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Abstract: Joint predictive modeling of hydrodynamics and electrokinetics is a standing numerical challenge but crucial for
various applications in electrochemistry and power engineering. The present lack in modeling of electrohydrodynamic (EHD)
turbulent flows lies in the treatment of small-scale processes and scale interactions. To overcome these limitations, a stochastic
one-dimensional turbulence (ODT) model is utilized. The model aims to resolve all scales of the flow, but only on a notional
line-of-sight, modeling turbulent advection by a stochastically sampled sequence of eddy events that punctuate deterministic
molecular diffusive advancement. In this study, two canonical flow configurations are investigated that address different coupling
strategies and flow physics. First, EHD effects in a variable-density vertical pipe flow of an ideal gas with an inner concentric
electrode are investigated with a one-way coupled model formulation. Electric fields are generated by means of a corona discharge
and the corresponding effect of a fixed ionic charge density field. Second, in order to reduce physical complexity, EHD effects the
turbulent boundary layers in plane Couette flow of an isothermal univalent ionic liquid are investigated with a fully coupled model
formulation. Both application cases demonstrate that ODT has predictive capabilities due to multiscale resolution of transport
processes. Present results suggest that more expensive fully than one-way coupling of electrokinetics is crucial when charge
relaxation times are significantly larger than the mean advection time scale.

Keywords: drag enhancement, electrohydrodynamic turbulence, high Schmidt number, multiphysical boundary layers, one-
dimensional turbulence

1 Introduction

Electrohydrodynamic (EHD) flows are encountered in various technical applications, ranging from power and process engineering,
to electrochemistry. Prominent examples are electrostatic precipitation (Robinson, 1968), EHD-enhancement of heat and mass
transfer (Laohalertdecha et al., 2007; Bacher and Riebel, 2021), electroconvective flow instability at ion-selective surfaces (Mani
and Wang, 2020), turbulent drag control (Ostilla-Mónico and Lee, 2017), hydrogen production in water electrolysis (Shiva Kumar
and Himabindu, 2019), and plasma-assisted combustion (Ju and Sun, 2015), among others. The common property among these
cases is the vast range of scales that is exhibited by the flow, ranging from large integral lenght scales, down to small molecular
viscous and diffusive length scales, as well as EHD length scales, that may fall in the inertial or dissipative range, modifying
turbulence scaling properties (Zhao and Wang, 2019). Capturing these scale interactions is a standing numerical challenge that
constitutes a lack in modeling and predictability. The present study addresses this lack by a cost-efficient, dimensionally reduced,
stochastic modeling approach.
One of the key issues for accurate modeling of wall-bounded EHD flows is the correct representation of transfer processes to and
from the wall, as well as capturing of nonlocal and nonlinear interactions between the fluid flow, charge-carrier distributions, and
electric fields. These interactions may cause a departure of the turbulence dynamics, e.g., from classical locally homogeneous
and isotropic hydrodynamic turbulence (Kolmogorov, 1941) to electrokinetic turbulence (Zhao and Wang, 2017). Indeed, on
some EHD regimes, turbulence may appear even at very low Reynolds numbers, e.g., when the electric body forces substitute
the role of external inertial forces, and the former are in a large ratio with respect to the viscous forces (Storey, 2005). Direct
numerical simulation (DNS) is the preferred method for unraveling the physics of EHD flows. However, DNS is, even to this day,
limited by computational cost, which strongly constrains the range of scales that can be resolved. For multiphysics applications,
only weakly to moderately turbulent flows can be simulated as expressed by low Reynolds numbers in relation to applications
(Duraisamy et al., 2019). Needless to say, ensemble-based parameterizations used in Reynolds-averaged Navier–Stokes simulations
(RANS) and diffusive sub-grid-scale closure models used in large-eddy simulations (LES) are of limited applicability in EHD
flows, specifically in the presence of walls, due to physical processes that break hydrodynamic universality. A good example in this
respect is turbulent drag modification. The physical processes lead to nonuniversal behavior so that, depending on the flow regime
and application case, either drag reduction due to flow laminarization or drag increase due to turbulence regeneration may occur
(e.g. Nelson et al., 1990; Ostilla-Mónico and Lee, 2017). The mechanisms behind these manifestations of EHD effects have been
partly uncovered and can be attributed to some extend to the action of internal spatially varying body forces (e.g. Pandey et al.,
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2020) that can be realized by electric fields and charge carriers in EHD flow (e.g. Zhao and Wang, 2021). The present paper aims
to contribute to the ongoing discussion by advanced modeling, validation, and prediction by linking drag enhancement effects in a
one-way coupled ideal gas flow with those in a fully coupled flow of an ionic liquid.
Alternative to averaged and filter-based turbulence modeling approaches, in this study a fundamentally different, dimensionally
reduced, stochastic approach is taken to address modeling issues in EHD turbulence by utilizing the one-dimensional turbulence
(ODT) model (Kerstein, 1999). The model formulation and its current capabilities, though not including EHD effects, are also
summarized in a recent concept paper on advanced subgrid-scale modeling (Kerstein, 2022). ODT has the capability to capture
detailed statistics of complex mixing processes by spatio-temporal resolution of simultaneous scalar and momentum transport
processes in the bulk (e.g. Klein et al., 2019), but also in the vicinity of a wall (e.g. Medina Méndez et al., 2019; Klein et al.,
2022b). In general, ODT aims to resolve all relevant scales of a turbulent flow but only for a notional line-of-sight represented by a
one-dimensional (1-D) domain. A stochastically sampled sequence of mapping events models the effects of turbulent advection by
punctuating deterministic processes that are related to molecular diffusion, electric drift currents, Coulomb forces, and boundary
conditions. Those processes are directly resolved along the 1-D domain. For the present standalone model application to internal
EHD flows, the ODT domain is aligned with the wall-normal coordinate in order to capture transfer processes in the boundary
layers. The effects of variable momentum sources, for instance, due to nonhomogeneous electric fields (Medina Méndez et al.,
2019), can be resolved if needed but this complication is skipped here. We demonstrate that this modeling strategy captures the
leading order physics yielding predictive capabilities for EHD-induced drag enhancement in one-way coupled and fully coupled
flow regimes. The predictions of the one-way coupled formulation are validated with available reference experiments, whereas
those of the fully coupled formulation are partly validated with available reference direct numerical simulation (DNS) data at low
turbulence intensity awaiting experimental validation for moderately and highly turbulent flow.
The rest of this paper is organized as follows. Section 2 gives an overview of the ODT model formulations for multiphysical
wall-bounded flows including the extension to one-way coupled and fully coupled EHD flows. In Section 3, we validate the model
formulation for a low-Mach number pipe flow of an ideal gas subject to EHD enhancement by comparison to available reference
experiments in the one-way coupled flow regime. After that, in Section 4, we apply the fully coupled model to electroconvection of
an ionic liquid in plane Couette flow in order to investigate the bulk–boundary layer coupling across flow regimes. We demonstrate
that advanced modeling techniques are required in order to address the multiscale nature of wall-bounded the EHD flows. Last, in
Section 5, we summarize our findings, give some concluding remarks, and indicate the remaining open issues to be addressed by
forthcoming research.

