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Abstract: In this study we revised the axisymmetric vibration of an infinite thermo piezoelectric composite circular hollow
cylinder made of inner and outer thermo piezoelectric layer bonded together by a Linear Elastic Material with Voids (LEMV) and
Single Walled carbon Nano Tube (SWCNT) is studied. The frequency equations are obtained for the traction free outer surface
with continuity conditions at the interfaces. The equations of motion, heat and electric conduction also exactly solved. Numerical
results are carried out for the inner and outer hollow piezoelectric layers bonded by LEMV and SWCNT layers. The dispersion
curves are compared with core/LEMV/core, core cylinders.
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1 Introduction

An enormous number of lively vibration mechanism perceptions have grown over the past few decades to achieve enhanced
vibration suppression of structures and adapt to changes in the excitation and structural properties. Instead, a range of semi-active
damping control conceptions have evolved for numerous structural vibration control applications, which could offer performance
gains comparable to those of the active control devices with only minimal power requirement. In ongoing decades, the utilization of
Nano composite structures has been developing quickly and has pulled in much consideration from logical examination networks.
Among the used nanofillers, CNT and graphene have gotten well known because of their extraordinary thermo-mechanical
properties. Vibration and wave engendering of carbon nanotubes (CNTs) are as of late pulling in a developing enthusiasm because
of their different applications in nanoscale gadgets, superconductivity, transport and optical wonders. In spite of the fact that few
atomistic models have been effectively used to get the vibrational qualities of CNTs, the related computational expense supports
continuum displaying which is likewise discovered to be calculable.
Upadhya et al. (2018) exposed the modified fourier heat flux on MHD flow over stretched cylinder filled with dust, graphene
and silver nanoparticles. Moradi-Dastjerdi and Behdinan (2019) scrutinized thermoelastic static and vibrational behaviors of
nanocomposite thick cylinders reinforced with graphene. Wang et al. (2014a) deliberate Multifunctional graphene sheet–nanoribbon
hybrid aerogels.Sobhy (2016) revealed hygrothermal vibration of orthotropic double-layered graphene sheets embedded in an
elastic medium using the two-variable plate theory.Garg et al. (2014) explored an embedded simulation approach for modeling the
thermal conductivity of 2D nanoscale material.Liew et al. (2006) scrutinized Predicting nanovibration of multi-layered graphene
sheets embedded in an elastic matrix.Ansari et al. (2011) revealed Vibration characteristics of embedded multi-layered graphene
sheets with different boundary conditions via nonlocal elasticity.Wang et al. (2011) studied Geometrical nonlinear free vibration of
multi-layered graphene sheets.Sakhaee-Pour et al. (2008) exposed Vibrational analysis of single-layered graphene sheets.Wang et al.
(2014b) conversed free vibration analysis of single-layered graphene sheets based on a continuum model. Generalized two-variable
plate theory for multi-layered graphene sheets with arbitrary boundary conditions deliberate by Sobhy (2014). Influence of
initial shear stress on the vibration behavior of single-layered graphene sheets embedded in an elastic medium based on Reddy’s
higher-order shear deformation plate theory debated by Ebrahimi and Shafiei (2017).Bakhshalizadeh and Ghadiri (2020) evaluated
Size-dependent vibration behavior of graphene sheet with attached spring-mass and damper system based on the nonlocal Eringen
theory.Mazur and Awrejcewicz (2020) expressed Ritz Method in Vibration Analysis for Embedded Single-Layered Graphene
Sheets Subjected to In-Plane Magnetic Field. A Novel Method for Considering Interlayer Effects between Graphene Nanoribbons
and Elastic Medium in Free Vibration Analysis studied by Kamali and Nazemnezhad (2020).Analooei et al. (2020) discussed on
the vibration and buckling analysis of quadrilateral and triangular nanoplates using nonlocal spline finite strip method.Behdinan
et al. (2020) [17] discussed Graphene and CNT impact on heat transfer response of nanocomposite cylinders.Ebrahimi et al.
(2021) studied buckling analysis of embedded graphene oxide powder-reinforced nanocomposite shells.Moradi-Dastjerdi and
Behdinan (2020) discussed Stability analysis of multifunctional smart sandwich plates with graphene nanocomposite and porous
layers.Ebrahimi and Dabbagh (2020) discussed Viscoelastic wave propagation analysis of axially motivated double-layered
graphene sheets via nonlocal strain gradient theory.Fouaidi et al. (2021) discussed Numerical analysis of single-layered graphene
sheets by a mesh-free approach. Bellal et al. (2020) analyses Buckling behavior of a single-layered graphene sheet resting on
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viscoelastic medium via nonlocal four-unknown integral model.Shafiei et al. (2020) discovery application of modified couple-stress
theory to stability and free vibration analysis of single and multi-layered graphene sheets. Xu et al. (2020) discussed flexural Wave
Propagation of Double-Layered Graphene Sheets Based on the Hamiltonian System.
In this examination we restructured the axisymmetric vibration of an infinite thermo piezoelectric composite circular hollow
cylinder made of inward and external thermo piezoelectric layer fortified together by a LEMV and SWCNT is considered. The
frequency equations are acquired for the traction free external surface with continuity conditions at the interfaces. A Bessel
function solution with complex argument is directly used to analyze the frequency equations. The computed non-dimensional
frequencies are plotted in the form of dispersion curves against the wave number, voltage difference and linear temperature change.
The numerical results are compared with different combinations of hollow cylinders.

