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Abstract: An elasto-plasticity formulation is presented that requires no intermediate (stress-free) configuration, since all
describing tensors are solely of proper-Eulerian or proper-Lagrangean type. This formulation—based on commutative-symmetrical
elastic-plastic stretch tensor products with symmetrizing-rotation tensors in the middle—is discussed and compared with the
Bilby-Kröner-Lee formulation, which defines an intermediate (stress-free) configuration that is not well-determined—as noted,
e.g., by Casey & Naghdi (1980). For an Eulerian continuum description, it turns out that the symmetric elastic part of the
presented formulation (with only proper-Eulerian tensors) has similarities with the elastic tensor factor 𝑒𝔉 of the Bilby-Kröner-Lee
multiplicative elasto-plastic decomposition F= 𝑒𝔉.𝑝𝔉 of the deformation gradient F. From a Lagrangean point of view, however,
the symmetric elasticity tensors of the two models differ considerably: the elastic right stretch and Cauchy-Green deformation
tensor of the new formulation are proper-Lagrangean tensors, while the corresponding tensors of the Bilby-Kröner-Lee formulation
are not well-determined, since they refer to an intermediate (stress-free) configuration. As finite orthotropy modeling requires a
material reference configuration in which (imaginary) fibers are perpendicular to each other, finite elastic orthotropy and finite
plastic orthotropy can only be modeled simultaneously based on proper-Lagrangean elastic and plastic tensors provided by
commutative-symmetrical deformation tensor products and not by Bilby-Kröner-Lee formulations.

Keywords: geometric interpretation of deformation, material-convective continuum formulation, Green-Naghdi rate, commutative-
symmetrical stretch tensor product, orthotropic elasto-plasticity

1 Introduction

The mapping

𝑑x = F.𝑑X (1)

of the infinitesimal vicinities 𝑑x and 𝑑X of the current position vector x and the reference position vector X by the deformation
gradient

F = 𝜆1ê1⊗Ê1+𝜆2ê2⊗Ê2+𝜆3ê3⊗Ê3 = 𝜆𝑘 ê𝑘⊗Ê𝑘︸  ︷︷  ︸
R=R−T

(2)

(in spectral representation) is shown graphically as material deformation in Fig. 1. A material sphere of the reference configuration
(black sphere on the left in Fig. 1) is deformed into a material ellipsoid of the current configuration (blue ellipsoid on the right in
Fig. 1). The principal directions/eigenvectors are marked with a hat and point along the semi-axes of the ellipsoid. The Eulerian
and Lagrangean unit eigenvectors are ê𝑘 = {ê1, ê2, ê3} and Ê𝑘 = {Ê1, Ê2, Ê3}, respectively, with the proper-Eulerian tensors written
in lowercase and the proper-Lagrangean tensors in uppercase. A single contraction is given by the dot product ‘.’ operator, a dyadic
product by the ‘⊗’ operator, and the summation convention is extended to multiple indices (written with the same letter). On the
right-hand side of Eq.(2), the underbraced

R = R−T = ê1⊗Ê1+ê2⊗Ê2+ê3⊗Ê3, det(R) = 1 (3)

is the proper-orthogonal material-convective (polar) rotation tensor R from the polar decomposition of the deformation gradient
F=v.R=R.U. Since the rotation tensor (3) is proper-orthogonal, R equals its transposed inverse R−T and has a determinant equal to
one. The deformation (1) of the infinitesimal vicinities 𝑑x and 𝑑X (shown in Fig. 1) can also be considered as a material mapping
of a cube cut along the Lagrangean principal directions (blue cube on the left in Fig. 1) onto a cuboid/rectangular parallelepiped
oriented along the Eulerian principal directions (green cuboid on the right in Fig. 1). The eigenvalues 𝜆1=ℓ1/𝐿1 >0,𝜆2=ℓ2/𝐿2 >0,
𝜆3 = ℓ3/𝐿3 > 0 are the stretch ratios of corresponding lengths of the cuboid and the cube. The determinant of the deformation
gradient F is of positive value det(F)>0. With the transpose of the deformation gradient

FT = 𝜆1Ê1⊗ ê1+𝜆2Ê2⊗ ê2+𝜆3Ê3⊗ ê3, (4)

the symmetric positive-definite left and right Cauchy-Green deformation tensors follow as

b = F.FT = 𝜆 2
1 ê1⊗ ê1+𝜆 2

2 ê2⊗ ê2+𝜆 2
3 ê3⊗ ê3 and C = FT.F = 𝜆 2

1 Ê1⊗Ê1+𝜆 2
2 Ê2⊗Ê2+𝜆 2

3 Ê3⊗Ê3, (5)
★ E-mail address: klaus.heiduschke@alumni.ethz.ch doi: 10.24352/UB.OVGU-2023-056 2023 | All rights reserved.

http://www.ovgu.de/techmech
mailto:klaus.heiduschke@alumni.ethz.ch
https://dx.doi.org/10.24352/UB.OVGU-2023-056


K. Heiduschke Tech. Mech., Vol. 43, Is. 2, (2023), 203–210

ê3
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Fig. 1: Material mapping 𝑑x=F.𝑑X of the infinitesimal vicinities 𝑑x and 𝑑X of the current position vector x and the reference
position vector X by the deformation gradient F

respectively. Applying isotropic square-root tensor functions to (5), the symmetric positive-definite left and right stretch tensors

v =
√

b = 𝜆1ê1⊗ ê1+𝜆2ê2⊗ ê2+𝜆3ê3⊗ ê3 and U =
√

C = 𝜆1Ê1⊗Ê1+𝜆2Ê2⊗Ê2+𝜆3Ê3⊗Ê3 (6)

are obtained. From the polar decomposition of the deformation gradient F=v.R=R.U, it follows that the right and left stretch or
Cauchy-Green deformation tensors

U = RT.v.R, v = R.U.RT or C = RT.b.R, b = R.C.RT (7)

can be rotated back and forth with respect to each other using the proper-orthogonal material-convective (polar) rotation tensor (3).