2 Model Formulation

2.1 Overview of the ODT model

In decaying isotropic turbulence seen on a line-of-sight through the turbulent flow (the ODT line), piecewise-transformations on
scalar profiles, or triplet maps, induce an increase in the rate of strain, which is characteristic of turbulent eddies. Symbolically, the
effect of the triplet map 𝑓 (𝑦) on an instantaneous profile of the property field𝜓(𝑦) is denoted as the transformation𝜓(𝑦) → 𝜓( 𝑓 (𝑦))
(in a 𝑦-oriented wall-normal domain of a Cartesian coordinate system Kerstein, 1999). The triplet map microscopically models
turbulence phenomenology. It takes a property profile along a selected size 𝑙 interval, compresses the profile to 𝑙/3, pastes two
copies of this profile to fill again, and flips the central copy to ensure continuity.
Such mapping events are stochastically sampled from unknown distribution functions with the aid of a Poisson process (e.g. (Papoulis
and Pillai, 2002)). Based on assumed distribution functions for the mapping event size 𝑙 and location 𝑦0, an efficient thinning-and-
rejection method is used for probabilistic selection, in which the local rate (𝜏−1) of the mappings is calculated in accordance with
the local turbulence time scale (eddy turnover time 𝜏). The latter is obtained from the square root of the specific available energy
of the current flow state divided by the selected eddy size 𝑙. Under absence of body forces, the available energy is governed by the
momentary velocity shear across the selected eddy interval (Kerstein, 1999). In the mesh-adaptive model formulation (Lignell
et al., 2013, 2018), the specific eddy kinetic energy, 𝑙2/𝜏2, is taken proportional to the squared eddy velocity, 𝑢2

𝐾
(Kerstein et al.,

2001). This scale velocity is modified when eddy-available potential energy and a scale-dependent viscous penalty energy are taken
into account as summarized in Kerstein (2022) and detailed below for the inclusion of EHD effects related to Coulomb forces.
A factor of proportionality that controls the rate of implemented mapping events and , hence, the overall turbulence intensity, is
included in the model as a rate parameter, 𝐶. The specific eddy-available kinetic energy and the rate-of-strain are related by means
of an equivalent turbulent diffusivity. The implementation of a given map at fixed turbulent diffusivity then favors the sampling
of further mappings. This is the model representation of the direct energy cascade of three-dimensional (3-D) Navier–Stokes
turbulence (Kerstein, 1999). Note that neither the direct cascade nor its scaling exponent is prescribed to the model. The profile
modifications resulting from the map applications only represent the turbulence production of sequentially smaller scales by
overturning fluid motions in a scale-local fashion not limiting scale interactions.
The set of operations comprising the sampling process and the mappings themselves is known as an eddy event. For decaying
isotropic turbulence, there are still two other elements required in the model to complete a consistent dynamic picture of turbulence.
One is a mechanism for viscous transport implementation, and the other one is a mechanism for turbulence kinetic energy (TKE)
dissipation. Both are a consequence of the viscous momentum flux, which is implemented in a direct way in ODT, by resolving
the corresponding numerical fluxes in the 1-D domain after an eddy event has been sampled (Kerstein, 1999). This leads to
the formulation of a symbolic 1-D partial differential equation (PDE) for a scalar velocity component 𝜓 in ODT. Specialized to
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Cartesian coordinates in a temporal ODT formulation, this is

𝜕𝜓

𝜕𝑡
+ 𝑀 = −𝜕𝐹 (𝜓)

𝜕𝑦
. (1)

Here, 𝐹 (𝜓) is the model-resolved flux of 𝜓, e.g., 𝐹 (𝜓) = −𝜎 (𝜕𝜓/𝜕𝑦) for molecular diffusive gradient fluxes in which 𝜎 is a
kinematic diffusion coefficient. 𝑀 = 𝑀 (𝐶, 𝜓, 𝑦, 𝑓 (𝑦)) represents discrete mapping effects that punctuate deterministic evolution
of the conserved scalar 𝜓(𝑦, 𝑡) at discrete times. The mapping effects depend on the selected physical mapping 𝑓 (𝑦), which
models turbulent microstructure, and a turbulent eddy rate parameter 𝐶. Note that there is an alternative, so-called spatial ODT
formulation, which is generally treated as a reinterpretation of the parabolic temporal ODT formulation. Extensive details on the
spatial formulation can be found in other ODT publications (e.g., Lignell et al., 2018; Medina Méndez et al., 2019, 2022).

2.2 Model formulation for temporally developing planar wall-bounded flow

The presence of the confinement wall introduces a dependence on wall-normal location on the turbulent scalar and momentum
transport processes. Close to the wall, viscous transport is dominantly one-dimensional, aligned with the wall-normal direction.
Away from the wall, viscous transport may have a more inherent 3-D character, although the turbulent transport may dominate
instead. The transition between the near-wall and bulk behavior is controlled in ODT in practical terms by the model parameter 𝑍 .
The latter defines a viscous penalty energy threshold by scaling a viscous damping term below which eddy implementation is
effectively suppressed (Kerstein et al., 2001). This imposes the dominance of the viscous transport at the order of the viscous
length scale as it primarily affects small scales processes in the vicinity of the wall. However, by construction, viscous suppression
may also damp large marginally unstable flow scales since it is an energetic relation that differs from a prescribed mixing length
criterion.
Another important dynamical feature in wall-bounded flows is the anisotropy of the velocity statistics. In this context, the role of
the turbulent pressure transport is the redistribution of the TKE among the Reynolds stress components (Lee et al., 2016). In ODT,
this pressure-scrambling effect is modeled with the aid of a kernel function 𝐾 (𝑦) = 𝑦 − 𝑓 (𝑦) (Kerstein et al., 2001). Eddy events
not only implement advective mappings, but also the effects pressure fluctuations that are modeled by the kernel mechanism for the
velocity components. Hence, 𝜓(𝑦) → 𝜓( 𝑓 (𝑦)) for a conserved scalar, and 𝑢𝑖 (𝑦) → 𝑢𝑖 ( 𝑓 (𝑦)) + 𝑐𝑖𝐾 (𝑦) for the Cartesian velocity
components 𝑢𝑖 , 𝑖 = 1, 2, 3. As detailed in Kerstein et al. (2001), 𝑐𝑖 is a kernel coefficient calculated based on the available energy
and a model parameter 𝛼 ∈ [0, 1] that controls the efficiency of inter-component kinetic energy redistribution, such that

𝑐𝑖 =
1∫ 𝑦0+𝑙

𝑦0
𝜌𝐾2 d𝑦

(
𝑢𝑖,𝐾 + sgn

(
𝑢𝑖,𝐾

) √︂
(1 − 𝛼) 𝑢2

𝑖,𝐾
+ 𝛼

2

(
𝑢2
𝑗 ,𝐾

+ 𝑢2
𝑘,𝐾

))
. (2)

Here, 𝑢𝑖,𝐾 =
∫ 𝑦0+𝑙
𝑦0

𝜌𝑢𝑖 ( 𝑓 (𝑦))𝐾 (𝑦) d𝑦, where 𝜌 is the uniform density, and (𝑖, 𝑗 , 𝑘) permutations of (1, 2, 3).
The expression for the local eddy turnover time 𝜏, or, in this case, the local squared eddy rate 𝜏−2, considering

∑
𝑖 𝑢

2
𝑖,𝐾

as the
eddy-integrated available kinetic energy for redistribution, as well as the viscous penalty term, which is proportional to the
small-scale (viscous) suppression parameter 𝑍 , is based on (Kerstein et al., 2001),

𝜏−2 =
2𝐾0∫ 𝑦0+𝑙

𝑦0
𝜌𝐾2 (𝑦) d𝑦

(
1
2

𝐾0
∑
𝑖 𝑢

2
𝑖,𝐾∫ 𝑦0+𝑙

𝑦0
𝜌𝐾2 (𝑦) d𝑦

− 𝑍

2
𝜇2

eddy

𝜌eddy𝑙2

∫ 𝑦0+𝑙

𝑦0

d𝑦

)
. (3)

Here, 𝐾0 =

(
𝑙2

∫ 𝑦0+𝑙
𝑦0

d𝑦
)−1 ∫ 𝑦0+𝑙

𝑦0
𝐾2 (𝑦) d𝑦, which converges to 4/27 in the continuum kernel limit. Additionally, 𝜇eddy and 𝜌eddy

are weighted averages of the dynamic viscosity and the mass density within the eddy range [𝑦0, 𝑦0 + 𝑙] (Ashurst and Kerstein,
2005; Lignell et al., 2018). The density and dynamic viscosity of the fluid are assumed as constants, and of uniform value.
Eddy events are sampled in time on the basis of an acceptance probability 𝑃a, following a Poisson process. The value of 𝑃a for a
selected candidate eddy event is calculated as in Kerstein (1999) based on the current flow state. Considering the rate parameter 𝐶,
the acceptance probability of a selected eddy event given the momentary flow state depends on the location 𝑦0 and size 𝑙 of the
eddy event and is given by

𝑃a = 𝐶
Δ𝑡s
𝜏

1
𝑙2𝜒(𝑙, 𝑦0)

< 1. (4)