2 PROBLEM FORMULATION

In this section we consider an infinite thermo piezoelectric composite circular hollow cylinder made of inner and outer thermo
piezoelectric layer bonded together by a LEMV and SWCNT.In cylindrical coordinates (r, z), the equations of motion in
axisymmetric direction and absence of body force

𝜎𝑙
𝑟𝑟 ,𝑟 + 𝜎𝑙

𝑟 𝑧,𝑧 + 𝑟−1𝜎𝑙
,𝑟𝑟 = 𝜌𝑢,𝑡𝑡 (1a)

𝜎𝑙
𝑟 𝑧,𝑟 + 𝜎𝑙

𝑧𝑧,𝑧 + 𝑟−1𝜎𝑙
,𝑟 𝑧 = 𝜌𝑤,𝑡𝑡 (1b)

The electric displacement equation is given as

1
𝑟

𝜕

𝜕𝑟
(𝑟𝐷𝑙

𝑟 ) +
𝜕

𝜕𝑧
(𝐷𝑙

𝑧) = 0 (2)

The heat conduction equation is defined as

𝐾11 (𝑇 𝑙
,𝑟𝑟 + 𝑟−1𝑇 𝑙

,𝑟 + 𝑟−2𝑇 𝑙
, \ \ ) + 𝐾33𝑇

𝑙
,𝑧𝑧 − 𝜌𝑙𝑐𝑣𝑇,𝑡 = 𝑇0

𝜕

𝜕𝑡
[𝛽1 (𝑒𝑙,𝑟𝑟 + 𝑒𝑙, \ \ ) + 𝛽3𝑒

1
,𝑧𝑧 − 𝑝3𝜙,𝑧] (3)

Relation between the stress and strain of mechanical and electrical field is

𝜎𝑙
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𝑙
𝑟𝑟 + 𝑐12𝑒
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𝜎𝑙
𝑧𝑧 = 𝑐13𝑒
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𝑙
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𝑙
𝑟 (4d)
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𝑙
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denotes mechanical stress component, 𝑒𝑙
\ \
, 𝑒𝑙

𝑟 \
, 𝑒𝑙

𝑧 \
, 𝑒𝑙𝑟 𝑧 are the strain components, 𝑇 𝑙 is the

temperature change about the equilibrium temperature,𝑐11, 𝑐12, 𝑐13, 𝑐33, 𝑐44, 𝑐66 are the five elastic constants,𝛽1, 𝛽3 and 𝐾1, 𝐾3
respectively thermal expansion coefficients and thermal conductivities along and perpendicular to the symmetry, 𝜌 is the mass
density, 𝑐𝑣 is the specific heat capacity,𝑝3 is the pyroelectric effect.
The strains 𝑒𝑖 𝑗 are related to the displacements given by

𝑒𝑙𝑟𝑟 = 𝑢𝑙,𝑟 𝑒
𝑙
\ \ = 𝑟−1 (𝑢𝑙 + 𝑣𝑙, \ ), 𝑒

𝑙
𝑧𝑧 = 𝑤

𝑙
,𝑟 𝑧 (5a)

𝑒𝑙𝑟 \ = 𝑣𝑙𝑟 − 𝑟−1 (𝑣𝑙 − 𝑢𝑙, \ ), (5b)

𝑒𝑙𝑧 \ = 𝑣𝑙,𝑧 + 𝑟−1𝑤𝑙
,𝑟 \𝑒

𝑙
𝑟 𝑧 = 𝑤

𝑙
,𝑟 + 𝑢𝑙,𝑧 (5c)

Substitution of the (4) and (5) into (1) to (3) results in the following three dimensional equation of motion,electric and heat
conduction:

𝑐11 (𝑢𝑙,𝑟𝑟 + 𝑟−1𝑢𝑙,𝑟 + 𝑟−2𝑢𝑙) + 𝑐44𝑢
𝑙
,𝑧𝑧 + (𝑐44 + 𝑐13)𝑤𝑙

𝑟 𝑧 + (𝑒31 + 𝑒15)𝐸 𝑙
𝑟 𝑧 − 𝛽1𝑇

𝑙
,𝑟+ = 𝜌𝑢𝑙,𝑡𝑡 (6a)

𝑐44 (𝑤𝑙
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𝑙
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𝑙
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, \ \ ) + 𝐾33𝑇

𝑙
,𝑧𝑧 − 𝜌𝑙𝑐𝑣𝑇,𝑡 = 𝑇0

𝜕

𝜕𝑡
[𝛽1 (𝑢𝑙,𝑟 + 𝑟−1𝑣𝑙, \ + 𝑟

−1𝑢𝑙) + 𝛽3𝑤
𝑙
,𝑧] − 𝑝3𝐸

𝑙
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Solution of the above field Equation Selvamani and Mahesh (2019)

𝑢𝑙 (𝑟, 𝑧, 𝑡) = (𝑈𝑙
,𝑟 ) exp 𝑖(𝑘𝑧 + 𝜔𝑡) (7a)

𝑤𝑙 (𝑟, 𝑧, 𝑡) = 𝑖

𝑎
𝑊 𝑙 exp 𝑖(𝑘𝑧 + 𝜔𝑡) (7b)

𝐸 𝑙 (𝑟, 𝑧, 𝑡) = 𝑖𝑐44
𝑎𝑒33

𝐸 𝑙 exp 𝑖(𝑘𝑧 + 𝜔𝑡) (7c)

𝑇 𝑙 (𝑟, 𝑧, 𝑡) = 𝑐44

𝛽3𝑎2𝑇
𝑙 exp 𝑖(𝑘𝑧 + 𝜔𝑡) (7d)

Here 𝑖 =
√
−1, k is the wave number,𝜔 is the frequency 𝑈𝑙 ,𝑊 𝑙 , 𝐸 𝑙 , 𝑇 𝑙 are all displacement potentials, electric conduction and

thermal change. By introducing the dimensionless quantities such as 𝑥 = 𝑟
𝑎

,[ = 𝑘𝑎, Ω2 =
𝜌𝜔2𝑎2

𝑐44
,𝑐11 =

𝑐11
𝑐44

,

𝑐13 =
𝑐13
𝑐44

,𝑐33 =
𝑐33
𝑐44

,𝑐66 =
𝑐66
𝑐44

,𝛽 =
𝛽1
𝛽3

,𝑘𝑖 = (𝜌𝑐44 )
1
2

𝛽2
3𝑇0𝑎Ω

,𝑑 =
𝜌𝑐𝑣𝑐44
𝛽2

3𝑇0
,𝑝3 =

𝑝3𝑐44
𝛽3𝑒33

Substituting (7) in (6) we obtain

(𝑐11∇2 + (Ω2 − Z2))𝑈𝑙 − Z (1 + 𝑐13)𝑊 𝑙 − Z (𝑒31 + 𝑒15)𝐸 𝑙 − 𝛽𝑇 𝑙 = 0 (8a)