2 Geometric interpretation of total, elastic and plastic Cauchy-Green deformation tensors

For the total deformation, the left Cauchy-Green deformation tensor (5)1 can be understood as an Eulerian material ellipsoid (blue
ellipsoid on the right in Fig. 1 or 2) with respect to an Eulerian material sphere (red dashed circle on the right in Fig. 1 or 2) and,
the right Cauchy-Green deformation tensor (5)2 can be understood as a Lagrangian material ellipsoid (red dashed ellipse on the left
in Fig. 1 or 2) with respect to a Lagrangian material sphere (black sphere on the left in Fig. 1 or 2). This interpretation of the total
deformation can be generalized for the elastic and plastic deformations by introducing the upper-left index ‘@’ of an at sign or
monkey tail, where empty (no @) means total, ‘e’ elastic and ‘p’ plastic. The total, elastic and plastic left stretch @v= {v, 𝑒v, 𝑝v} and
Cauchy-Green deformation tensors @b= {b, 𝑒b, 𝑝b} with the Eulerian unit eigenvectors @ê𝑘 = {ê𝑘 , 𝑒ê𝑘 , 𝑝ê𝑘} and the corresponding
right stretch @U= {U, 𝑒U, 𝑝U} and Cauchy-Green deformation tensors @C= {C, 𝑒C, 𝑝C} with the Lagrangean unit eigenvectors
@Ê𝑘 = {Ê𝑘 ,

𝑒Ê𝑘 ,
𝑝Ê𝑘} can also be understood either as Eulerian and Lagrangean material cuboids with respect to unit cubes or as

Eulerian and Lagrangean material ellipsoids with respect to unit spheres, whose edges or semi-axes are oriented along the principal
directions @ê𝑘 and @Ê𝑘 , respectively, see Fig. 2. The total, elastic, plastic stretch @v, @U and Cauchy-Green deformation tensors
@b, @C are symmetric and positive-definite. In particular, since the elastic and plastic Eulerian and Lagrangean unit eigenvectors

@ê𝑘 = R.@Ê𝑘 = @Ê𝑘.RT and @Ê𝑘 = RT.@ê𝑘 = @ê𝑘.R (8)

are also rotated with the material-convective (polar) rotation tensor (3), the elastic and plastic stretch and Cauchy-Green deformation
tensors obey

@v = R.@U.RT, @U = RT.@v.R and @b = R.@C.RT, @C = RT.@b.R (9)

and are therefore of proper-Eulerian or proper-Lagrangean type, cf. Heiduschke (2020). Under superposed rigid-body motions
(indicated by an upper-left plus sign ‘+’), symmetric proper-Eulerian tensors (written in lowercase) are altered: +t=Q.t.QT by the
superposed rigid-body rotation Q, while symmetric proper-Lagrangean tensors (written in uppercase) are invariant: +T=T.

3 Bilby-Kröner-Lee formulation

According to Casey & Naghdi (1980), the multiplicative elasto-plastic decomposition

F = 𝑒𝔉.𝑝𝔉 = (𝑒𝔉.𝔔T).(𝔔︸   ︷︷   ︸.𝑝𝔉)
I

(10)

of the deformation gradient (2) into an elastic tensor factor 𝑒𝔉 and a plastic tensor factor 𝑝𝔉 is not uniquely determined with
respect to an intermediate rotation 𝔔=𝔔−T—since one can multiply 𝔔T.𝔔= I (a second-order identity tensor I) between 𝑒𝔉 and
𝑝𝔉. The multiplicative elasto-plastic decomposition (10) is called the Bilby-Kröner-Lee formulation, even though Bilby et al.
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Fig. 2: Geometric interpretation of the total, elastic or plastic proper-Eulerian/proper-Lagrangean material ellipsoids and spheres
or cuboids (rectangular parallelepipeds) and cubes

(1957), Kröner (1959), Lee & Liu (1967) and Lee (1969) were not the first to publish this multiplicative approach. The deformation
gradient F is a two-point tensor with respect to both the Eulerian configuration and the Lagrangean configuration, since in its
spectral representation (2) the stretch eigenvalues 𝜆𝑘 are the components relative to the mixed basis dyads of the Eulerian ê𝑘 and
Lagrangean Ê𝑘 unit eigenvectors. From the spectral representation of the elastic tensor factor of the Bilby-Kröner-Lee formulation

𝑒𝔉 = 𝑒𝜆1
𝑒ê1⊗𝑒𝔈̂1+𝑒𝜆2

𝑒ê2⊗𝑒𝔈̂2+𝑒𝜆3
𝑒ê3⊗𝑒𝔈̂3 = 𝑒𝜆𝑘

𝑒ê𝑘⊗𝑒𝔈̂𝑘︸   ︷︷   ︸
𝑒ℜ= 𝑒ℜ−T

(11)

and the plastic tensor factor of the Bilby-Kröner-Lee formulation
𝑝𝔉 = 𝑝𝜆1

𝑝𝔢̂1⊗ 𝑝Ê1+ 𝑝𝜆2
𝑝𝔢̂2⊗ 𝑝Ê2+ 𝑝𝜆3

𝑝𝔢̂3⊗ 𝑝Ê3 = 𝑝𝜆𝑘
𝑝𝔢̂𝑘⊗ 𝑝Ê𝑘︸    ︷︷    ︸,

𝑝ℜ= 𝑝ℜ−T
(12)

it is obvious that 𝑒𝔉 and 𝑝𝔉 are two-point tensors that depend on an intermediate (stress-free) configuration that is not well-
defined—because of the intermediate rotation 𝔔 in Eq.(10). For this reason, these tensors are written in Gothic font. The elastic
left stretch tensor of the Bilby-Kröner-Lee formulation