Here, Δ𝑡s is a sampling time interval that needs to be able to resolve any possible eddy turnover time 𝜏. Hence, we select Δ𝑡s < 𝜏,
which is adapted dynamically in the implementation (see Kerstein et al., 2001). Furthermore, 𝜒(𝑙, 𝑦0) is a guessed joint probability
density function (p.d.f.) of eddy event sizes and locations which is used to obtain reasonable candidate events by assuming
turbulent cascade phenomenology. Oversampling and rejection guarantees that ODT simulation results are insensitive to the exact
choice of this joint p.d.f. as long as the region of nonzero probability density extends over the entire range of physically relevant
eddy sizes and locations.
After an eddy event is implemented, the deterministic evolution is comparable to that in Eq. (1). With the model-resolved
deterministic molecular viscous flux 𝐹𝑖 (𝑢𝑖) = −𝜈 (𝜕𝑢𝑖/𝜕𝑦), the stochastic operators 𝑀𝑖 and 𝐾𝑖 representing the map-induced
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changes and kernel effects due to turbulent eddies, surplus external momentum sources 𝑆𝑖 , we obtain profile evolution equations
for the three velocity vector components 𝑢𝑖 (𝑦, 𝑡), 𝑖 = 1, 2, 3, as

𝜕𝑢𝑖

𝜕𝑡
+ 𝑀𝑖 + 𝐾𝑖 = 𝑆𝑖 + 𝜈

𝜕2𝑢𝑖

𝜕𝑦2 . (5)

This expression incorporates now symbolically the effects of the kernel, and of the energy redistribution among velocity components,
by means of the term 𝐾𝑖 (𝐶, 𝑍, 𝛼, 𝑢, 𝑓 (𝑦)). 𝑆𝑖 is a source term for the 𝑖-th velocity component to be integrated together with the
viscous flux, for example, a fixed pressure gradient (FPG) or another, possibly variable, body force.

2.3 Extension to spatially developing flow with variable density effects

The model formulation presented in Section 2.2 considers the temporal change of scalar profiles along a line-of-sight through the
turbulent flow, and is generally referenced as T-ODT. An extension of the model to capture streamwise fluxes of spatially evolving
flows (e.g., boundary-layer-type flows) has been presented in Kerstein (1999) and Ashurst and Kerstein (2005), and is denoted by
S-ODT. More importantly, Ashurst and Kerstein (2005) also present a variable-density formulation for low Mach number flows. In
both variable-density T-ODT and S-ODT, a second kernel function 𝐽 (𝑦) = |𝐾 (𝑦) | is introduced in order to facilitate enforcement
of physical conservation principles.
For variable-density flow, the various integral expressions above receive the mapped mass density such that 𝜌 → 𝜌

(
𝑓 (𝑦)

)
. In variable

density T-ODT, the calculation of the available kinetic energy 𝑢𝑖,𝐾 changes accordingly. The fractions 𝑢𝑖,𝐾
/ ∫ 𝑦0+𝑙

𝑦0
𝜌𝐾2 (𝑦) d𝑦 and

𝑢2
𝑖,𝐾

/(
2
∫ 𝑦0+𝑙
𝑦0

𝜌𝐾2 (𝑦) d𝑦
)

in Eqs. (2) and (3), change to 𝑃𝑖/(2𝑆) or 𝑃2
𝑖
/(4𝑆), respectively, where (Ashurst and Kerstein, 2005)

𝑃𝑖 = 𝑢𝑖,𝐾 − 𝐻
∫ 𝑦0+𝑙

𝑦0

[𝜌𝑢𝑖]
(
𝑓 (𝑦)

)
𝐽 (𝑦) d𝑦, (6)

𝑆 =
𝐻2 + 1

2

∫ 𝑦0+𝑙

𝑦0

𝜌
(
𝑓 (𝑦)

)
𝐾2 (𝑦) d𝑦 − 𝐻

∫ 𝑦0+𝑙

𝑦0

𝜌
(
𝑓 (𝑦)

)
𝐽 (𝑦) 𝐾 (𝑦) d𝑦, (7)

𝐻 =

∫ 𝑦0+𝑙
𝑦0

𝜌
(
𝑓 (𝑦)

)
𝐾 (𝑦) d𝑦∫ 𝑦0+𝑙

𝑦0
𝜌
(
𝑓 (𝑦)

)
𝐽 (𝑦) d𝑦

, (8)

where 𝑃𝑖 , 𝐻, and 𝑆 (to be distinguished from the momentum sources 𝑆𝑖) are kernel coefficients used to generalize 𝑐𝑖 in Eq. (2).
In the S-ODT model, the streamwise change of the scalar profiles in the line-of-sight through turbulence is studied. Two
variants arise in this case. One is the conservative boundary-layer formulation (Ashurst and Kerstein, 2005), and another the
non-conservative wall-constrained internal-flow formulation (Medina Méndez et al., 2019). Essentially, in S-ODT, all integrals
in Eqs. (6)–(8), as well as the integrand of

∫ 𝑦0+𝑙
𝑦0

𝜌𝐾2 (𝑦) d𝑦 in the prefactor in Eq. (3), receive an additional multiplication by
𝑢( 𝑓 (𝑦)), the mapped streamwise advecting velocity (for details see Medina Méndez et al., 2019; Ashurst and Kerstein, 2005). The
time scale 𝜏 changes to a streamwise length scale 𝜉, and the temporal sampling Δ𝑡s changes to a streamwise sampling Δ𝑥s (Ashurst
and Kerstein, 2005). Symbolically, the S-ODT equivalent of Eq. (5) has a modified left-hand side and reads

𝑢
𝜕𝑢𝑖

𝜕𝑥
+ 𝑀𝑖 + 𝐾𝑖 = 𝑆𝑖 + 𝜈

𝜕2𝑢𝑖

𝜕𝑦2 . (9)

2.4 Extensions to cylindrical geometry

An additional model extension, or a generalization of the T-ODT and S-ODT formulations for both planar and cylindrical flows,
considering a dynamically adaptive mesh, was presented in Lignell et al. (2018). The cylindrical formulation replaces the planar
coordinate 𝑦 for the radial coordinate 𝑟 , while any line-integral

∫
(·) d𝑦 in all of the equations presented so far, changes to a surface

radial integral of the form
∫
(·) 𝑟 d𝑟 . Eqs. (1) and (9) also consider a change in the form of the gradient flux. The generalized scalar

conservation equation, Eq. (1), becomes

𝜕𝜓

𝜕𝑡
+ 𝑀 (𝜓,𝐶, 𝑍, 𝑟, 𝑓 (𝑟)) = −1

𝑟

𝜕
(
𝑟𝐹 (𝜓)

)
𝜕𝑟

, (10)

where 𝐹 (𝜓) = −𝜎 (𝜕𝜓/𝜕𝑟) for the model resolved radial molecular diffusive flux. The specific form of the viscous flux for every
velocity component in the cylindrical coordinate system is given in Medina Méndez et al. (2019).
Note that Medina Méndez et al. (2019) also introduce a variable-density formulation in which the density is treated as an active
scalar, coupled with the evolution of the temperature. The temperature and density states are coupled by the ideal gas law and the
divergence condition during the deterministic evolution between subsequent eddy events. This procedure is the equivalent of the
enforcement of mass and energy conservation.
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2.5 Incorporation of EHD effects