Z (1 + 𝑐13)∇2𝑈𝑙 + (∇2 + (Ω2 − Z2𝑐33))𝑊 𝑙 + (𝑒33∇2 − Z2)𝐸 𝑙 − Z𝑇 𝑙 = 0 (8b)

Z (𝑒31 + 𝑒15)∇2𝑈𝑙 + (𝑒15∇2 − Z2)𝑊 𝑙 + (Z2𝜖33 − 𝜖∇2)𝐸 𝑙 + Z 𝑝3𝑇
𝑙 = 0 (8c)

𝛽∇2𝑈𝑙 − Z𝑊 𝑙 + Z 𝑝3𝐸
𝑙 + (𝑑 + 𝑖 �̄�1∇2 + 𝑖 �̄�3Z

2)𝑇 𝑙 = 0 (8d)

where ∇2 = 𝜕2

𝜕𝑥2 + 𝑥−1 𝜕
𝜕𝑥

[𝑐11∇2 + (Ω2 − Z2)] −Z (1 + 𝑐13) Z (𝑒31 + 𝑒15) −𝛽
Z (1 + 𝑐13)∇2 [∇2 + (Ω2 − 𝑐33Z

2)] (𝑒33∇2 − Z2) −Z
Z (𝑒31 + 𝑒15)∇2 𝑒15∇2 − Z2 (Z2𝜖33 − 𝜖∇2) Z 𝑝3

𝛽∇2 −Z Z 𝑝3 (𝑑 + 𝑖 �̄�1∇2 − 𝑖 �̄�3Z
2)

(𝑈𝑙 ,𝑊 𝑙 , 𝐸 𝑙 , 𝑇 𝑙)𝑇 = 0 (9)

Evaluating the given in (9), we obtain a partial differential equation of the form

(𝐴𝑙∇8 + 𝐵𝑙∇6 + 𝐶𝑙∇4 + 𝐷𝑙∇2 + 𝐸 𝑙) (𝑈𝑙 ,𝑊 𝑙 , 𝐸 𝑙 , 𝑇 𝑙)𝑇 = 0 (10)

Factorizing the relation given in (10) into biquadrate equation for (𝛼2
𝑗
𝑎)2, 𝑗 = 1, 2, 3, 4 the solutions for the symmetric modes are

obtained as

𝑈𝑙 =

4∑︁
𝑗=1

[𝐴 𝑗𝐽𝑛 (𝛼 𝑗𝑥) + 𝐵 𝑗 𝑦𝑛 (𝛼 𝑗𝑥)], (11a)

𝑊 𝑙 =

4∑︁
𝑗=1
𝑎𝑙𝑗 [𝐴 𝑗𝐽𝑛 (𝛼 𝑗𝑥) + 𝐵 𝑗 𝑦𝑛 (𝛼 𝑗𝑥), (11b)

𝐸 𝑙 =

4∑︁
𝑗=1

𝑏𝑙𝑗 [𝐴 𝑗𝐽𝑛 (𝛼 𝑗𝑥) + 𝐵 𝑗 𝑦𝑛 (𝛼 𝑗𝑥)], (11c)

𝑇 𝑙 =

4∑︁
𝑗=1
𝑐𝑙𝑗 [𝐴 𝑗𝐽𝑛 (𝛼 𝑗𝑥) + 𝐵 𝑗 𝑦𝑛 (𝛼 𝑗𝑥)], (11d)

Here (𝛼𝑙
𝑗
𝑎𝑥) > 0, 𝑓 𝑜𝑟 ( 𝑗 = 1, 2, 3, 4) are the roots of algebraic equation

(𝐴𝑙 (𝛼𝑙𝑗𝑎𝑥)8 + 𝐵𝑙 (𝛼𝑙𝑗𝑎𝑥)6 + 𝐶𝑙 (𝛼𝑙𝑗𝑎𝑥)4 + 𝐷𝑙 (𝛼𝑙𝑗𝑎𝑥)2 + 𝐸 𝑙) (𝜙𝑙 ,𝑊 𝑙 , 𝐸 𝑙 , 𝑇 𝑙)𝑇 = 0

Here 𝑎𝑙
𝑗
, 𝑏𝑙

𝑗
, 𝑐𝑙

𝑗
are the arbitrary constants and 𝐽𝑛 (𝛼 𝑗

𝑙
𝑎𝑥) denotes the Bessel functions first kind of order n. The constants 𝑎𝑙

𝑗
, 𝑏𝑙

𝑗
, 𝑐𝑙

𝑗

are calculated using the following relations with ∇2 = 𝛼𝑙
𝑗
𝑎𝑥

(𝑐11∇2 + (Ω2 − Z2)) − Z (1 + 𝑐13)𝑎𝑙𝑗 − Z (𝑒31 + 𝑒15)𝑏𝑙𝑗 − 𝛽𝑐𝑙𝑗 = 0

Z (1 + 𝑐13)∇2 + (∇2 + (Ω2 − Z2𝑐33))𝑎𝑙𝑗 + (𝑒33∇2 − Z2)𝑏𝑙𝑗 − Z𝑐𝑙𝑗 = 0

Z (𝑒31 + 𝑒15)∇2 + 𝑒15∇2 − Z2)𝑎𝑙𝑗 + Z 𝑝3𝑏
𝑙
𝑗 + (Z2𝜖33 − 𝜖∇2)𝑐𝑙𝑗 = 0

𝛽∇2 − Z𝑎𝑙𝑗 + (𝑑 + 𝑖 �̄�3Z
2)𝑏𝑙𝑗 + Z 𝑝3𝑐

𝑙
𝑗 = 0
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3 EQUATION OF MOTION FOR LINEAR ELASTIC MATERIALS WITH VOIDS