𝑒v =

√︃
𝑒𝔉.𝑒𝔉T = 𝑒𝜆1

𝑒ê1⊗𝑒ê1+𝑒𝜆2
𝑒ê2⊗𝑒ê2+𝑒𝜆3

𝑒ê3⊗𝑒ê3 (13)

is of proper-Eulerian type, the plastic right stretch tensor of the Bilby-Kröner-Lee formulation

𝑝U =

√︃
𝑝𝔉T.𝑝𝔉 = 𝑝𝜆1

𝑝Ê1⊗ 𝑝Ê1+ 𝑝𝜆2
𝑝Ê2⊗ 𝑝Ê2+ 𝑝𝜆3

𝑝Ê3⊗ 𝑝Ê3 (14)

is of proper-Lagrangean type, but the elastic right stretch of the Bilby-Kröner-Lee formulation

𝑒𝔘 =

√︃
𝑒𝔉T.𝑒𝔉 = 𝑒𝜆1

𝑒𝔈̂1⊗𝑒𝔈̂1+𝑒𝜆2
𝑒𝔈̂2⊗𝑒𝔈̂2+𝑒𝜆3

𝑒𝔈̂3⊗𝑒𝔈̂3 (15)

and the plastic left stretch of the Bilby-Kröner-Lee formulation

𝑝𝔳 =

√︃
𝑝𝔉.𝑝𝔉T = 𝑝𝜆1

𝑝𝔢̂1⊗ 𝑝𝔢̂1+ 𝑝𝜆2
𝑝𝔢̂2⊗ 𝑝𝔢̂2+ 𝑝𝜆3

𝑝𝔢̂3⊗ 𝑝𝔢̂3 (16)

are not of a proper type because they depend on an intermediate (stress-free) configuration which is not well-determined.
The Bilby-Kröner-Lee formulation requires a plastic flow rule of type

𝑝 ¤𝔉 = 𝑝 ¤ℜ.𝑝ℜ
T︸ ︷︷ ︸ .𝑝𝔉 + 𝑝ℜ.𝑝 ¤U = · · ·

𝑝Ω=−𝑝ΩT
(17)

with nine degrees of freedom specified either by nine components 𝑝 ¤𝔉𝑖𝐴 of 𝑝 ¤𝔉= 𝑝 ¤𝔉𝑖𝐴e𝑖⊗ E𝐴 or by three components 𝑝Ω𝑘 of the
plastic spin tensor 𝑝Ω=−𝑝ΩT plus six components 𝑝 ¤𝑈𝐴𝐵=

𝑝 ¤𝑈𝐵𝐴 of 𝑝 ¤U= 𝑝 ¤UT
= 𝑝 ¤𝑈𝐴𝐵E𝐴⊗ E𝐵. A constraint between the total, elastic

and plastic spin tensors Ω, 𝑒Ω and 𝑝Ω, respectively, is obtained from the velocity gradient

¤F.F−1 = ¤R.RT︸︷︷︸+R.( ¤U.U−1).RT = 𝑒 ¤ℜ.𝑒ℜ
T︸ ︷︷ ︸+ 𝑒𝔉.𝑝 ¤ℜ.𝑝ℜ

T︸ ︷︷ ︸ .𝑒𝔉−1+ 𝑒ℜ.(𝑒 ¤𝔘.𝑒𝔘−1).𝑒ℜT+ (𝑒𝔉.𝑝ℜ).(𝑝 ¤U.𝑝U−1).(𝑒𝔉.𝑝ℜ)−1

Ω=−ΩT 𝑒Ω=−𝑒ΩT 𝑝Ω=−𝑝ΩT
(18)

for the Bilby-Kröner-Lee formulation.
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4 Commutative-symmetrical stretch tensor products

Applying the polar decomposition to the elastic 𝑒𝔉 = 𝑒v.𝑒ℜ and the plastic 𝑝𝔉 = 𝑝ℜ.𝑝U tensor factors of the multiplicative
elasto-plastic decomposition (10) of the deformation gradient

F = 𝑒𝔉.𝑝𝔉 = (𝑒v.𝑒ℜ).(𝑝ℜ︸   ︷︷   ︸.𝑝U) = 𝑒v.ℜ.𝑝U,

ℜ
(19)

the proper-orthogonal elastic 𝑒ℜ and plastic 𝑝ℜ rotation tensors can be combined into one proper-orthogonal rotation-tensor
product ℜ= 𝑒ℜ.𝑝ℜ according to Bammann & Johnson (1987). Even though the elastic rotation tensor

𝑒ℜ = 𝑒ê1⊗𝑒𝔈̂1+𝑒ê2⊗𝑒𝔈̂2+𝑒ê3⊗𝑒𝔈̂3 = 𝑒ê𝑘⊗𝑒𝔈̂𝑘 (20)

and the plastic rotation tensor

𝑝ℜ = 𝑝𝔢̂1⊗ 𝑝Ê1+ 𝑝𝔢̂2⊗ 𝑝Ê2+ 𝑝𝔢̂3⊗ 𝑝Ê3 = 𝑝𝔢̂𝑘 ⊗ 𝑝Ê𝑘 (21)

are two-point tensors (each with one “Gothic” basis vector) each with one respect to an intermediate (stress-free) configuration,
their product rotation tensor

ℜ = ℜ−T = 𝑒ℜ.𝑝ℜ = 𝑒ê𝑖⊗𝑒𝔈̂𝑖 .
𝑝𝔢̂𝑗︸   ︷︷   ︸⊗𝑝Ê𝑗 = ℜ𝑖 𝑗

𝑒ê𝑖⊗ 𝑝Ê𝑗 , det(ℜ) = 1

ℜ𝑖 𝑗

(22)

is a two-point tensor of a proper type with respect to both the Eulerian configuration and the Lagrangean configuration (without
Gothic basis vectors). Substituting the elastic left stretch 𝑒v in Eq.(19) by the R-forward rotation R.𝑒U.RT of the elastic right stretch
𝑒U, as noted on the left-hand side of