The main goal of this study is the capturing of leading-order EHD effects in internal flows that are associated with a modification
of the boundary-layer dynamics. Hence, the ODT-based ‘minimal flow model’ shall be able to capture wall-normal contributions
to nonuniversal EHD turbulence circumventing computation of 3-D electric fields. For the standalone ODT application to EHD
pipe and Couette flows considered here, it is assumed that all property fields are not only statistically but also momentarily
approximately homogeneous in the lateral directions. Available reference DNS (Ostilla-Mónico and Lee, 2017) indicate that this
assumption is reasonable at least for weakly turbulent boundary layers with relatively large charge relaxation time scales.
It is well known that EHD effects modify turbulence properties (e.g. Zhao and Wang, 2019) which suggests to incorporate them in
the eddy rate expression by an additional eddy-integrated energy term that enters the bracket in Eq. (3). The formulation of an
electrostatic potential energy term is based on a mathematical analogy of electrostatic potential energy to gravitational potential
energy. In the latter, mass density variations affect the flow if it experiences a background gravity field (Kerstein, 1999; Wunsch
and Kerstein, 2005). Hence, electric charges take the role of mass inhomogenieties and the electric field the role of the gravitational
acceleration. The starting point is the buoyancy treatment within the ODT vector velocity formulation described in Gonzalez-Juez
et al. (2013) and, with some more generalization, in Kerstein (2022).
ODT modeling of EHD effects requires the implementation of an appropriate form of the Coulomb forces and an account of
the change in electrostatic potential energy within in the ODT eddy sampling procedure. The Coulomb force density is given
by 𝜌f𝐸𝑖 , where 𝜌f = 𝑒(𝑛+𝑐+ − 𝑛−𝑐−) is the continuum density of free charges due to positively (+) and negatively (−) charged
scalars (i.e., electrochemical species or tracers) with concentration 𝑐± and valence 𝑛± multiplying the unit charge 𝑒 on an electron,
and by Faraday’s law for nonmagnetic media, the electric field 𝐸𝑖 = −𝜕Φ/𝜕𝑥𝑖 , where Φ denotes the total electrostatic potential
and (𝑥𝑖) = (𝑥, 𝑦, 𝑧)T the Cartesian coordinates. The concentrations 𝑐± obey individual scalar conservation equations similar to
Eq. (1), but also other formulations specializing to electron an ion currents are possible. On the one hand, Coulomb forces acting
perpendicular to the ODT domain can be included straightforwardly as source term 𝑆𝑖 in the ODT momentum equation, Eq. (5),
driving turbulence by an increase of velocity shear (Medina Méndez et al., 2019). On the other hand, Coulomb forces acting along
the ODT domain affect the eddy rate expression, Eq. (3). Under presence of electric fields and free electric charges, redistribution
of fluid parcels by mapping results in an additional eddy-integrated electrostatic potential energy term that physically modifies the
eddy sampling rate in analogy to gravitational potential energy (Kerstein, 1999; Wunsch and Kerstein, 2005).
The form of the change in electrostatic potential energy, Δ𝐸pot, results from the work performed on the fluid due to the energy
release from the pre-mapped to the post-mapped state analogous to buoyancy within the velocity vector model formulation of
Gonzalez-Juez et al. (2013) and its generalization presented in Kerstein (2022). Δ𝐸pot has to be added within the square bracket of
Eq. (3) for EHD-enhanced sampling. Likewise, it requires a multiplication by 4𝑆 under the square root of Eq. (2) for potential
energy redistribution due to the mapping kernel 𝐾 (𝑦) in the notation of Lignell et al. (2013, 2018). The following eddy-integrated
electrostatic potential energy has to be inserted in the bracket in Eq. (3),

Δ𝐸pot = −
∫ 𝑦0+𝑙

𝑦0

[
𝜌f ( 𝑓 (𝑦))Φ

(
𝜌f ( 𝑓 (𝑦))

)
− 𝜌f (𝑦)Φ

(
𝜌f (𝑦)

) ]
d𝑦. (11)

In addition to this equation and the solution of Eq. (5), the 1-D conservation equation for 𝜌f, and the Nernst–Planck equation, are
solved together with the 1-D representation of Gauss’ law for the electric potential, 𝜕 (𝜀𝐸𝑖)/𝜕𝑥𝑖 = 𝜌f, as well as Faraday’s law,
𝐸𝑖 = −𝜕Φ/𝜕𝑥𝑖 , for a known electric permittivity 𝜀 and the dynamically resolved component 𝐸2, which is acting along the ODT
domain and, hence, energetically influences the turbulent eddy implementations.
Note that the transfer of electrostatic potential energy to kinetic energy of the flow, or vice versa, is the mechanism for implementation
of the effects of the work performed by the flow against Coulomb forces by a notional eddy turnover, represented as the instantaneous
application of the triplet map 𝑓 (𝑦) for the wall-normal coordinate 𝑦. For the application cases analyzed here, only the effects of a
resolved electric field along the ODT line are considered, thus any electrostatic potential energy involved in the formulation is due
to the resolved 𝐸2 component of the electric field. Non-resolved components 𝐸1 and 𝐸3, that are zero on average for the cases
at hand, are neglected. In that sense, there is no direct contribution to the mean kinetic energy by 𝜌f𝐸𝑖 , given that the modeled
effect is simply seen as a modification of the pressure gradient in the line direction. Any EHD-enhancement (or loss), is then a
consequence of a modified fluctuating pressure transport, which is modeled in ODT by the kernel kinetic energy redistribution.
This is the formulation equivalent of a modification in the Reynolds stress tensor components, which is conceptually comparable to
the discussion in Davidson and Shaughnessy (1986) on the effect of electric body forces.
To summarize the model extension to EHD turbulence, overturning fluid motions modeled by ODT mapping events may lead
to gain or loss of kinetic energy, which makes such fluid motions more or less plausible. The work is done against the electric
forces by relocation of free electric charge carriers in the background electric field, surplus modification of the background field
which implies a change in the electrostatic potential energy associated with the configuration of charges in the current flow state.
Inclusion of the former effect is denoted as one-way coupling, whereas inclusion of both effects is denoted as fully coupling,
respectively. In the one-way coupling case, the Nernst–Planck equation reduces to a zero-divergence condition for the electric
current density (Melcher, 1981; Medina Méndez et al., 2022). This results then in a constant and uniform electric (drift) current
density along the ODT line for the planar Cartesian case. Electroquasistatic fields are calculated before hand and remain fixed
during the simulation. Despite the constancy of the fields, the transfer of electrostatic potential to kinetic energy still takes place,
specifically in the momentum direction aligned with the ODT line. Given that the velocity component in the direction of the ODT
line is merely an energy container for the purpose of the ODT kernel mechanism within the ODT velocity vector formulation
(Kerstein et al., 2001), the transfer of energy represented by the change in Eq. (11) must be nonzero. Thus, 𝜌f is allowed to
fluctuate due to the effect of turbulent advection (triplet maps), irrespective of the constancy of Φ, which is due to the prescribed
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Fig. 1: (a) Sketch of the spatially developing (S-ODT) simulation for EHD-enhanced vertical pipe flow. 𝜌f (𝐼) ≠ 0 refers to the
nonzero Dirichlet boundary condition value for the free electric charge density at the electrode, which is parameterized as a
function of the supplied electrical current 𝐼 assuming presence of a corona discharge. (b) Averaged streamwise velocity
profiles for the incoming flow evaluated in ODT. Reference DNS from Khoury et al. (2013) for fully developed streamwise
homogeneous circular pipe flow with Re = 5300 are given for comparison. Reference DNS exhibits a slightly larger Re
than present ODT simulations as seen by smaller velocity gradients at the wall in ODT.

equilibrium background state in the one-way coupled regime, causing a corresponding change in Δ𝐸pot. For fully coupling, the
Nernst–Planck equations maintain a form similar to Eq. (1). An explicit numerical solver is used in which the model resolved
instantaneous profile of the electrostatic potential, e.g., Φ(𝑦) in the planar Cartesian case, is obtained by numerical solution of a
1-D Poisson equation by application of the Thomas algorithm whenever 𝜌f (𝑦) has changed.

3 Drag Enhancement in One-Way Coupled EHD Vertical Pipe Flow

We now discuss some issues encountered in the simulation of one-way coupled EHD-enhanced pipe flows. These type of flows
resemble the practical application of industrial electrostatic precipitators (ESPs). Reference experimental work on cylindrical
wire-tube ESPs was carried out by Nelson et al. (1990), and is considered here as a reference study for the purpose of comparison of
the EHD-enhanced drag. The discussion presented here complements the study published in Medina Méndez et al. (2022), where
the reader can find extensive details concerning the overview of the model, simulation input parameters, and the analysis concerning
EHD effects on drag. The interested reader is encouraged to review Medina Méndez (2020) for the full model derivation, rationale,
and previous canonical flow validations leading to the EHD-enhanced case.