The equations of motion for isotropic LEMV materials are given as Cowin and Nunziato (1983)

(_ + 2`) (𝑢,𝑟𝑟 + 𝑟−1𝑢,𝑟 − 𝑟−2𝑢) + `𝑢,𝑧𝑧 + (_ + `)𝑤,𝑧𝑧 + 𝛽𝜒,𝑟 = 𝜌𝑢,𝑡𝑡 (12a)

(_ + `) (𝑢,𝑟 𝑧 + 𝑟−1𝑢,𝑧) + `(𝑤,𝑟𝑟 + 𝑟−1𝑤,𝑟 ) + (_ + 2`)𝑤,𝑧𝑧 + 𝛽𝜒,𝑧 = 𝜌𝑤,𝑡𝑡 (12b)

−𝛽(𝑢,𝑟 + 𝑟−1𝑢) − 𝛽𝑤,𝑧 + 𝛼(𝜒,𝑟𝑟 + 𝑟−1𝜒,𝑟 + 𝜒,𝑧𝑧) − 𝛿𝑘 𝜒,𝑡𝑡 − 𝜔𝜒,𝑡 − b𝜒 = 0 (12c)

u,w represents displacements components along 𝑟𝑎𝑛𝑑𝑧 directions 𝛼, 𝛽, b, 𝜔 and k are LEMV material constants characterizing
the core in the equilibrated inertial state,𝜌 is the density and _, ` are the lame constants and 𝜒 is the new kinematical variable
associated with another material without voids. The stress in the LEMV core materials are

𝜎,𝑟𝑟 = (_ + 2`)𝑢,𝑟 + _𝑟−1𝑢 + _𝑤,𝑧 + 𝛽𝜒
𝜎,𝑟 𝑧 = `(𝑢,𝑡 + 𝑤,𝑟 )

The solution of for (12) is taken as

𝑢 = U,𝑟 exp 𝑖(𝑘𝑧 + 𝑝𝑡) (13a)

𝑤 =( 𝑖
ℎ
)W exp 𝑖(𝑘𝑧 + 𝑝𝑡) (13b)

𝜒 = ( 1
ℎ2 )𝝌 exp 𝑖(𝑘𝑧 + 𝑝𝑡) (13c)

The above solution in (13) and dimensionless variables 𝑥 and Y, equation(12) can be reduced as

(_ + 2`)∇2 + 𝑀1 −𝑀2 𝑀3
𝑀2∇2 ¯̀∇2 + 𝑀4 𝑀5
−𝑀3∇2 𝑀5 𝛼∇2 + 𝑀6

(U,W, 𝝌)𝑇 = 0 (14)

where ∇2 = 𝜕2

𝜕𝑥2 + 1
𝑥

𝜕
𝜕𝑥

, 𝑀1 =
𝜌

𝜌1 (𝑐ℎ)2 − ¯̀Y2 ,𝑀2 = (_̄ + ¯̀)Y ,𝑀3 = 𝛽, 𝑀4 =
𝜌

𝜌1 (𝑐ℎ)2 − (_̄ + ¯̀)Y2,
𝑀5 = 𝛽Y, 𝑀6 =

𝜌

𝜌1 (𝑐ℎ)2 �̄� − �̄�Y2 − 𝑖�̄�(𝑐ℎ) − b̄

The Equation (14) can be specified as,

(∇6 + 𝑃∇4 +𝑄∇2 + 𝑅) (U,W, 𝝌) = 0 (15)

Thus the solution of Equation (15) is as follows,

U =

3∑︁
𝑗=1

[𝐴 𝑗𝐽0 (𝛼 𝑗𝑥) + 𝐵 𝑗 𝑦0 (𝛼 𝑗𝑥)] (16a)

W =

3∑︁
𝑗=1

𝑑 𝑗 [𝐴 𝑗𝐽0 (𝛼 𝑗𝑥) + 𝐵 𝑗 𝑦0 (𝛼 𝑗𝑥)], (16b)

𝝌 =

3∑︁
𝑗=1
𝑒 𝑗 [𝐴 𝑗𝐽0 (𝛼 𝑗𝑥) + 𝐵 𝑗 𝑦0 (𝛼 𝑗𝑥)] (16c)

(𝛼 𝑗𝑥)2 are zeros of the equation when replacing ∇2 = −(𝛼 𝑗𝑥)2. The arbitrary constant 𝑑 𝑗 and 𝑒 𝑗 are obtained from

𝑀2∇2 + ( ¯̀∇2 + 𝑀4)𝑑 𝑗 + 𝑀5𝑒 𝑗 = 0

−𝑀3∇2 + 𝑀5𝑑 𝑗 + (𝛼∇2 + 𝑀6)𝑒 𝑗 = 0

For the governing equation of CFRP core material, we assume void volume fraction 𝜒 = 0, and the lame’s constants as
_ = 𝑐12, ` =

𝑐11 − 𝑐12
2

in the Equation(12)

4 Mathematical formulations for SWCNT

The governing elasto-dynamic equation for a SWCNT is given as Mitra and Gopalakrishnan (2007)

(Λ + 2𝑀) (𝔲𝑙,𝑟𝑟 + 𝑟−1𝔲𝑙,𝑟 − 𝑟−2𝔲𝑙) + 𝑀𝔲𝑙,𝑧𝑧 + (Λ + 𝑀)𝔴𝑙
,𝑧𝑧 = �́�𝔲

𝑙
,𝑡𝑡 (17a)