F = 𝑒v.ℜ.𝑝U = (R.𝑒U.RT).ℜ︸ ︷︷ ︸.𝑝U = R.(𝑒U.X.𝑝U)︸      ︷︷      ︸ = 𝑒v.ℜ.(RT︸︷︷︸.𝑝v.R) = (𝑒v.x.𝑝v)︸    ︷︷    ︸.R,
X U x=R.X.RT v

(23)

results in the Lagrangean commutative-symmetrical elasto-plastic stretch tensor product

U = UT = 𝑒U.X.𝑝U = 𝑝U.XT.𝑒U = 𝑒U.
√︁

𝑒U−1.𝑝C.𝑒U−1.𝑒U = 𝑝U.
√︁

𝑝U−1.𝑒C.𝑝U−1.𝑝U = 𝑒C.U−1.𝑝C = 𝑝C.U−1.𝑒C (24)

with the Lagrangean symmetrizing-rotation tensor

X = X−T =
√︁

𝑒U−1.𝑝C.𝑒U−1.𝑒U.𝑝U−1 =
√︁

𝑒U.𝑝C−1.𝑒U.𝑒U−1.𝑝U = 𝑒U−1.𝑝U.
√︁

𝑝U−1.𝑒C.𝑝U−1 = 𝑒U.𝑝U−1.
√︁

𝑝U.𝑒C−1.𝑝U
= 𝑒U−1.U.𝑝U−1 = 𝑒U.U−1.𝑝U,

(25)

det(X)=1. And substituting analogously the plastic right stretch 𝑝U in Eq.(19) by the RT-back rotation RT.𝑝v.R of the plastic left
stretch 𝑝v, as noted on the right-hand side of (23), results in the Eulerian commutative-symmetrical elasto-plastic stretch tensor
product

v = vT = 𝑒v.x.𝑝v = 𝑝v.xT.𝑒v = 𝑒v.
√
𝑒v−1.𝑝b.𝑒v−1.𝑒v = 𝑝v.

√
𝑝v−1.𝑒b.𝑝v−1.𝑝v = 𝑒b.v−1.𝑝b = 𝑝b.v−1.𝑒b = R.(U).RT (26)

with the Eulerian symmetrizing-rotation tensor

x = x−T =
√
𝑒v−1.𝑝b.𝑒v−1.𝑒v.𝑝v−1 =

√︁
𝑒v.𝑝b−1.𝑒v.𝑒v−1.𝑝v = 𝑒v−1.𝑝v.

√
𝑝v−1.𝑒b.𝑝v−1 = 𝑒v.𝑝v−1.

√︁
𝑝v.𝑒b−1.𝑝v

= 𝑒v−1.v.𝑝v−1 = 𝑒v.v−1.𝑝v = R.(X).RT,
(27)

det(x)=1, cf. Heiduschke (2018a,b, 2020, 2021).
Commutative-symmetrical stretch tensor products require only symmetric plastic flow rules 𝑝 ¤U = 𝑝 ¤UT

= · · · with six degrees
of freedom specified by the six components 𝑝 ¤𝑈𝐴𝐵 = 𝑝 ¤𝑈𝐵𝐴 of the plastic flow tensor 𝑝 ¤U = 𝑝 ¤𝑈𝐴𝐵E𝐴⊗ E𝐵, since in them only the
material-convective (polar) rotation tensor R is used and 𝑒ℜ, 𝑝ℜ do not occur at all.
While the plastic deformation is determined from material-convective integration of the plastic flow rule and, after this integration,
can be expressed by the plastic stretch tensors 𝑝v or 𝑝U, respectively, the elastic deformation for the commutative-symmetrical
stretch tensor products (24) or (26) is given by

𝑒U =
√︁

U.𝑝C−1.U = 𝑒𝜆1
𝑒Ê1⊗𝑒Ê1+𝑒𝜆2

𝑒Ê2⊗𝑒Ê2+𝑒𝜆3
𝑒Ê3⊗𝑒Ê3 = RT.𝑒v.R (28)

or

𝑒v =
√︁

v.𝑝b−1.v = 𝑒𝜆1
𝑒ê1⊗𝑒ê1+𝑒𝜆2

𝑒ê2⊗𝑒ê2+𝑒𝜆3
𝑒ê3⊗𝑒ê3 =

√︃
𝑒𝔉.𝑒𝔉T, (29)
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respectively. Although the elastic left stretch 𝑒v tensors (13) and (29) of both the Bilby-Kröner-Lee formulation and the

commutative-symmetrical stretch tensor product are equal, the corresponding elastic right stretch tensors 𝑒𝔘=

√︃
𝑒𝔉T.𝑒𝔉 (15) of the

Bilby-Kröner-Lee formulation and 𝑒U (28) of the commutative-symmetrical stretch tensor product differ from each other. The
elastic right stretch tensor (15) of the Bilby-Kröner-Lee formulation is not well-determined, cf. Casey & Naghdi (1980), since

𝑝ℜ.XT.𝑒U.X.𝑝ℜT= 𝑝ℜ.
√︁

𝑝U−1.C.𝑝U−1.𝑝ℜT

𝑒𝔘 =

√︃
𝑒𝔉T.𝑒𝔉 = 𝑒ℜT.𝑒v.𝑒ℜ =

︷               ︸︸               ︷
𝑒ℜ

T
.

