of isotropic, FGM and laminated truncated conical panel, they concluded from the results that the
critical buckling load of the laminated panels increase with increasing number of layers. Talebitooti (2013) developed the
three-dimensional free vibration analysis of rotating laminated conical shells: layerwise differential quadrature (LW-DQ) method.
Akgoz and Civalek (2013) reported the vibration analysis of micro-scaled sector shaped graphene surrounded by an elastic matrix,
they found that the frequency values increase with an increase of Winkler and Pasternak elastic foundation parameters. Gurses
et al. (2009) analyzed the free vibration analysis of symmetric laminated skew plates by discrete singular convolution technique
based on first-order shear deformation theory.

In the present study, the influence of single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs)
on the nonlinear low-velocity impact response of carbon fiber/epoxy composites using the finite element method is performed. In
this regard, the governing equations are derived based on higher-order shear deformation plate theory (HSDT) and von Kármán
geometrical nonlinearity. The considered element is C1-continuous with 15 DOF at each node. The effective material properties
of the multiscale composite are calculated using Halpin-Tsai equations and fiber micromechanics in hierarchy. The carbon
nanotubes are assumed to be uniformly distributed and randomly oriented through the epoxy resin matrix. Contact force between
the impactor and the plate is obtained with the aid of the modified nonlinear Hertzian contact law models. After examining
the validity of the present work, the effects of the weight percentage of SWCNTs and MWCNTs, nanotube aspect ratio, volume
fraction of fibers, plate aspect ratio and initial velocity of the impactor on the contact force, indentation, and central deflection of
CNT reinforced multi-phase laminated composite plate are studied in detail.

2 Theoretical formulation

2.1 Carbon nanotube/fiber/polymer multi-phase composite material model

Consider a rectangular laminated composite plate composed of isotropic matrix (epoxy resin), CNTs and fibers (carbon) impacted
by a low-velocity spherical impactor whose initial velocity and radius are denoted by V0 and R, respectively (Fig. 1). The
geometric parameters and the coordinate system used for the plate and the impactor are shown in Fig. 1.

The effective mechanical properties of these composites can be obtained based on micromechanics approach scheme (Shen
(2009)), via two steps in the hierarchy as shown in Fig. 2. The resulting effective properties of the CNT reinforced multi-phase
laminated composite plate are orthotropic and can be expressed as on Shen (2009):

E11 = VFEF
11 +VMNCEMNC (1)
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EMNC
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ν12 = VFν
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where E, G, ν, V and ρ denote the moduli, shear modulus, Poisson’s ratio, volume fractions and mass density, respectively, while
the superscript or subscript F and MNC signify the fibers and matrix of nanocomposite, respectively.
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Fig. 1: The geometric parameters CNT reinforced multi-phase laminated composite plate

Based on the Halpin-Tsai model, the tensile modulus of nanocomposites can be expressed as:

EMNC =
EM

8

[

5

(
1 + 2βddVCN

1 − βddVCN

)

+ 3

(
1 + 2(`CN/dCN )βdlVCN

1 − βdlVCN

)]

(6)
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11 /EM ) − (dCN/4tCN )
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11 /EM ) + (`CN/2tCN )

(7)

βdd =
(ECN

11 /EM ) − (dCN/4tCN )

(ECN
11 /EM ) + (dCN/2tCN )

(8)

where ECN , VCN , `CN , dCN and tCN are the Young’s modulus, volume fraction, length, outer diameter and the thickness of
carbon nanotubes, respectively, and VM and EM indicate the volume fraction and Young’s modulus of the isotropic epoxy resin
matrix, respectively. The volume fraction of carbon nanotubes may be defined as (Rafiee et al. (2013)):

VCN =
wCN

wCN +
(
ρCN

ρM

)
−
(
ρCN

ρM

)
wCN

(9)

where wCN is the mass fraction of the carbon nanotubes, ρCN and ρM are the mass densities of the carbon nanotube and epoxy
resin matrix, respectively. The Poisson’s ratio and mass density ρ can be expressed as:

vMNC = vM (10)

ρMNC = VCN ρ
CN +VM ρM (11)

where vM is Poisson’s ratio of the epoxy resin matrix. Since that the amount of CNTs was small, vMNC was considered to be the
same as that of epoxy.