(Λ + 𝑀) (𝔲𝑙,𝑟 𝑧 + 𝑟−1𝔲𝑙,𝑧) + 𝑀 (𝔴𝑙
,𝑟𝑟 + 𝑟−1𝔴𝑙

,𝑟 ) + (Λ + 2𝑀)𝔴𝑙
,𝑧𝑧+ = �́�𝔴𝑙

,𝑡𝑡 (17b)
(17c)
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Here 𝔲𝑙 is the displacement vector, Λ𝑙 = 𝐶12, 𝑀
𝑙 = (𝐶11 − 𝐶12)/2 are Lames constants

𝜌𝑙 is the mass density and 𝑡 is time. The solution of above equation is taken as

𝔲𝑙 = 𝔘𝑙
,𝑟 exp 𝑖(𝑘𝑧 + 𝑝𝑡) (18a)

𝔴𝑙 =( 𝑖
ℎ
)𝔚𝑙 exp 𝑖(𝑘𝑧 + 𝑝𝑡) (18b)

Using the solution in and dimensionless variables x and 𝜖 , equation (17) can be simplified as

(Λ̄ + 2�̄�)∇2 + 𝐻𝑙
1 −𝐻2

𝐻𝑙
2 �̄�∇2 + 𝐻𝑙

3
(𝔘𝑙 ,𝔚)𝑇 = 0 (19)

where Λ̄ = Λ𝑙

𝐶1
44

, �̄� 𝑙 = 𝑀𝑙

𝐶1
44

, 𝐻𝑙
1 =

𝜌𝑙

𝜌1 (𝑐ℎ)2 − �̄� 𝑙𝜖2, 𝐻𝑙
2 = (Λ̄𝑙 + �̄� 𝑙)𝜖2, 𝐻𝑙

3 =
𝜌𝑙

𝜌1 (𝑐ℎ)2 − (Λ̄𝑙 + 2�̄� 𝑙)𝜖2

The equation (19) can be written as

(∇4 + 𝑃𝑙∇2 +𝑄𝑙) (𝔘𝑙 ,𝔚𝑙) = 0 (20)

The solution of (20) is

𝔘𝑙 =

3∑︁
𝑗=1

[𝐴 𝑗𝐽0 (𝛼 𝑗𝑥) + 𝐵 𝑗 𝑦0 (𝛼 𝑗𝑥)] (21a)

𝔚𝔩 =

3∑︁
𝑗=1

𝑓 𝑙𝑗 [𝐴 𝑗𝐽0 (𝛼 𝑗𝑥) + 𝐵 𝑗 𝑦0 (𝛼 𝑗𝑥)] (21b)

Where (𝛼𝑙
𝑗
)2 is nonzero roots of

((𝛼𝑙𝑗 )4 + 𝑃𝑙 (𝛼𝑙𝑗 )2 +𝑄𝑙) (𝔘𝑙 ,𝔚𝑙) = 0 (22)

And the arbitrary constants 𝑓 𝑙
𝑗

are obtained from

𝑓 𝑙𝑗 =
[−(Λ̄𝑙 + 2�̄� 𝑙) (𝛼𝑙

𝑗
)2]

𝐻𝑙
2

(23)

5 BOUNDARY CONDITIONS AND FREQUENCY EQUATIONS

The frequency equation can be obtained by using the following boundary and interface conditions
(i) On the traction free inner surface
𝜎𝑙
𝑟𝑟 = 𝜎𝑙

𝑟 𝑧 = 𝐸
𝑙 = 𝑇 𝑙 = 0 With 𝑙 = 1.

(ii) At the interface 𝜎𝑙
𝑟𝑟 = 𝜎𝑟𝑟 ;𝜎𝑙

𝑟 𝑧 = 𝜎𝑟 𝑧; 𝐸 𝑙 = 𝑇 𝑙 = 𝐷𝑙 = 0
Substituting the above boundary condition we obtained as a 32 × 32 determinant equation

| (𝑌𝑖 𝑗) | = 0, (𝑖, 𝑗 = 1, 2, 3, ..., 32) (24)

𝐴𝑡 𝑥 = 𝑥0 𝑤ℎ𝑒𝑟𝑒 𝑗 = 1, 2, 3, 4

ℵ(1, 𝑗) = 2𝑐66

(
𝛼 𝑗

𝑥0

)
J1 (𝛼1

𝑗𝑥0) − [(𝑐11) (𝜖1
𝑗 𝑎)2 + 𝑐13𝜖𝑎

1
𝑗 + 𝑒31𝜖𝑏

1
𝑗 + 𝑞31𝑐

1
𝑗 ]J0 (𝛼1

𝑗𝑥0)

ℵ(2, 𝑗) = (𝜖 + 𝑎1
𝑗 + 𝑒15𝑏

1
𝑗 ) (𝛼1

𝑗 )J1 (𝛼1
𝑗𝑥0),

ℵ(3, 𝑗) = 𝑏1
𝑗J0 (𝛼1

𝑗𝑥0)

ℵ(4, 𝑗) =
𝑐1
𝑗

𝑥0
J0 (𝛼1

𝑗𝑥0) − (𝛼1
𝑗 )J1 (𝛼1

𝑗𝑥0),

In addition, the other nonzero elements 𝑌1, 𝑗+4, 𝑌2, 𝑗+4, 𝑌3, 𝑗+4 and 𝑌4, 𝑗+4 are obtained by replacing 𝐽0 by 𝐽1and 𝑅0 by 𝑅1.
At 𝑥1 =

𝑎1
𝑎

,

ℵ(5, 𝑗) = 𝑐66 (
𝛼 𝑗

𝑥1
)J1 (𝛼1

𝑗𝑥1) − [(𝑐11) (𝜖1
𝑗 𝑎)2 + 𝑐13𝜖𝑎

1
𝑗 + 𝑒31𝜖𝑏

1
𝑗 + 𝑞31𝑐

1
𝑗 ]J0 (𝛼1

𝑗𝑥1)