√︁
v.𝑝b−1.v︸     ︷︷     ︸.𝑒ℜ = 𝑒𝜆1

𝑒𝔈̂1⊗𝑒𝔈̂1+𝑒𝜆2
𝑒𝔈̂2⊗𝑒𝔈̂2+𝑒𝜆3

𝑒𝔈̂3⊗𝑒𝔈̂3

x.
√

𝑝v−1.b.𝑝v−1.xT

(30)

is defined with respect to an intermediate (stress-free) configuration, whereas the elastic right stretch tensor 𝑒U (28) of the
commutative-symmetrical stretch tensor product (24) is of proper-Lagrangean type.
A helpful relation can be derived from the polar decomposition of the commutative-symmetrical products with the symmetric
positive-definite stretch tensor factors @v= {v, 𝑒v, 𝑝v} or @U= {U, 𝑒U, 𝑝U}, as shown next: the right multiplication of, say, the left
commutative-symmetrical stretch tensor product (26) with 𝑝v−1 yields a non-symmetric product tensor

A = v.𝑝v−1 = 𝑒v.x =

√︂
v.𝑝b−1

.v︸   ︷︷   ︸ .x = x.
√︂

𝑝v−1
.b.𝑝v−1︸        ︷︷        ︸ ,

A.AT AT.A
(31)

from which the x-forward rotation of the left stretch tensor products follows as

𝑒v =
√︁

v.𝑝b−1.v = x.
√

𝑝v−1.b.𝑝v−1.xT. (32)

5 Proper-orthogonal arbitray basis vectors co-rotating with the material

The rotation R = ê1 ⊗ Ê1+ ê2 ⊗ Ê2+ ê3 ⊗ Ê3 of the Lagrangean principal axes Ê𝑘 to the Eulerian principal axes ê𝑘 defines the
proper-orthogonal material-convective (polar) rotation tensor (3). If the proper-orthogonal arbitrary Eulerian e𝑘 and Lagrangean
E𝑘 basis vectors (without hat) are also material-convective co-rotational with R, then e𝑘 =R.E𝑘 =E𝑘 .RT and the components of
corresponding Eulerian t= 𝑡𝑖 𝑗e𝑖⊗e 𝑗 and Lagrangean T=𝑇𝑖 𝑗E𝑖⊗E 𝑗 symmetric tensors are equal, 𝑡𝑖 𝑗 =𝑇𝑖 𝑗 , because

t = R.T.RT = 𝑇𝑖 𝑗R.(E𝑖⊗E 𝑗 ).RT = 𝑇𝑖 𝑗e𝑖⊗e 𝑗 = 𝑡𝑖 𝑗e𝑖⊗e 𝑗 . (33)

This is also the case for the time derivatives t̊ = R. ¤T.RT of corresponding Eulerian and Lagrangean symmetric tensors t = R.T.RT

when the Green-Naghdi rate t̊ is applied as the time derivative for symmetric Eulerian tensors t. The components of t̊= ¤𝑡𝑖 𝑗e𝑖⊗e 𝑗

and ¤T= ¤𝑇𝑖 𝑗E𝑖⊗E 𝑗 are then also equal: ¤𝑡𝑖 𝑗 = ¤𝑇𝑖 𝑗 .
The time derivative of a symmetric Eulerian tensor t= 𝑡𝑖 𝑗e𝑖⊗e 𝑗 is given from the product rule as

¤t = (𝑡𝑖 𝑗e𝑖⊗e 𝑗
¤) = ¤𝑡𝑖 𝑗e𝑖⊗e 𝑗︸    ︷︷    ︸+ 𝑡𝑖 𝑗 ¤e𝑖⊗e 𝑗 + 𝑡𝑖 𝑗e𝑖⊗¤e 𝑗 = t̊ + Ω.t − t.Ω

t̊
(34)

the time derivative of the components ¤𝑡𝑖 𝑗e𝑖⊗e 𝑗 plus the time derivatives of the basis unit vectors ¤e𝑘 =Ω.e𝑘 =e𝑘 .ΩT=−e𝑘 .Ω. When
the anti-symmetric spin tensor Ω=−ΩT represents an arbitrary spin, the term ¤𝑡𝑖 𝑗e𝑖⊗e 𝑗 represents the time derivative co-rotational
with an arbitrary Ω. However, if Ω is defined in terms of (3) as the material-convective spin tensor

Ω = −ΩT = ¤R.RT, (35)

then the time derivative of the components ¤𝑡𝑖 𝑗e𝑖⊗e 𝑗 becomes the translational and rotational material-convective time derivative t̊
(marked with a ring), the so-called Green-Naghdi rate

t̊ = R. ¤T.RT = R.(RT.t.R ¤)︸    ︷︷    ︸.RT = ¤t − Ω.t + t.Ω

¤T= (𝑇𝑖 𝑗E𝑖⊗E 𝑗
¤) = ¤𝑇𝑖 𝑗E𝑖⊗E 𝑗

(36)

of symmetric proper-Eulerian tensors t [cf. Green & Naghdi (1965) p.273, eqs.(8.20)–(8.23)].

6 Fourth-order transformations for symmetric second-order rate tensors

When the plastic flow rule 𝑝 ¤C= · · · is formulated, e.g., for the Lagrangean plastic Cauchy-Green deformation tensor rate 𝑝 ¤C, it can
be easily expressed by the Lagrangean plastic stretch tensor 𝑝U and its rate 𝑝 ¤U according to 𝑝 ¤C= 𝑝 ¤U.𝑝U+ 𝑝U.𝑝 ¤U.
But what if the plastic flow rule 𝑝 ¤U= · · · is formulated for the Lagrangean plastic stretch tensor rate 𝑝 ¤U? How to express 𝑝 ¤U as a
function of 𝑝 ¤C and 𝑝C?
Here, transformations with fourth-order tensors, e.g., 𝔊=𝔊𝑖 𝑗𝑘ℓE𝑖⊗E 𝑗⊗E𝑘⊗Eℓ =𝔊𝑗𝑖𝑘ℓE𝑖⊗E 𝑗⊗E𝑘⊗Eℓ =𝔊𝑖 𝑗ℓ𝑘E𝑖⊗E 𝑗⊗E𝑘⊗Eℓ for
the symmetric second-order rate tensors 𝑝 ¤U= 𝑝 ¤𝑈𝑖 𝑗E𝑖⊗E 𝑗 =