2.2 Impact dynamics and contact law

For low velocity impact on laminates the contact force Fc can be related to the indentation α by applying the modified nonlinear
Hertz contact law as (Mura (1987)):

Fc = kcα
3/2 (12)
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where kc is the modified Hertz contact stiffness proposed by Sun and Chen (1985) as:

kc =
4
3

E∗R1/2
i (13)

with:

1
E∗ =

1 − v2
i

Ei
+

1
E22

(14)

where Ri , Ei and vi are the radius, Young’s modulus and Poisson’s ratio of the impactor, respectively and E22 is the transverse
modulus of the surface of the composite lamina.
During the unloading and subsequent reloading, the contact force Fc can be defined respectively (Yang and Sun (1982)):

Fc = Fm [(α − α0)/(αm − α0)]
5/2

Fc = Fm [(α − α0)/(αm − α0)]
3/2

(15)

where Fm and αm are the maximum contact force and local indentation during the loading phase, respectively. The permanent
indentation α0 equals to zero when αm remains below a critical indentation(Yang and Sun (1982)).

2.3 Displacement field model

According to the higher order shear-deformation theory (Reddy (2004)), the displacement field of laminated plate theory can be
expressed as:

u(x, y, z, t) = u0(x, y, t) + zφx − c1z3
(

φx +
∂w0

∂x

)

; (16)

v(x, y, z, t) = v0(x, y, t) + zφy − c1z3
(

φy +
∂w0

∂y

)

; (17)

w(x, y, z, t) = w0(x, y, t) (18)

here u0, v0, and w0 denote the displacements at the mid-plane of the reference plane of the plate and φx and φy are rotations about
the y and x axes, respectively and c1 = 4/3h2. This shear theory is based on the concept that the transverse shear strain and hence
shear stress vanish on the top and bottom surfaces of the plate and are nonzero elsewhere. So, a shear correction factor is not
required. The strain-displacement relations, based on von Kármán’s large deformation assumption are:
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(20)

In the above relations, εxx , εyy and γxy denote in-plane strains, γyz and γxz are transverse shear strains and c2 = 3c1. The
governing equations can be generated by applying principle of virtual work (Setoodeh et al. (2009)):

∫ h
2

− h
2

∫ b

0

∫ a

0
{δε}T {σ}dxdydz

+

∫ h
2

− h
2

∫ b

0

∫ a

0
ρ {uδu+ vδv + wδw} dxdydz−

∫ b

0

∫ a

0
qδwdxdy − Fcδα = 0

(21)
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2.4 Constitutive equations

The constitutive relation of the kth layer of the laminate in the material axes can be stated as Sun and Hsu (1990):
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where:

Q11 =
E11

1 − v12v21
, Q66 = G12, Q22 =

E22

1 − v12v21
, Q44 = G23,

Q12 =
v12E22

1 − v12v21
, Q55 = G13,

(23)

E11 and E22 are the Young’s modulus of CNTRC plates in the principle material coordinates G12, G13 and G23 are the shear
modulus; and ΔT is the temperature change with respect to a reference state.
If the fiber angle with the geometric x axis is denoted by θ, the relation (22) can be transferred to the geometric coordinates as:
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(24)

where:

Q11 = Q11 cos4 θ + 2(Q12 + 2Q66) sin2 θ cos2 θ + Q22 sin4 θ, (25)

Q12 = (Q11 + Q22 − 4Q66) sin2 θ cos2 θ + Q12(sin4 θ + cos4 θ), (26)

Q22 = Q11 sin4 θ + 2(Q12 + 2Q66) sin2 θ cos2 θ + Q22 cos4 θ, (27)

Q16 = (Q11 − Q12 − 2Q66) sin θ cos3 θ + (Q12 − Q22 + 2Q66) sin3 θ cos θ, (28)

Q26 = (Q11 − Q12 − 2Q66) sin3 θ cos θ + (Q12 − Q22 + 2Q66) sin θ cos3 θ, (29)

Q66 = (Q11 + Q22 − 2Q12 − 2Q66) sin2 θ cos2 θ + Q66(sin4 θ + cos4 θ), (30)

Q44 = Q44 cos2 θ + Q55 sin2 θ, (31)

Q45 = (Q55 − Q44) cos θ sin θ, (32)

Q55 = Q55 cos2 θ + Q44 sin2 θ (33)

3 Finite element formulation

In present section, the equations of HSDT CNT reinforced multi-phase laminated composite plate by applying finite element
method is discretized. Based on Eq. (21), one may write:

∫ h
2

− h
2

∫

Ω0

{

δDt
0(ι0 + zι1 + z3ι3 + ιN )

tQp

(
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1
2
ιN
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+ δDt
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}

dΩdz−
∫ ∫

Ω0

δDt
0qThdΩdz− δDt

0Fc = 0

(34)

where {D0} = {u0, v0, w0, φx, φy}t is the displacement vector of a point in middle-plane, and:
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, Qs=

[
Q44 Q45

Q45 Q55

]

(35)
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ι0 =
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From the strain-displacement relationships, it is observed that the first and second-order derivatives of generalized displacements
appeared in equations. Therefore, to guarantee the integrability of weak form equations, the C1-continuity of the generalized
displacement functions is generally necessary in finite element procedure. Hence, in this paper, the four-noded rectangular
conforming element based on HSDT is used. The considered element is C1-continuous with 15 DOF at each node.
The displacement vector of the reference plane based on the nodal displacement vector may be written as:

D(e)
0 =
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{de} = ψd(e)
0 (37)

where:

{de} =

{
u0i, v0i, w0i, φxi, φyi, u0i,x, v0i,x, wi,x,
φxi,x, φyi,x, u0i,y, v0i,y, w0i,y, φxi,y, φyi,y

}T

are the 15-DOF associated with each node. The displacement interpolation functions can be written as:

ψi =
1
8
(1 + ξiξ)(1 + ηiη)(2 + ξiξ + ηiη − ξ

2 − η2), (38)

ψix =
1
8

aξi(1 + ξiξ)
2(1 + ηiη)(ξiξ − 1), (39)

ψiy =
1
8

bηi(1 + ξiξ)(ηiη − 1)(1 + ηiη)
2, (40)

where a and b are the half length of element in the x and y directions and the normalized coordinates are

ξ =
x − xc

a
, η=

y − yc

b
(41)

where (xc, yc) is the center of rectangular element. Based on Eqs. (37)-(41), Eq. (34) can be expressed as:

(
δd(e)

) t






∫
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∑3
i=0 Bt

i

(
Q(e)

i B0 + Q(e)
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)
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+
∑2

i=0 Bt
si

(
Bs0 + Q(e)

s(i+3)Bs2

)
d(e)

+
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θi

(
I (e)i Bθ0 + I (e)

i+1Bθ1 + I (e)
i+3Bθ3
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d(e)

−
[
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0 Bt
1 Bt

3
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dΩ − ψtF(e)
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where:

qThi =

∫ h/2

−h/2








Q11a11 + Q12a22

Q12a22 + Q22a11

Q16a11 + Q26a11








ziΔTdz (43)
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Bi = ιiψ, Bsi = ιsiψ, Bθi = ιθiψ, BN = ιNψ (44)

Qi =

∫ h/2

−h/2
ziQdz, Qsi=

∫ h/2

−h/2
ziQsdz, Ii =

∫ h/2

−h/2
ziρdz

Eq. (42) holds for any arbitrary (δd(e))t , 0, therefore in a compact form,

K (e)
L d(e)

0 + K (e)
NLd(e)

0 + M (e)d(e)
0 = F(e) (45)

where, the element stiffness matrices K (e)
L , K (e)

NL , element load vector F(e), element mass matrix M (e) can be given as:

K (e) =K (e)
L + K (e)

NL (46)

=

∫

Ω0

[
3∑

i=0

Bt
i

(
Q(e)

i B0 + Q(e)
i+1B1 + Q(e)

i+3B3

)
+

2∑

i=0

Bt
si

(
Q(e)

si Bs0 + Q(e)
s(i+3)Bs2

)
]

dxdy

+ Bt
N

(

Q(e)
0 B0 + Q(e)

1 B1 + Q(e)
3 B3 +

(
1
2

)

Q(e)
0 BN

)

+

(
1
2

)

(B0 + B1 + B3)Q
(e)
0 BN

M (e) =

∫

Ω0

[
3∑

i=0

Bt
θi

(
I (e)i Bθ0 + I (e)

i+1Bθ1 + I (e)
i+3Bθ3

)
]

dxdy (47)

F(e) =Y(e) + ψtF(e)
c (48)

where Y(e) is the element force vector:

Y(e) =

∫

Ω
(e)
0

[
Bt

0 Bt
1 Bt

3

]







qTh0
qTh1
qTh3








dxdy (49)

Resulting time-dependent may be expressed as:

KΛ + M ÜΛ = F (50)

where Λ and ÜΛ are respectively the displacement and acceleration vector. K is the global stiffness matrix, includes linear and
nonlinear stiffness matrix, F is the global load vector, which includes the impact force and thermal force and M is the global mass
matrix.
The boundary conditions for simply supported and clamped conditions are given below:

us = w0 = φs = 0 (Simply supported edge)

un = us = w0 = φn = φs = 0 (Clamped edge)

where the subscripts n and s denote the normal and tangential directions, respectively, on the boundaries.

In order to solve Eq. (50), Newmark’s numerical time integration method is used. Based on this method, accelerations and
velocities of the end of each time step are computed by (Zienkiewicz and Taylor (2005)).

ÜΛj+1 = a1(Λ j+1 − Λj) − a2 ÛΛj − a3 ÜΛj

ÛΛj+1 = ÛΛj + a4 ÜΛj + a5 ÜΛj

(51)

where j is the time step counter and

a1 =
2

ζ (Δt)2
; a2 =

2
ζΔt

; a3 =
1
ζ
− 1; ζ ≤ λ

a4 = Δt(1 − λ); a5 = λΔt; λ ≥ 0.5 (52)

By substituting Eq. (52) into Eq. (51), we obtain

K̂j+1Λj+1 = F̂j+1 (53)

where:

K̂j+1 = Kj+1 + a1Mj+1 (54)

F̂j+1 = HjMj+1 + Fj (55)
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Tab. 1: Material properties of the multi-phase nanocomposite plate and the impactor Shen and Zhang (2010)

Material properties of fiber (carbon)
EF

11 = 233.05 GPa, EF
22 = 23.1 GPa, GF

12 = 8.96 GPa,

vF = 0.2, ρF = 1750 kg/m, VF = 0.6

Material properties of epoxy matrix
vM = 0.34, ρM = 1150 kg/m3,EM = 2.5 GPa

Material properties of CNT
SWCNT: MWCNT :
ECN = 640 GPa ECN = 400 GPa
dCN = 1.4 × 10−9 m dCN = 20 × 10−9 m
tCN = 0.34 × 10−9 m tCN = 0.34 × 10−9 m
ρCN = 1350 kg/m3 ρCN = 1350 kg/m3

vCN
12 = 0.33 vCN

12 = 0.33
`CN = 25 × 10−6 m `CN = 50 × 10−6 m

where Hj is the following vector

Hj = a1Λi + a2 ÛΛi − a3 ÜΛj (56)

Since Eq. (50) is a nonlinear equation, Picard or Newton-Raphson method has to be employed in each time step to reach a
convergence criterion, e.g.

| |Λ(η+1)
i − Λ(η)

i | |

Λ
(η+1)
i

� Δ (57)

where η is the iteration counter and j is the time step counter. Δ is a sufficiently small number.