ℵ(5, 𝑗 + 8) = 2`(
𝛼 𝑗

𝑥1
)J1 (𝛼 𝑗𝑥1) + [−(_̄ + 2 ¯̀) (𝛼2

𝑗 ) + 𝑞31𝑏
1
𝑗 − _̄𝜖
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ℵ(6, 𝑗) = (𝜖 + 𝑎1
𝑗 + 𝑒15𝑏

1
𝑗 ) (𝛼1

𝑗 )J1 (𝛼1
𝑗𝑥1),

ℵ(6, 𝑗 + 8) = −`((𝜖 + 𝑎1
𝑗 )) (𝛼1

𝑗 )J1 (𝛼1
𝑗𝑥1)

ℵ(7, 𝑗) = (𝛼1
𝑗 )J1 (𝛼1

𝑗𝑥1),
ℵ(7, 𝑗 + 8) = −(𝛼1

𝑗 )J1 (𝛼1
𝑗𝑥1),

ℵ(8, 𝑗) = 𝑎1
𝑗J0 (𝛼1

𝑗𝑥1),
ℵ(8, 𝑗 + 8) = −𝑎1

𝑗J0 (𝛼1
𝑗𝑥1),

ℵ(9, 𝑗) = 𝑏1
𝑗J0 (𝛼1

𝑗𝑥1)
ℵ(10, 𝑗) = 𝑏1

𝑗𝛼 𝑗J0 (𝛼1
𝑗𝑥1

ℵ(11, 𝑗) =
𝑐1
𝑗

𝑥1
J0 (𝛼1

𝑗𝑥1) − (𝛼1
𝑗 )J1 ((𝛼1

𝑗𝑥1))

and the remaining nonzero element ℵ(𝑖, 𝑗) can be obtained on replacing 𝐽0 by 𝐽1 and 𝑌0 by 𝑌1 in the above elements.where
𝑖 = 5, 6, . . . , 11, 𝑗 = 5, 6, 7, 8 in the Similar way ℵ(𝑖, 11 + 𝑘) also obtained where 𝑘 = 5, 6, 7, 8.
At the interfaces 𝑥2 =

𝑎2
𝑎

non-zero elements along the following are obtained on replacing 𝑥1 by 𝑥2 and super script 1 by 2 in order.
Here 𝑗 = 7, 8 and 𝑘 = 6, 7, 8.

ℵ(12, 𝑗) = 2�̄� (
𝛼 𝑗

𝑥2
)J1 (𝛼1

𝑗𝑥2) − [−(Λ̄ + 2�̄�) (𝛼2
𝑗 ) − Λ̄𝜖 𝑓 1

𝑗 ]J0 (𝛼 𝑗𝑥2)

ℵ(12, 𝑘 + 5) = −2`(
𝛼 𝑗

𝑥2
)J1 (𝛼1

𝑗𝑥2) − [−(_̄ + 2 ¯̀) (𝛼2
𝑗 ) + 𝛽𝑒 𝑗 − _̄𝜖𝑑1

𝑗 ]J0 (𝛼 𝑗𝑥2)

ℵ(13, 𝑗) = −𝑀 ((𝜖 + 𝑓 1
𝑗 )) (𝛼1

𝑗 )J1 (𝛼1
𝑗𝑥2)

ℵ(13, 𝑘 + 5) = − ¯̀((𝜖 + 𝑓 1
𝑗 )) (𝛼1

𝑗 )J1 (𝛼1
𝑗𝑥2)

ℵ(14, 𝑗) = (𝛼1
𝑗 )J1 (𝛼1

𝑗𝑥2),
ℵ(15, 𝑗) = (𝑑1

𝑗 )J1 (𝛼1
𝑗𝑥2),

ℵ(16, 𝑗) = (𝑒1
𝑗 )J1 (𝛼1

𝑗𝑥2),

ℵ(𝑖, 𝑗) 𝑖 = 12, 13, 14, 15, 16 and 𝑗 = 9, 10 and ℵ(𝑖, 𝑗) 𝑖 = 12, 13 and 𝑗 = 14, 15, 16 are obtained in similar way. The non-zero
elements at the other interface are ℵ(𝑖, 𝑗) (𝑖 = 17, 18, 19, 20, 21 and 𝑗 = 11, 12,. . . 20)and ℵ(𝑖, 𝑗) (𝑖 = 22, 23,. . . , 28 and
𝑗 = 19, 20,. . . 32)and ℵ(𝑖, 𝑗) (𝑖 = 29, 30, 31, 32, and 𝑗 = 25, 26, ,. . . , 32) obtained in above mentioned way.

6 NUMERICAL DISCUSSION

The frequency equation is numerically carried out for the material PZT-5A and their material properties are given below Mahesh
et al. (2021)
𝐶11 = 13.9 × 1010𝑁𝑚−2,𝐶12 = 7.78 × 1010𝑁𝑚−2, 𝐶13 = 7.43 × 1010𝑁𝑚−2, 𝐶33 = 11.5 × 1010𝑁𝑚−2, 𝐶44 = 2.56 × 1010𝑁𝑚−2,
𝑇0 = 298𝐾,𝜌 = 5504𝑘𝑔𝑚−3, 𝐶𝑇 = 420𝐽𝐾𝑔−1𝐾−1, 𝑒13 = −6.98𝐶𝑚−2, 𝑒33 = 13.8𝐶𝑚−2, 𝑒15 = −0.138𝐶𝑚−2, 𝛽1 = 𝛽3 = 1.52 ×
106𝑁𝑘−1𝑚−2 , 𝑃3 = −2.94× 106𝐶𝑘−1𝑚−2, 𝐾1 = 𝐾3 = 1.5𝑊𝑚−1𝐾−1 𝜖11 = 60× 10−11𝐶2𝑁−1𝑚−2,𝜖33 = 54.7× 10−11𝐶2𝑁−1𝑚−2

Tab.1The Non-dimensional Frequency for real wave numbers in the first axial mode of Thermo piezoelectric hollow cylinder.