3.1 Flow configuration and model set-up

Fig. 1(a) shows the simulation set-up for the EHD pipe flow. The set-up consists of a cylindrical tube of radius 𝑅 = 1.6 × 10−2 m.
There is an electrode concentric with the tube, of radius 𝑅elec = 1.25 × 10−4 m and length 𝐵elec = 2.05 m, which is the reason why
this type of devices is usually known as a wire-tube ESP (e.g. Bacher et al., 2020). The experimental device has a test section
length 𝐵TS = 1.02 m, which is where actual measurements take place. The entry section length of the experimental device, which
aims to remove flow developing effects on the measurements, has a length 𝐵entry = 1.59 m. These specifications correspond to the
reference experiment by Nelson et al. (1990). The inlet gas flow is at atmospheric pressure and assumed as air, taken as an ideal
gas with molecular Prandtl number Prair ≃ 0.71 and uniform fluid properties defined at the reference temperature 𝑇0 = 300.15 K.
We evaluate flow conditions based on the prescribed bulk velocity𝑈b = 2 m s−1, yielding the associated bulk Reynolds number
Re = 2𝑅𝑈b/𝜈 = 4000, based on the tube diameter 2𝑅.
In order to compare flow statistics with the reference experimental data from Nelson et al. (1990), some issues concerning the
device geometry must be addressed. The presence of the entry section length, plus the issue of an electrode with a length which
does not coincide with the test section length, are neglected in the flow configuration shown in Fig. 1(a). To that extent, the length
of the device is taken equal to the nominal test section (TS) length, 𝐵TS. This causes an issue with the reported voltage–current
values of the experiments in Nelson et al. (1990) (voltage–current characteristic curves). Indeed, the electro-quasistatic divergence
condition for the electrical (drift) current density 𝐽, demands that 𝐽 (𝑟) ∼ 𝑟−1, hence the radially weigthed current density is
constant, 𝐽𝑟 = const (Melcher, 1981; Medina Méndez et al., 2022). Additionally, consider that 𝐼, the electrical current on the
electrode, can also be defined as the integral of 𝐽 over a given surface 𝑆 enclosing the central wire electrode. Due to the reduced
dimensional character of our analysis, and the absence of further information in Nelson et al. (1990), we assume that 𝐼 is uniform
throughout any test section surface defined as 𝑆𝑟 = 2𝜋𝑟𝐵, for any value 𝑅elec ⩽ 𝑟 ⩽ 𝑅 and a given axial length 𝐵. Then, there is
clearly a change in 𝐼 = 𝐽𝑆𝑟 , depending on whether 𝑆𝑟 is defined with 𝐵 = 𝐵TS or 𝐵 = 𝐵elec. Since the dimensionless equivalent of
𝐼 must be the same in experiments and simulations, we recalculate the current from the reported experimental current values 𝐼exp
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Tab. 1: Voltage-current characteristic values used in the numerical simulations.

Voltage Φ = Φelec, (V) Electric current, 𝐼 (A) Masuda number Md EHD number 𝑁EHD

0 0 0 0
6500 ≈ 7.2 × 10−5 ≈ 2.0 × 104 ≈ 116
7000 ≈ 4.0 × 10−4 ≈ 1.3 × 105 ≈ 334
7750 ≈ 1.2 × 10−3 ≈ 3.2 × 105 ≈ 563

following Nelson et al. (1990) (measured for 𝐵elec), but apply the geometrical correction factor 𝐵elec/𝐵TS. This yields the correct
electrical current density 𝐽 (and, thus, the radius-weighted quantity 𝐽𝑟) to use for the simulations (Medina Méndez et al., 2022).
Tab. 1 shows the utilized voltage–current characteristic values for the numerical simulations. Note that the electrode discharge
is positive, thus, only simulations corresponding to a positive corona discharge are evaluated. Tab. 1 shows two dimensionless
parameters associated to the voltage–current values: Md is the Masuda number, which characterizes the voltage, and is defined as
Md = 𝜀0 Φelec (Φelec −Φon)

/
(𝜌0𝜈

2
0), where 𝜀0 is the vacuum electrical permittivity, Φelec is the operating voltage at the discharge

electrode, which is represented at the internal boundary in Fig. 1(a), Φon is the onset voltage for electrical discharge in air, and 𝜌0
and 𝜈0 are reference values for the density and kinematic viscosity. Also, 𝑁EHD is the EHD number, characterizing the electric
current 𝐼, defined as 𝑁EHD =

√︁
(𝐼𝑅3𝜌0)/(𝑆𝑅𝛽f𝜇0), where 𝑆𝑅 is 𝑆𝑟 evaluated for 𝑟 = 𝑅 and 𝐵 = 𝐵TS, 𝜇0 = 𝜌0𝜈0, and 𝛽f is a

uniform and constant ionic mobility for positive corona discharge.
Another important issue which was only deduced in retrospect to the analysis put forward by Medina Méndez et al. (2022), is that
the inflow condition plays a major role in the observed drag enhancement. This is a finite Reynolds number effect, sensible due to
the relatively low Re = 4000 used here. For further elaboration, we consider the hydrodynamic length estimation from Abraham
et al. (2008),

𝐿FD = 2𝑅
(
2.4 × 104 Re−0.68

)
. (12)

For Re = 4000, the above formula yields the length scale 𝐿FD = 2.7287 m after which the flow would be fully developed (FD).
𝐿FD is larger than 𝐵entry. In fact, 𝐿FD > 𝐵entry + 𝐵TS. As standalone 1-D tool that utilizes a map-based representation of 3-D
turbulence for representative 1-D flow profiles, ODT can not capture all features of developing Navier–Stokes flows. Therefore, it
is not possible to run a simulation for developing flow and confidently evaluate the statistics of the flow. Nevertheless, it possible to
verify the effects of the developing flow on global quantities, such as the friction factor 𝐶f , based on the model-resolved flow
physics. Hence, we evaluate two inlet conditions in our simulations: the first one is for a fully developed turbulent inlet flow
at Re = 4000, and the second one is for an inlet flow which has an equivalent developing flow friction factor 𝐶f (𝐵TS + 𝐵entry).
The former developing 𝐶f is calculated by the formula shown in Abraham et al. (2008) for developing flow, using the suggested
developing flow pressure drop factor curve, and the length 𝐿 = 𝐵TS + 𝐵entry. Average streamwise velocity profiles for the two types
of inlet flow conditions are shown in Fig. 1(b), along with reference pipe flow DNS data for a slightly larger Reynolds number
(Khoury et al., 2013). It is noted that we use an average procedure denoted by the operator ⟨·⟩, which is an ensemble of realizations.
In the case of Fig. 1(b), the inlet flow profiles shown correspond to an ensemble average of stochastic turbulent inlet conditions,
which were generated using T-ODT simulations of constant property flow. Specifically, T-ODT simulations used model parameters
𝐶 = 3, 𝑍 = 350 and 𝛼 = 2/3 to generate the fully developed inlet turbulent flow profiles. The 𝐶 parameter was then adjusted in
order to generate the equivalent developing 𝐶f flow profiles, given that a variation in 𝐶 can be used to change the slope of the mean
velocity profile in the outer layer (Fragner and Schmidt, 2017; Rakhi et al., 2019), thus modifying the obtained value of 𝐶f .
As discussed previously, during the simulations, we only consider one-way coupled electric fields, with the implications suggested
in Sec. 2.5. Electric charges (positive ions in air) are assumed as a continuum phase, such that a charge density field 𝜌f can be
represented in ODT. Besides the inlet flow conditions, the simulations also observe a set of two boundary conditions. The wall
boundary conditions are applied at 𝑟 = 𝑅, and consist of the no-slip condition for the velocity components, an adiabatic flow
condition, i.e., a zero wall heat-flux 𝑞w = 𝜎(𝜕𝑇/𝜕𝑟) |w = 0, where 𝑇 is the temperature and 𝜎 is the thermal conductivity, and a
zero voltage for the ESP collector wall (subscript w). The electrode boundary conditions consist of an internal boundary in which
the following conditions are applied: no-slip for the velocity components, symmetry imposition for the heat flux 𝑞, the operating
voltage Φelec for the electrostatic potential, and an implicit value for the charge density 𝜌f , which is obtained from the supplied ESP
current 𝐼. The internal boundary condition for the velocity profile can be seen clearly in Fig. 1(b), which contrasts with profiles
obtained from a traditional pipe flow simulation. For details on the generation of the constant electro-quasistatic (EQS) fields,
please refer to Medina Méndez et al. (2022); Medina Méndez (2020). Note also that the temperature is solved together with the
velocity in the ODT simulations. Joule heating is incorporated as a source term in the temperature equation, which is also detailed
in Medina Méndez et al. (2022) and Medina Méndez (2020). Finally, and as shown in Fig. 1(a), we recall the assumption of
statistically homogeneous azimuthal flow, as well as the enforcement of a constant streamwise mass flux in the ODT simulations.