𝑝 ¤𝑈𝑗𝑖E𝑖⊗E 𝑗 and 𝑝 ¤C= 𝑝 ¤𝐶𝑘ℓE𝑘⊗Eℓ =
𝑝 ¤𝐶ℓ𝑘E𝑘⊗Eℓ are useful, which map

two symmetric second-order rate tensors onto each other, back: 𝑝 ¤𝑈𝑖 𝑗 =𝔊
−1
𝑖 𝑗𝑘ℓ

𝑝 ¤𝐶𝑘ℓ and forth: 𝑝 ¤𝐶𝑖 𝑗 =𝔊𝑖 𝑗𝑘ℓ
𝑝 ¤𝑈𝑘ℓ .
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For the transformation 𝑝 ¤𝐶𝑖 𝑗 =𝔊𝑖 𝑗𝑘ℓ
𝑝 ¤𝑈𝑘ℓ , the tensor components relative to an arbitrary basis vector system E𝑘 read

𝑝 ¤𝐶𝑥𝑥
𝑝 ¤𝐶𝑦𝑦
𝑝 ¤𝐶𝑧𝑧√

2·𝑝 ¤𝐶𝑥𝑦√
2·𝑝 ¤𝐶𝑥𝑧√
2·𝑝 ¤𝐶𝑦𝑧


=



𝔊𝑥𝑥𝑥𝑥 𝔊𝑥𝑥𝑦𝑦 𝔊𝑥𝑥𝑧𝑧

√
2·𝔊𝑥𝑥𝑥𝑦

√
2·𝔊𝑥𝑥𝑥𝑧

√
2·𝔊𝑥𝑥𝑦𝑧

𝔊𝑦𝑦𝑥𝑥 𝔊𝑦𝑦𝑦𝑦 𝔊𝑦𝑦𝑧𝑧

√
2·𝔊𝑦𝑦𝑥𝑦

√
2·𝔊𝑦𝑦𝑥𝑧

√
2·𝔊𝑦𝑦𝑦𝑧

𝔊𝑧𝑧𝑥𝑥 𝔊𝑧𝑧𝑦𝑦 𝔊𝑧𝑧𝑧𝑧

√
2·𝔊𝑧𝑧𝑥𝑦

√
2·𝔊𝑧𝑧𝑥𝑧

√
2·𝔊𝑧𝑧𝑦𝑧√

2·𝔊𝑥𝑦𝑥𝑥

√
2·𝔊𝑥𝑦𝑦𝑦

√
2·𝔊𝑥𝑦𝑧𝑧 2·𝔊𝑥𝑦𝑥𝑦 2·𝔊𝑥𝑦𝑥𝑧 2·𝔊𝑥𝑦𝑦𝑧√

2·𝔊𝑥𝑧𝑥𝑥

√
2·𝔊𝑥𝑧𝑦𝑦

√
2·𝔊𝑥𝑧𝑧𝑧 2·𝔊𝑥𝑧𝑥𝑦 2·𝔊𝑥𝑧𝑥𝑧 2·𝔊𝑥𝑧𝑦𝑧√

2·𝔊𝑦𝑧𝑥𝑥

√
2·𝔊𝑦𝑧𝑦𝑦

√
2·𝔊𝑦𝑧𝑧𝑧 2·𝔊𝑦𝑧𝑥𝑦 2·𝔊𝑦𝑧𝑥𝑧 2·𝔊𝑦𝑧𝑦𝑧





𝑝 ¤𝑈𝑥𝑥
𝑝 ¤𝑈𝑦𝑦
𝑝 ¤𝑈𝑧𝑧√

2·𝑝 ¤𝑈𝑥𝑦√
2·𝑝 ¤𝑈𝑥𝑧√
2·𝑝 ¤𝑈𝑦𝑧


(37)

in Voigt (1910) pseudo vector/matrix notation and with the (red) factors
√

2 and 2 of Sayir (1970). The symmetric positive-definite
second-order Lagrangean tensors 𝑝C and 𝑝U are isotropic tensor functions of each other and therefore share the same Lagrangean
principal axes Ê𝑘 (which are functions of time). On the one hand, the component matrices of 𝑝C and 𝑝U

[𝑝C] =


𝑝𝜆1
2 0 0

0 𝑝𝜆2
2 0

0 0 𝑝𝜆3
2

 , [𝑝U] =


𝑝𝜆1 0 0
0 𝑝𝜆2 0
0 0 𝑝𝜆3

 (38)

have a diagonal form in spectral representation. On the other hand, the component matrices of their time derivatives 𝑝 ¤C and 𝑝 ¤U

[𝑝 ¤C] =


2 𝑝𝜆1
𝑝¤𝜆1 (𝑝𝜆1

2− 𝑝𝜆2
2)Λ3 (𝑝𝜆3

2− 𝑝𝜆1
2)Λ2

(𝑝𝜆1
2− 𝑝𝜆2

2)Λ3 2 𝑝𝜆2
𝑝¤𝜆2 (𝑝𝜆2

2− 𝑝𝜆3
2)Λ1

(𝑝𝜆3
2− 𝑝𝜆1

2)Λ2 (𝑝𝜆2
2− 𝑝𝜆3

2)Λ1 2 𝑝𝜆3
𝑝¤𝜆3

 , [𝑝 ¤U] =


𝑝¤𝜆1 (𝑝𝜆1− 𝑝𝜆2)Λ3 (𝑝𝜆3− 𝑝𝜆1)Λ2
(𝑝𝜆1− 𝑝𝜆2)Λ3

𝑝¤𝜆2 (𝑝𝜆2− 𝑝𝜆3)Λ1
(𝑝𝜆3− 𝑝𝜆1)Λ2 (𝑝𝜆2− 𝑝𝜆3)Λ1

𝑝¤𝜆3

 (39)

exhibit diagonal and off-diagonal components in their spectral representations as well. The diagonal components are obtained from
the time derivatives of the eigenvalues and the off-diagonal components from the time derivatives ¤̂E𝑘 =Λ × Ê𝑘 of the Lagrangean
unit eigenvectors Ê𝑘 spinning with the rotation speed vector Λ=Λ1Ê1+Λ2Ê2+Λ3Ê3 of the Lagrangean principal axes Ê𝑘 , where
‘×’ denotes the cross product operator.
In a principal co-ordinate system Ê𝑘 , the pseudo-matrix of the components 𝔊̂𝑖 𝑗𝑘ℓ of the fourth-order transformation tensor 𝔊 has a
diagonal form in Voigt-Sayir representation, such that