WaveNumber Frequency
PZT5A PZT/LEMV/PZT PZT/LEMV/SWCNT/LEMV/PZT

0.2 3.1221 1.8865 1.7174
0.4 3.2033 1.9774 1.8115
0.6 3.6694 2.1413 1.9810
0.8 3.8095 2.3978 2.2451
1 3.9097 2.7108 2.5634

Tab.2 The Non dimensional Frequency for real wave numbers in the second axial mode of Thermo piezoelectric hollow cylinder.

WaveNumber Frequency
PZT5A PZT/LEMV/PZT PZT/LEMV/SWCNT/LEMV/PZT

0.2 7.8272 6.3980 6.2289
0.4 7.8358 6.4159 6.3101
0.6 7.9137 6.4265 6.2662
0.8 7.9768 6.4625 6.1098
1 8.0965 6.5245 6.0770
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Fig. 1: Variations of the frequency of the multi layered cylinder with respect to applied electric voltage for different layers at the
wave number 0.8

Fig. 2: Variations of the frequency of the multi layered cylinder with respect to applied electric voltage for different layers at the
wave number 1.2

The frequency equations are numerically evaluated for PZT5A, PZT5A/LEMV/PZT5 and PZT5A/LEMV/SWNCT/LEMV/PZT5A
composite hollow cylinder. The axisymmetric non-dimensional complex frequencies against the wave number for the first and
second axial modes are given in Tables 1 and 2.From these tables non-dimensional frequency against wave number is more stable
in SWNCT layer hollow cylinder compared with PZT5A and LEMV layer hollow cylinders.
In both the Fig 1 and 2, the dotted line, discontinuous line and thin line, specifies thermo piezoelectric with interfacial layers

LEMV and SWNCT, LEMV and single layered thermo piezoelectric cylinders respectively. The non-dimensional frequencies
against the voltage differences for different wave numbers are observed. In Fig.2 the non-dimensional frequency maintain
unique nature for higher values of voltage differences but when the voltage differences is vanish the frequency in PZT5A and
PZT5A/LEMV/PZT5A are also vanishes but PZT5A/LEMV/SWNCT/LEMV/PZT5A keeps certain higher magnitude due to their
wave length. Similarly in Fig.2 increase the wave number from 0.8 to 1.2 yields the same results in higher values of voltage difference
but voltage differences is zero the PZT layer cylinder meets zero and other two layered cylinders receipts certain value. From this
observation the increasing values of wavenumber in PZT5A, PZTA/LEMV/PZT5A and PZT5A/LEMV/SWNCT/LEMV/PZT5A
the non-dimensional frequency against the voltage difference maintain unique nature for higher values but deviations arise when
the value is zero due to their wavelength.
Variations of the fundamental frequencies of the composite cylinder under uniform temperature rising for various compositions

of layers presented in Fig.3 and 4. It can be observed that the frequencies of composite cylinder decrease with the increase
of temperature change until reaches to zero at the critical temperature point. The reason of these phenomena is reduction in
total stiffness of the composite cylinder, since stiffness of composite cylinder decreases when temperature changes increase.
Furthermore, this treatment is different in the realm of temperature after the critical temperature. Also, uniform temperature
change has a softening effect on composite cylinder at pre-buckling realm and a rise in temperature increases this effect.
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Fig. 3: Variations of the frequency of the multi layered cylinder with respect to linear temperature change for different layers at the
wave number 0.8

Fig. 4: Variations of the frequency of the multi layered cylinder with respect to linear temperature change for different layers at the
wave number 1.2

7 Conclusion

The axisymmetric wave propagation analysis of thermo piezoelectric composite circular hollow cylinder made of interior and
exterior thermo piezoelectric layer fortified together by a LEMV and SWCNT has been analyzed. Coupled partial differential
equations have been found for PZT5A/LEMV/SWCNT/LEMV/PZT5A hollow circular cylinder by using linear theory of elasticity.
The equations of motion, heat and electric conduction also has been exactly solved. The non-dimensional frequency has been
obtained against the wavenumber, voltage difference and linear temperature change. The nature of non-dimensional frequency of
PZT5A/LEMV/SWCNT/LEMV/PZT5A hollow cylinder compared with PZT5A and PZT5A/LEMV/PZT5A cylinders against the
wavenumber, also voltage difference and linear temperature change for fixed wave number. The effects of this problem are very
useful in the problem of dynamic response of the transversely isotropic thermo piezoelectric cylinders which has various industrial
applications.

References

S Mamatha Upadhya, CSK Raju, S Saleem, AA Alderremy, et al. Modified fourier heat flux on mhd flow over stretched cylinder
filled with dust, graphene and silver nanoparticles. Results in Physics, 9:1377–1385, 2018.

Rasool Moradi-Dastjerdi and Kamran Behdinan. Thermoelastic static and vibrational behaviors of nanocomposite thick cylinders
reinforced with graphene. 2019.

Chunhui Wang, Xiaodong He, Yuanyuan Shang, Qingyu Peng, Yuyang Qin, Enzheng Shi, Yanbing Yang, Shiting Wu, Wenjing
Xu, Shanyi Du, et al. Multifunctional graphene sheet–nanoribbon hybrid aerogels. Journal of Materials Chemistry A, 2(36):
14994–15000, 2014a.

Mohammed Sobhy. Hygrothermal vibration of orthotropic double-layered graphene sheets embedded in an elastic medium using
the two-variable plate theory. Applied Mathematical Modelling, 40(1):85–99, 2016.

73



R. Selvamani, S. Mahesh Tech. Mech., Vol. 42, Is. 1, (2022), 66–74

Akhil Garg, V Vijayaraghavan, CH Wong, Kang Tai, and Liang Gao. An embedded simulation approach for modeling the thermal
conductivity of 2d nanoscale material. Simulation Modelling Practice and Theory, 44:1–13, 2014.