3.2 Darcy friction factor and skin friction coefficient

This section focuses on the evaluation of the friction drag, and its relation with the average streamwise pressure gradient of the flow.
S-ODT simulation results presented here were obtained using the model parameters 𝐶 = 2, 𝑍 = 100 and 𝛼 = 2/3. In a statistically
stationary and statistically streamwise homogeneous pipe flow, the axial wall pressure gradient is related to the wall shear stress by
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Fig. 2: (a) ODT prediction of the enhancement of the Darcy friction factor 𝑓D (black) and the skin friction coefficient 𝐶f (red)
with the dimensionless EHD body force expressed as Masuda number Md. Reference experiments are from Nelson et al.
(1990). (b) Simulated radial profiles of the mean axial velocity for the inflow condition without EHD effects (black) and the
developed flow with EHD effects (red) across the pipe radius. The outer wall is located on the left and the electrode at the
right. The friction factor enhancement is a result of increased turbulent mixing as indicated by an increase of the velocity
gradient at 𝑟 = 𝑅 and a flatter bulk profile.

the known relation(
d𝑝̄w
d𝑧

)
pipe flow

= −2𝜏w
𝑅
. (13)

Here, 𝑝̄w = 𝑝̄ is the wall pressure, which is equivalent to a uniform pressure in the radial direction for low Mach number flows.
Likewise, 𝜏w is the wall shear stress. In contrast to Eq. (13), the EHD-enhanced pipe flow simulations following the set-up shown
in Fig. 1(a) involve a significantly more complex axial pressure gradient. First of all, 𝑝̄ is no longer uniform in the radial direction,
given the appearance of a radial pressure gradient due to the presence of the Coulomb or EHD body force (Robinson, 1968).
Following Medina Méndez et al. (2022), the wall pressure difference between the inlet and the outlet of the ESP is given by

Δ𝑝w = − 2
𝑅2 Δ

( ∫ 𝑅

0
⟨𝜌𝑢1𝑢1⟩ 𝑟 d𝑟 − 𝑅2

(
⟨𝜇⟩ 𝜕⟨𝑢2⟩

𝜕𝑟

) �����
𝑅

)
− 2
𝑅2 Δ

( ∫ 𝑅

0
⟨𝜇⟩ 𝜕⟨𝑢2⟩

𝜕𝑟
𝑟 d𝑟

)
− 2
𝑅

∫ 𝐵TS

0
𝜏w d𝑧 − 𝐽𝑟

𝛽f
, (14)

where Δ refers to a difference between the location of the outlet (𝑧out = 𝐵TS) and the inlet (e.g., 𝑧in = 0) of the simulated device.
We remind that, here, 𝐽𝑟 = 𝐼/(2𝜋𝐵TS) is constant and uniform, calculated with the help of 𝐼 from the (corrected) voltage–current
curves in Nelson et al. (1990), or from the values in Tab. 1. We stress again the use of the ensemble average operator, using a given
number of ensemble members 𝑁ens, to obtain the averaged quantities required for Eq. (14). We have used 𝑁ens = 60 for the results
presented here. The calculation of Δ𝑝w allows an approximation of d𝑝̄/d𝑧 as Δ𝑝w/𝐵TS. Since 𝑓D is calculated by a d𝑝̄/d𝑧 which
is not related to the wall shear stress as in Eq. (13), Nelson et al. (1990) present the Darcy friction factor as a way to represent the
dimensionless pressure gradient,

𝑓D = − 4𝑅
𝜌b𝑈

2
b

d𝑝̄
d𝑧
. (15)

For reference, we also calculate directly the wall shear stress and the associated skin friction coefficient 𝐶f , which is simply given
by the traditional definition involving the ratio between the wall shear stress and 𝜌𝑏𝑈2

𝑏
/2, the product of the bulk density and the

specific bulk kinetic energy (Pope, 2000). For the purpose of comparing with the integral global quantity 𝑓D, we use a streamwise
averaged 𝜏̃w for the calculation of 𝐶f , such that

𝜏̃w =
1
𝐵TS

∫ 𝐵TS

0
𝜏w d𝑧 =

1
𝐵TS

∫ 𝐵TS

0

(
⟨𝜇⟩ 𝜕⟨𝑢1⟩

𝜕𝑟

)
𝑟=𝑅

d𝑧 (16)

It is noted that 𝑓D = 4𝐶f for standard pipe flows, yet the identity is not maintained for the EHD-enhanced flows presented here. In
this context, there is no available reference data for the comparison of 𝐶f . Fig. 2(a) shows the results for the evaluation of 𝑓D,
presented as 𝑓D/4. The value of 𝐶f is also presented in Fig. 2(a). Furthermore, averaged velocity profiles for the developing inlet
flow case are presented in Fig. 2(b) for completion in the assessment of the EHD-enhanced drag. Both the average inlet flow
conditions and the streamwise and ensemble averaged streamwise velocity 𝑢̃1 for the largest Md case are compared to each other.

3.3 Discussion

Fig. 2(a) shows that for the case of the developing flow inlet, there is a difference, even at zero EHD body force, between 𝑓D/4
and 𝐶f , which is precisely the effect caused mainly by the axial gradient of average kinetic energy in Eq. (14). At larger Md, the
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Fig. 3: Sketch of the EHD Couette configuration with temporally developing flow. The one-dimensional domain (ODT line) is
fixed in space and approximately taken as closed system in order to facilitate utilization of ODT as standalone model.

difference between 𝑓D/4 and 𝐶f increases due to the appearance of ever larger values of the Coulomb force or EHD body force in
Eq. (14). The increase in the difference with respect to Md is maintained for the fully developed turbulent inlet flow simulated
case, however, the magnitude of the difference is reduced in comparison to the developing flow inlet. The assessment of the drag
enhancement due to EHD is facilitated by the observations obtained from Fig. 2(b), where we note both the decrease of the profile
in the outer layer of the flow, and the increase of the near wall gradient. As a final comment, we note that, despite the variable
temperature and density effects being simulated in S-ODT, variations in the temperature and fluid properties remained almost
negligible in the evaluated case, with only a local temperature increase very close to the electrode.
ODT is a reduced order model. In this part of the study, we have shown that, even though the friction factor evaluation is simply an
integral quantity of the flow, the results obtained by the ODT simulations are worth commenting due to the multiphysical nature
of the application. This is neither an application that can be easily evaluated by DNS nor treated faithfully with LES or RANS.
ODT provides small-scale resolution and dynamical complexity by capturing relevant physical processes at feasible cost. The
relative contributions to the pressure gradient according to Eq. (14) are thus model predictions. It has been verified that the largest
contribution to d𝑝̄/d𝑧 is due to the wall shear stress 𝜏w, and in second place, by the average kinetic energy gradient. The latter
is the reason why the utilization of developing flow inlet conditions are necessary to obtain a model prediction that reasonably
captures the reference experiments.

4 Drag Enhancement in Fully Coupled EHD Couette Flow

In this section, we consider a simple model for strongly coupled wall-bounded shear-driven EHD turbulence in an ionic liquid
utilizing a planar Couette configuration.