2 𝑝𝜆1
𝑝¤𝜆1

2 𝑝𝜆2
𝑝¤𝜆2

2 𝑝𝜆3
𝑝¤𝜆3√

2·(𝑝𝜆 2
1 −

𝑝𝜆 2
2 )Λ3√

2·(𝑝𝜆 2
3 −

𝑝𝜆 2
1 )Λ2√

2·(𝑝𝜆 2
2 −

𝑝𝜆 2
3 )Λ1


=



2 𝑝𝜆1 0 0 0 0 0
0 2 𝑝𝜆2 0 0 0 0
0 0 2 𝑝𝜆3 0 0 0
0 0 0 2·

𝑝𝜆1+ 𝑝𝜆2
2

0 0
0 0 0 0 2·

𝑝𝜆1+ 𝑝𝜆3
2

0
0 0 0 0 0 2·

𝑝𝜆2+ 𝑝𝜆3
2





𝑝¤𝜆1
𝑝¤𝜆2
𝑝¤𝜆3√

2·(𝑝𝜆1− 𝑝𝜆2)Λ3√
2·(𝑝𝜆3− 𝑝𝜆1)Λ2√
2·(𝑝𝜆2− 𝑝𝜆3)Λ1


(40)

its components can directly be determined from the spectral components (39) of the two pseudo-vectors in (40). The reverse
transformation 𝑝 ¤𝑈𝑖 𝑗 =𝔊

−1
𝑖 𝑗𝑘ℓ

𝑝 ¤𝐶𝑘ℓ with the component matrix of 𝔊−1 in Voigt-Sayir representation is given by

𝑝¤𝜆1

𝑝¤𝜆2

𝑝¤𝜆3
√

2·(𝑝𝜆1− 𝑝𝜆2)Λ3
√

2·(𝑝𝜆3− 𝑝𝜆1)Λ2
√

2·(𝑝𝜆2− 𝑝𝜆3)Λ1


=



1
2 𝑝𝜆1

0 0 0 0 0
0

1
2 𝑝𝜆2

0 0 0 0
0 0

1
2 𝑝𝜆3

0 0 0
0 0 0 2· 1/2

𝑝𝜆1+ 𝑝𝜆2
0 0

0 0 0 0 2· 1/2
𝑝𝜆1+ 𝑝𝜆3

0
0 0 0 0 0 2· 1/2

𝑝𝜆2+ 𝑝𝜆3





2 𝑝𝜆1
𝑝¤𝜆1

2 𝑝𝜆2
𝑝¤𝜆2

2 𝑝𝜆3
𝑝¤𝜆3

√
2·(𝑝𝜆 2

1 −
𝑝𝜆 2

2 )Λ3
√

2·(𝑝𝜆 2
3 −

𝑝𝜆 2
1 )Λ2

√
2·(𝑝𝜆 2

2 −
𝑝𝜆 2

3 )Λ1


(41)

the reciprocal diagonal components of (40) relative to a principal co-ordinate system Ê𝑘 , cf. Heiduschke (2019).
With (41), a plastic flow rule 𝑝 ¤U= · · · for the Lagrangean plastic stretch tensor rate 𝑝 ¤U can also be expressed in terms of 𝑝 ¤C and 𝑝C
(in spectral representation).

7 Material orthotropy at finite deformation

The components of elastic 𝑒𝜀𝑖 𝑗 and plastic 𝑝¤𝜀𝑖 𝑗 responses are combined by @𝑖 𝑗 = {𝑒𝜀𝑖 𝑗 , 𝑝¤𝜀𝑖 𝑗/ ¤𝜆}=@𝑗𝑖 in order to reflect hyperelasticity
𝑒𝜀𝑖 𝑗 =

𝑒𝔎𝑖 𝑗𝑘ℓ 𝜎𝑘ℓ and non-linear plastic flow 𝑝¤𝜀𝑖 𝑗 = ¤𝜆 𝑝𝔎𝑖 𝑗𝑘ℓ 𝜎𝑘ℓ , where @𝔎𝑖 𝑗𝑘ℓ =
@𝔎𝑖 𝑗𝑘ℓ (𝑒𝜀𝑎𝑏, 𝑝𝜀𝑐𝑑). The orthotropy of materials at

finite deformation can only be formulated from a material reference configuration in which (imaginary) fibers are perpendicular to
each other. And the characteristic orthotropic decoupling of normal and shear components

@11
@22
@33√

2·@12√
2·@13√
2·@23


=



𝔎1111 𝔎1122 𝔎1133 0 0 0
𝔎1122 𝔎2222 𝔎2233 0 0 0
𝔎1133 𝔎2233 𝔎3333 0 0 0

0 0 0 2·𝔎1212 0 0
0 0 0 0 2·𝔎1313 0
0 0 0 0 0 2·𝔎2323





𝜎11
𝜎22
𝜎33√

2·𝜎12√
2·𝜎13√
2·𝜎23


(42)
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occurs only relative to a proper-orthogonal material basis vector systems @M𝑘 = {M𝑘 ,
@M𝑘 ,

@M𝑘}, in which the Lagrangean basis
vectors @M𝑘 point in the perpendicular fiber directions of the material reference configuration. For other arbitrary Lagrangean
basis vector systems E𝑘 ≠