Kim Meow Liew, XQ He, and Sritawat Kitipornchai. Predicting nanovibration of multi-layered graphene sheets embedded in an
elastic matrix. Acta Materialia, 54(16):4229–4236, 2006.

R Ansari, B Arash, and H Rouhi. Vibration characteristics of embedded multi-layered graphene sheets with different boundary
conditions via nonlocal elasticity. Composite Structures, 93(9):2419–2429, 2011.

Jinbao Wang, Xiaoqiao He, Sritawat Kitipornchai, and Hongwu Zhang. Geometrical nonlinear free vibration of multi-layered
graphene sheets. Journal of Physics D: Applied Physics, 44(13):135401, 2011.

A Sakhaee-Pour, MT Ahmadian, and R Naghdabadi. Vibrational analysis of single-layered graphene sheets. Nanotechnology, 19
(8):085702, 2008.

Jinbao Wang, Meiling Tian, Xiaoqiao He, and Zhibo Tang. Free vibration analysis of single-layered graphene sheets based on a
continuum model. Applied Physics Frontier, 2(1), 2014b.

Mohammed Sobhy. Generalized two-variable plate theory for multi-layered graphene sheets with arbitrary boundary conditions.
Acta Mechanica, 225(9):2521–2538, 2014.

Farzad Ebrahimi and Navvab Shafiei. Influence of initial shear stress on the vibration behavior of single-layered graphene sheets
embedded in an elastic medium based on reddy’s higher-order shear deformation plate theory. Mechanics of Advanced Materials
and Structures, 24(9):761–772, 2017.

Hamidreza Bakhshalizadeh and Majid Ghadiri. Size-dependent vibration behavior of graphene sheet with attached spring-mass
and damper system based on the nonlocal eringen theory. Mechanics of Advanced Materials and Structures, pages 1–10, 2020.

Olga Mazur and Jan Awrejcewicz. Ritz method in vibration analysis for embedded single-layered graphene sheets subjected to
in-plane magnetic field. Symmetry, 12(4):515, 2020.

Kamran Kamali and Reza Nazemnezhad. A novel method for considering interlayer effects between graphene nanoribbons and
elastic medium in free vibration analysis. Mechanics of Advanced Composite Structures, 7(1):79–88, 2020.

HR Analooei, M Azhari, S Sarrami-Foroushani, and A Heidarpour. On the vibration and buckling analysis of quadrilateral and
triangular nanoplates using nonlocal spline finite strip method. Journal of the Brazilian Society of Mechanical Sciences and
Engineering, 42(4):1–14, 2020.

Kamran Behdinan, Rasool Moradi-Dastjerdi, Babak Safaei, Zhaoye Qin, Fulei Chu, and David Hui. Graphene and cnt impact on
heat transfer response of nanocomposite cylinders. Nanotechnology Reviews, 9(1):41–52, 2020.

Farzad Ebrahimi, Pendar Hafezi, and Ali Dabbagh. Buckling analysis of embedded graphene oxide powder-reinforced nanocomposite
shells. Defence Technology, 17(1):226–233, 2021.

Rasool Moradi-Dastjerdi and Kamran Behdinan. Stability analysis of multifunctional smart sandwich plates with graphene
nanocomposite and porous layers. International Journal of Mechanical Sciences, 167:105283, 2020.

Farzad Ebrahimi and Ali Dabbagh. Viscoelastic wave propagation analysis of axially motivated double-layered graphene sheets via
nonlocal strain gradient theory. Waves in Random and Complex Media, 30(1):157–176, 2020.

Mustapha Fouaidi, Abdellah Hamdaoui, Mohammad Jamal, and Bouazza Braikat. Numerical analysis of single-layered graphene
sheets by a mesh-free approach. Engineering with Computers, 37(3):2193–2206, 2021.

Moussa Bellal, Habib Hebali, Houari Heireche, Abdelmoumen Anis Bousahla, Abdeldjebbar Tounsi, Fouad Bourada, SR Mahmoud,
EA Adda Bedia, and Abdelouahed Tounsi. Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium
via nonlocal four-unknown integral model. Steel and Composite Structures, An International Journal, 34(5):643–655, 2020.

Zahra Shafiei, Saeid Sarrami-Foroushani, Fatemeh Azhari, and Mojtaba Azhari. Application of modified couple-stress theory to
stability and free vibration analysis of single and multi-layered graphene sheets. Aerospace Science and Technology, 98:105652,
2020.

Cheng Hui Xu, Jing Jing Hu, and Da Lun Rong. Flexural wave propagation of double-layered graphene sheets based on the
hamiltonian system. In Materials Science Forum, volume 975, pages 121–126. Trans Tech Publ, 2020.

R Selvamani and S Mahesh. Mathematical modeling and analysis of elastic waves in a thermo piezoelectric multilayered rotating
composite rod with lemv/cfrp interface. Technische Mechanik-European Journal of Engineering Mechanics, 39(3):241–251,
2019.

Stephen C Cowin and Jace W Nunziato. Linear elastic materials with voids. Journal of elasticity, 13(2):125–147, 1983.
Mira Mitra and S Gopalakrishnan. Vibrational characteristics of single-walled carbon-nanotube: Time and frequency domain

analysis. Journal of applied physics, 101(11):114320, 2007.
S Mahesh, R Selvamani, and F Ebrahami. Assessment of hydrostatic stress and thermo piezoelectricity in a laminated multilayered

rotating hollow cylinder. Mechanics of Advanced Composite Structure, 8(1):77–86, 2021.

74


	Introduction
	PROBLEM FORMULATION
	EQUATION OF MOTION FOR LINEAR ELASTIC MATERIALS WITH VOIDS
	Mathematical formulations for SWCNT
	BOUNDARY CONDITIONS AND FREQUENCY EQUATIONS
	 NUMERICAL DISCUSSION
	Conclusion