4.1 Flow configuration and model set-up

Fig. 3 shows a sketch of a simple electroconvection configuration based on plane Couette flow. The set-up corresponds with the
reference DNS by Ostilla-Mónico and Lee (2017). The top wall is moving and held at a different voltage relative to the bottom one.
No-slip isopotential zero-flux wall-boundary conditions are prescribed. The T-ODT model set-up uses 𝐶 = 10, 𝑍 = 600, 𝛼 = 2/3
as calibrated for low-Reynolds-number hydrodynamic channel flow (Lignell et al., 2013) and used for the preliminary EHD studies
by Klein and Schmidt (2020, 2021). The EHD-enhanced flow reaches a statistically stationary state like the canonical case without
EHD effects so that the continuous and conditional statistical analysis follows Kerstein (1999) and Klein et al. (2022b) for the
momentum and scalar transport, respectively. The ionic liquids considered are univalent electrolytes with neutral bulk charge,
consisting of two identical ionic scalar species 𝜓 = 𝑐± with the same valence and mobility but opposite charge, dissolved in a
dielectric fluid (e.g., water). The model-resolved deterministic ion fluxes in accordance with Eq. (1) thus have diffusive and drift
contributions, yielding

𝐹± (𝑐±) = −𝐷 𝜕𝑐±
𝜕𝑦

∓ 𝐷𝑐±
𝑉𝑇

𝜕Φ

𝜕𝑦
. (17)

In analogy to Ostilla-Mónico and Lee (2017), scaling of the Poisson–Nernst–Planck and Navier–Stokes equations (or the
dimensionally reduced ODT representation of them) yields five dimensionless control parameters that define the flow state: the bulk
Reynolds number, Re = 𝑈ℎ/𝜈, the ionic Schmidt number, Sc = 𝜈/𝐷, the fixed dimensionless voltage, 𝑉̂ = 2𝑉/𝑉𝑇 = 10, the fixed
coupling constant, 𝛽 = 𝜀𝑉2

𝑇
/(𝜌𝜈𝐷) = 0.5, and the fixed normalized Debye layer thickness, 𝜆𝐷/ℎ =

√︁
𝜀𝑉𝑇/(2𝜌𝑐0𝑒ℎ2) = 0.01,

unless mentioned otherwise. In these expressions,𝑈 denotes the prescribed wall velocity magnitude, ℎ the channel half-height,
𝑉𝑇 = 𝑘B𝑇/𝑒 the thermal voltage, in which 𝑘B denotes the Boltzmann constant and 𝑇 the approximately uniform ambient
temperature, 𝐷 the kinematic diffusivity of the ions in the electrolyte, and 𝑐0 the uniform initial concentration of the univalent ion
species, respectively, in addition to the other physical parameters introduced above.
Note that Re is the only direct control parameter for the flow regime. 𝑉̂ is an additional control parameter that parameterizes the
internal energy and thus takes the role of an equation of state. The three remaining parameters are related to the electrolyte: Sc
gives the ratio of the viscous and scalar (ionic) diffusion coefficients; 𝜆𝐷/ℎ is a relative measure of electric charge separation that
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Fig. 4: ODT prediction of the turbulent drag enhancement as function of Sc for low and moderate Re keeping 𝑉̂ = 10, 𝛽 = 0.5,
𝜆D/ℎ = 0.01, and adjustable model parameters fixed. ODT predicts a logarithmic increase of the skin friction coefficient
with Sc for nonsaturated drag enhancement, given by 𝐶f/𝐶f,0 = 𝐴′ ln(Sc) + 𝐵′ for Sc ∈ [50, 500]. Here, the fit coefficients
𝐴′ and 𝐵′ only retain a dependence on Re. Reference DNS (×) data is from Ostilla-Mónico and Lee (2017).

Tab. 2: Skin friction coefficient 𝐶f,0 for Couette flow without EHD effects (𝑉̂ = 0) comparing ODT results with published data.

Re 𝐶f,0 Reference

3000 ≈ 6.5 × 10−3 DNS (Pirozzoli et al., 2014)
3000 ≈ 6.0 × 10−3 experiments (Robertson, 1959)
3000 (5.9 ± 0.4) × 10−3 present ODT

12,000 ≈ 4.4 × 10−3 experiments (Robertson, 1959)
12,000 (4.7 ± 0.3) × 10−3 present ODT

also determines the electric and ionic layers at the electrodes; and 𝛽 expresses the strength of typical Coulomb forces in units of
typical viscous forces. In a concentrated (dilute) ionic liquid (e.g. Lee et al., 2015), dielectric polarization is strong (weak) so that
the dielectric permittivity is large (small). For constant electric charge on the ions, the Debye length has to increase (decrease) with
𝛽 so that we do not consider 𝛽 a variable control parameter. Instead, it is kept fixed at a typical value (e.g. Mani and Wang, 2020).
In the following, only Re and Sc are varied. Preliminary results for voltage variations are discussed in Klein et al. (2022a) but
omitted here. Further parameter variations are forthcoming and will be presented elsewhere.

4.2 Skin friction coefficient

Fig. 4 shows the turbulent drag enhancement in EHD Couette flow by the Sc and Re dependence of the skin friction coefficient 𝐶f .
The latter is evaluated based on the temporal-averaged model-resolved streamwise velocity profile, 𝑢̄(𝑦) = 𝑢(𝑦, 𝑡), as

𝐶f = 2
𝑢2
𝜏

𝑈2 , (18)

where

𝑢𝜏 =

√︄
𝜈

����d𝑢̄d𝑦

����
w
. (19)

ODT simulations conducted for 𝑉̂ = 0 under absence of EHD effects are used to determine the reference value 𝐶f,0 that is used for
normalization. Tab. 2 gives the reference values obtained with ODT in comparison to available reference experiments (Robertson,
1959) and DNS (Pirozzoli et al., 2014). The mean values are somewhat closer to experiments than DNS. The statistical significance
of the present ODT results is within 2–5%, which is consistent with both reference data sets and considered sufficient for the
present study. A similar level of agreement is observed for the EHD-enhanced case with Re = 3000 and Sc = 3 shown in Fig. 4,
where ODT agrees with the available reference DNS by Ostilla-Mónico and Lee (2017). Both ODT and DNS exhibit weakly
enhanced drag for the selected case set-up.
Present ODT results suggest that the turbulent drag is largely insensitive to EHD effects for low Sc ⩽ 10 and low Re ⩽ 3000 within
the statistical significance of the model results. A significant increase of the turbulent drag is observed for Sc ⩾ 10, exceeding 30%
enhancement for Sc ⩾ 300 at Re = 12,000. This has not previously been reported and cannot be reached with present DNS nor
LES due to cost constraints and unknown parameterizations of the EHD effects, respectively.
The magnitude of the EHD-enhanced drag increases with Sc and Re, hinting at intense interactions of the turbulent flow with the
electrokinetics as smaller flow scales develop. Interestingly, ODT predicts a change of the flow regime for the critical Schmidt
number Sccrit ≃ 30, which is obtained from the intersection of two empirical fitting functions that describe the nonsaturated drag
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increase for the two Reynolds numbers investigated. The Re dependence of the fit coefficients suggests presence of multiscale
feedback mechanisms in the boundary layer flow. The physical mechanism are not yet well understood, but based on the the
model-resolved flow physics, we speculate that the ion concentrations and, hence, the electric field, have to sample details of
the flow field. This is only possible when the concentration field exhibits smaller spatial scales the the velocity field. The
Batchelor scale 𝜂B (Batchelor, 1959) needs to be significantly smaller than the Kolmogorov scale 𝜂K (Kolmogorov, 1941), or
an otherwise representative viscous length scale of the boundary layer flow, so that 𝜂B/𝜂K = 𝑆𝑐−1/2 ≪ 1. Inserting Sccrit = 30
yields 𝜂B/𝜂K ≈ 0.18, which is on the edge of the required inequality. The same argumentation holds for other Re and electrolytes,
which have to fulfill the same criterion with respect to scale separation. This renders Sccrit ≃ 30 a common point close to which
parametric dependencies of 𝐶f/𝐶f,0 on Sc should diverge when Re is increased. So, based on the constancy of Sccrit with respect
to Re, it suffices to proves our point by fitting a two-parametric function for the nonsaturated skin friction drag increase across
Sc ∈ [50, 500] for only two different Re. The functional form of the data in the semi-logarithmic plot suggest a logarithmic
increase of 𝐶f with Sc, which is confirmed by the fits in Fig. 4.
Note that the value Sccrit ≃ 30 is consistent with the physics-based argumentation put forward by Ostilla-Mónico and Lee (2017).
This suggests that the critical Schmidt number is manifestation of interacting dynamical processes on different spatio-temporal
scales which is addressed by ODT. However, Ostilla-Mónico and Lee (2017) expect a mild drag reduction based on their low Re
DNS when Sc is increased beyond 𝑂 (10), which is in strict contrast to the present ODT results. The fully coupled ODT results are
consistent with the experimentally validated one-way coupled case discussed above which makes drag enhancement plausible also
for the simulated fully coupled regime. Below, we investigate the turbulent boundary layer in order to shed more light on the
physical mechanism behind the model prediction.