@M𝑘 (including the principal systems @Ê𝑘), the linearized component matrix (of elastic compliance or
plastic flow) is fully occupied

@𝑥𝑥

@𝑦𝑦

@𝑧𝑧√
2·@𝑥𝑦√
2·@𝑥𝑧√
2·@𝑦𝑧


=



𝔎𝑥𝑥𝑥𝑥 𝔎𝑥𝑥𝑦𝑦 𝔎𝑥𝑥𝑧𝑧

√
2·𝔎𝑥𝑥𝑥𝑦

√
2·𝔎𝑥𝑥𝑥𝑧

√
2·𝔎𝑥𝑥𝑦𝑧

𝔎𝑥𝑥𝑦𝑦 𝔎𝑦𝑦𝑦𝑦 𝔎𝑦𝑦𝑧𝑧

√
2·𝔎𝑦𝑦𝑥𝑦

√
2·𝔎𝑦𝑦𝑥𝑧

√
2·𝔎𝑦𝑦𝑦𝑧

𝔎𝑥𝑥𝑧𝑧 𝔎𝑦𝑦𝑧𝑧 𝔎𝑧𝑧𝑧𝑧

√
2·𝔎𝑧𝑧𝑥𝑦

√
2·𝔎𝑧𝑧𝑥𝑧

√
2·𝔎𝑧𝑧𝑦𝑧√

2·𝔎𝑥𝑥𝑥𝑦

√
2·𝔎𝑦𝑦𝑥𝑦

√
2·𝔎𝑧𝑧𝑥𝑦 2·𝔎𝑥𝑦𝑥𝑦 2·𝔎𝑥𝑦𝑥𝑧 2·𝔎𝑥𝑦𝑦𝑧√

2·𝔎𝑥𝑥𝑥𝑧

√
2·𝔎𝑦𝑦𝑥𝑧

√
2·𝔎𝑧𝑧𝑥𝑧 2·𝔎𝑥𝑦𝑥𝑧 2·𝔎𝑥𝑧𝑥𝑧 2·𝔎𝑥𝑧𝑦𝑧√

2·𝔎𝑥𝑥𝑦𝑧

√
2·𝔎𝑦𝑦𝑦𝑧

√
2·𝔎𝑧𝑧𝑦𝑧 2·𝔎𝑥𝑦𝑦𝑧 2·𝔎𝑥𝑧𝑦𝑧 2·𝔎𝑦𝑧𝑦𝑧





𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑧𝑧√
2·𝜎𝑥𝑦√
2·𝜎𝑥𝑧√
2·𝜎𝑦𝑧


(43)

and rotated away from the material basis vector system @M𝑘 . The linearized component matrix (43) looks like full anisotropy with
21 coefficients instead of the 9 coefficients of orthotropy.
Orthotropic material formulated from a material reference configuration where the (imaginary) fibers are not perpendicular to each
other also results in a linearized component matrix that looks like (43), since material orthotropy and finite-deformation-induced
anisotropy are then in a mix and interfere.
Therefore, the modeling of an orthotropic elastic-plastic material with perpendicular elastic and plastic fibers in the reference
configuration can only be realized by means of Lagrangean commutative-symmetrical stretch tensor products and not by means
of Bilby-Kröner-Lee formulations (10). On the one hand, the elastic 𝑒U and plastic 𝑝U right stretch tensors of a Lagrangean
commutative-symmetrical stretch tensor product (24) can refer both to the same reference configuration with perpendicular elastic
and plastic fibers, since U, 𝑒U and 𝑝U can appear on the rightmost side of the right polar decomposition

F = R.U = R.𝑝U.XT.𝑒U = R.𝑒U.X.𝑝U (44)

of the deformation gradient. Hence, orthotropic elasto-plasticity can be modeled simultaneously with commutative-symmetrical
stretch tensor products. On the other hand, the elastic fibers perpendicular in the reference configuration are deformed by the plastic
tensor factor 𝑝𝔉 of the Bilby-Kröner-Lee formulation (10) to skew fibers in the intermediate (stress-free) configuration, so that the
elastic tensor factor 𝑒𝔉 of the Bilby-Kröner-Lee formulation refers to skewed and not perpendicular fibers. Hence, orthotropic
elasticity cannot be modeled with the Bilby-Kröner-Lee formulation (10).

8 Conclusion

The Bilby-Kröner-Lee formulation (10) introduces an intermediate (stress-free) configuration that is not well-determined according
to Casey & Naghdi (1980). Since the elastic (11) and plastic (12) tensor factors as well as the elastic right (15) and plastic left (16)
stretch tensors of the Bilby-Kröner-Lee formulation are defined with respect to that intermediate configuration, they are also not
well-determined and are therefore called to be of non-proper type. In this context, in particular, the elastic right stretch (30) of the
Bilby-Kröner-Lee formulation is put into question.
In contrast, the proposed elasto-plasticity formulation is based solely on proper-Eulerian and proper-Lagrangian tensors defined
by the commutative-symmetrical stretch tensor products (24), (26), (28), (29). It is therefore independent of an intermediate
(stress-free) configuration and does not use tensors related to it. The elastic right stretch tensor (28) of the proposed formulation is
of proper-Lagrangian type and the plastic left stretch tensor 𝑝v=

√︁
v.𝑒b−1.v of proper-Eulerian type.

When elastic and plastic right-stretches are defined by the right commutative-symmetrical stretch tensor product with respect
to a reference configuration, then elastic and plastic orthotropy can both be modeled simultaneously. In the Bilby-Kröner-Lee
formulation, however, only plastic orthotropy can be modeled—and no elastic orthotropy. Therefore, and in particular for
elasto-plastic orthotropy, a formulation based on commutative-symmetrical stretch tensor products should be employed (to decouple
material orthotropy and plastic deformation-induced anisotropy and) to model finite-elastic orthotropy and finite-plastic orthotropy
simultaneously.
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