4 Results and discussions

In present section, after validation of the results, the effects of the weight percentage of SWCNTs and MWCNTs, nanotube aspect
ratio, volume fraction of fibers, plate aspect ratio and initial velocity of the impactor on the contact force, indentation, and central
deflection of CNT reinforced multi-phase laminated composite plate are studied in details. Since the numerical time integration
procedures manifest an error accumulation phenomenon that is especially affected by the time integration steps and in order to
trace the time history of the quantities more adequately, the integration time steps have to be much less than the fundamental
period time of the structure, and especially much less than the response time of the structure. For this reason, a time step that is
equal or less than 10−6 (sec) is adopted. Also Δ = 0.0001 is used for the convergence criterion Eq. (50).
In present section, response of a laminated fully clamped, symmetric cross ply, CNT reinforced multi-phase laminated composite
plate subjected to nonlinear low-velocity impact is investigated. A plate with dimensions of 0.2× 0.2× 0.02 (m) and the stacking
sequence {0/90/90/0} is considered. Material properties of the plate is presented in Table 1. The impactor is made from steel
with radius R= 6.35 mm, and initial velocity V0 = 3 m/s, material properties of Ei = 207 GPa, νi = 0.3 and ρi = 7960 kg/m3.
Effect of weight percentage of CNT on the nonlinear low-velocity impact response of a multi-phase laminated composite plate
reinforced with SWCNT and MWCNT are depicted in Figs. 2 and 3. Four different weight percentage, wCN = 0%, wCN = 1%,
wCN = 2% and wCN = 3% are considered. Since increasing the weight percentage increases percentage of CNT at the contact
region, it leads to an increased contact stiffness and the peaks of the contact force history and a decreased peak indentation.
Increasing the CNT’s weight percentage leads to a plate with higher bending rigidity and subsequently, higher natural frequencies
and smaller response times. Due to this reason, the contact time duration and central deflection has decreased with increasing the
weight percentage. Further the effect of weight percentage of is more prominent in SWCNTs reinforced composite plates rather
than MWCNTs reinforced composite plates.
Figs. 4 and 5 shows the effect of aspect ratio of CNT on the contact force, indentation, and central deflection of fully clamped,
symmetric cross ply, SWCNT and MSCNT reinforced multi-phase laminated composite plate respectively. Six sets of aspect ratios
have been considered here, i.e., `CN/dCN = 100; `CN/dCN = 200; `CN/dCN = 500; `CN/dCN = 1000; `CN/dCN = 2000
and `CN/dCN = 10000. As may be noted, composite plate reinforced with longer CNTs has more stiffening behavior and as
the aspect ratio of CNT increases the peaks of central deflection decreases whereas indentation and contact force increases and
the peak contact force and deflection are achieved in earlier time instants. It should be noted that for aspect ratios higher than
500(`CN/dCN > 500) this influence is insignificant. Fig. 6 depicts the variation of maximum impact force, indentation and
central deflection of fully clamped, symmetric cross ply, SWCNT and MWCNT reinforced multi-phase laminated composite
plate with nanotube aspect. As Fig. 6 reveals, contact time and maximum central deflection decrease while increases the
maximum contact force of SWCNT reinforced composites rapidly with increase of CNT aspect ratio up to 500 and thereafter it is
almost constant. Whereas, no significant change in the response of MWCNT reinforced composite plate subjected to nonlinear
low-velocity impact is observed when aspect ratio of CNT increases.
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Fig. 2: Effect of the weight percentage of SWCNTs on the impact responses of plate. (From top-left clockwise)(a) Contact force;
(b) indentation, (c) central deflection of plate

Fig. 3: Effect of the weight percentage of MWCNTs on the impact responses of plate. (From top-left clockwise)(a) Contact force;
(b) indentation, (c) central deflection of plate
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Fig. 4: Effect of SWCNTs aspect ratio on the impact responses of plate. (From top-left clockwise)(a) Contact force; (b) indentation,
(c) central deflection

Fig. 5: Effect of MWCNTs aspect ratio on the impact responses plate. (From top-left clockwise) (a) Contact force; (b) indentation,
(c) central deflection

5 Conclusion

Response of CNT reinforced multi-phase laminated composite plate subjected to nonlinear low-velocity impact using the finite
element method is performed. The four-noded rectangular conforming element with 15 DOF at each node based on HSDT
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Fig. 6: Effect of initial velocity on the impact responses of plate. (From top-left clockwise) (a) Contact force; (b) indentation, (c)
central deflection

and C1−continuity of the generalized displacement functions is employed. The effective material properties of the multi-phase
nanocomposite are calculated using Halpin-Tsai equations and fiber micromechanics in hierarchy. Contact force between the
impactor and the laminated plate is obtained with the aid of the modified nonlinear Hertzian contact law models. Results are to
explore the effects of various parameters. It is concluded that:

• A small amount of CNT (1-2 percent) can increase the maximum contact and decrease the maximum indentation. Also the
contact time duration and central deflection has decreased with increasing the CNT percentage.

• SWCNT reinforcement produces more pronounced effect on the low velocity impact of the plate in comparison to MWCNT.
It may be attributed to the defect free structure of SWCNT.

• CNT aspect ratio play a significant role influencing the impact behavior, but only for SWCNT reinforced composite plates. It
should be noted that for composite plate reinforced with short CNT (aspect ratio less than 50) this influence is insignificant.

• Contact time and maximum central deflection decrease while increases the maximum contact force of SWCNT reinforced
composite rapidly with increase of CNT aspect ratio up to 500 and thereafter it is almost constant.

• Effect of CNT reinforcement is more prominent in thick plates rather than in thin plates.
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