4.3 Viscous boundary layer

Fig. 5 shows law-of-the-wall plots for the dimensionless mean velocity deficit, 𝑢̄+, over the dimensionless boundary layer coordinate,
𝑦+, given by

𝑢̄+ =
|𝑢̄ − 𝑢w |
𝑢𝜏

, (20)

𝑦+ =
𝑦𝑢𝜏

𝜈
. (21)

ODT simulation results are shown for various Re, Sc, and 𝑉̂ in order to assess which region of the boundary layer is influenced by
EHD effects. The hydrodynamic law of the wall (e.g. (Pope, 2000)) is given for orientation and is given by the intersecting viscous
sublayer, 𝑢̄+ (𝑦+) = 𝑦+ for 𝑦+ < 5, and the turbulent log layer, 𝑢̄+ (𝑦+) = 𝜅−1 ln 𝑦+ + 𝐵 for 𝑦+ > 30, where 𝜅 is the von Kármán
constant and 𝐵 the additive constant. We show the parameterization with 𝜅 = 0.39 and 𝐵 = 4.2, which has been obtained by fitting
experimental data for flat-plate boundary layers (Marusic et al., 2010).
In Fig. 5(a) ODT results for various Re are shown under absence of EHD effects (𝑉̂ = 0). The results demonstrate that the present
model formulation and calibration is capable of reproducing the law-of-the-wall exactly, except for some deficit in the buffer
layer in between 𝑦+ ∈ [10, 100] when compared with reference DNS from Ostilla-Mónico and Lee (2017) for Re = 3000. The
dimensionless viscous boundary layer profiles obtained with ODT collapse almost identically onto each other without outer layer
effects. This demonstrates applicability of inner layer similarity for Couette flow.
ODT results for finite 𝑉̂ = 10 are shown in Fig. 5(b) for selected Re and Sc. EHD-induced turbulent drag enhancement manifests
itself by an increase of 𝑢𝜏 due to constant𝑈 so that the maximum value, 𝑢̄+ (𝑦+ = ℎ+), is reduced. Compensating for the increase of
the velocity gradient at the wall collapses the linear sublayer, but not the turbulent log layer. The latter is hence influenced by EHD
effects that are associated with enhanced mixing which is consistent with the flattening of profile (increase of 𝜅). Consistent with
Fig. 4, marginal boundary layer modeifcations are observed for Sc = 3 for both Re, whereas a strong effect is seen for Sc = 300 at
Re = 12,000. Latter case suggests that EHD effects result in a nonuniversal nonlinear modification of the log layer that is strongest
towards the bulk. This suggests a modification of bulk turbulence by EHD effects which is further investigated below by analysis
of the concentration boundary layers, electric potential, and detailed turbulence properties based on conditional statistics of the
ODT eddy events.

4.4 Concentration boundary layer

In order to better understand the physical mechanism for EHD-enhanced drag in the fully coupled regime, we investigate below
electric flow variables fields. We select 𝑉̂ = 4 to facilitate comparison with reference data. This change in the set-up only weakly
reduces the magnitude of the drag enhancement (Klein and Schmidt, 2021; Klein et al., 2022a), but yields otherwise qualitatively
similar results as in the case of 𝑉̂ = 10 studied above.
Fig. 6 shows the nontrivial equilibrium mean state that develops due to drift-diffusion effects, achieving a balance of the electric
fluxes 𝐹±, given in Eq. (17), subject to a zero-flux boundary condition. Within ODT, the total electric potential, Φ(𝑦, 𝑡), varies in 𝑦
and 𝑡. Following Ostilla-Mónico and Lee (2017), the total potential is separated into the perturbation potential, 𝜙(𝑦, 𝑡), and the
background state, 𝜙0 (𝑦), which contains the boundary conditions and the corresponding solution to the 1-D Gauss law assuming
absence of free electric charges (𝑐± = 0) in the bulk of the fluid. Switching off turbulence either by considering a quiescent flow
state (𝑢𝑖 = 0,𝑈 = 0) or a laminar flow by selecting Re ≲ 𝑂 (100) or simply setting the ODT rate parameter to zero (𝐶 = 0) yields a
stationary solution. This solution only depends on the electrolyte properties contained in the normalized Debye length 𝜆D/ℎ and
the supplied normalized voltage 𝑉̂ (Ostilla-Mónico and Lee, 2017).
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Fig. 5: Law-of-the-wall plots for the normalized mean velocity 𝑢̄+ (𝑦+). (a) Validation of the ODT momentum transfer without
EHD effects. Reference DNS is from Ostilla-Mónico and Lee (2017). Mean velocity profiles collapse onto each other
demonstrating boundary layer similarity. (b) Model prediction of velocity boundary layer modifications in the fully (fully)
coupled EHD regime. The empirical log layer parameterization in all plots is from Marusic et al. (2010), which was
obtained by measurements of high-Re flat-plate boundary layers.

Fig. 6: (a) Concentration 𝑐± boundary layer applicable to quiescent and laminar flow conditions showing the equilibrium
elektrokinetic state over the anode with space charge confined to the Debye layer of thickness 𝜆D. 𝑉̂ = 4 as in the reference
DNS (superscript ‘ref’) of Ostilla-Mónico and Lee (2017). (b) Perturbation electric potential 𝜙 demonstrating the screening
effect by assuming the field values for a entirely neutral bulk (subscript ‘nb’) outside the Debye layer.

The equilibrium ion concentrations 𝑐± (𝑦) are localized in the Debye layer as shown in Fig. 6(a). The spatial structure of these fields
gives rise to a wall-attached space-charge region (not shown) since the depletion of cations over the anode (anions over the cathode)
and accumulation of anions at the anode (cations over the cathode) is asymmetric such that positive and negative charges no longer
balance each other. The wall is responsible for the electric charge separation that relies on molecular drift-diffusion currents. The
corresponding equilibrium perturbation electric field 𝜙(𝑦) is shown in Fig. 6(b). The spatial variation of 𝜙 demonstrates the
screening effect of the wall-attached space-charge region. The perturbation electric field is zero at the wall but compensates the
background field 𝜙0 in the bulk of fluid outside the Debye layer. This is visualized with the aid of the perturbation electric potential
𝜙nb (𝑦) = −𝜙0 (𝑦), which refers to perfect screening of the wall boundary condition resulting in a perfectly neutral bulk.
Next, Fig. 7 shows temporal averaged ion concentrations 𝑐± (𝑦) obtained with fully coupled standalone ODT for turbulent
EHD Couette flow under statistically stationary conditions. The mean concentrations are depleted due to turbulent mixing and
entrainment of neutral bulk fluid so that the wall-attached space charge (not shown) is likewise reduced. The effect increases
with Re due to increased mixing, but it also increases with Sc. For the latter, the physical mechanism is related to the charge
separation mechanism, which is located at the wall, where it is governed by molecular drift-diffusion currents due to the zero-flux
wall-boundary condition utilized for Eq. (17). A high Schmidt number implies low diffusivity and hence a low space-charge
regeneration time due to limited mass transfer due to the competition with turbulent depletion explained above. To consolidate
this hypothesis, the ion concentration flux is scaled by expressing it in units of the viscous momentum transfer to the wall. 𝐹± is
divided by the reference concentration 𝑐0 and 𝑢𝜏 . The former is the maximum possible depletion of cations over the anode (anions
over the cathode) across the Debye boundary layer, which can be deduced from Fig. 6(b), whereas the latter is a measure for the
viscous time scale expressed as a scale velocity. Factoring the channel half-height ℎ, which is identical to the thickness of the
turbulent boundary layer for fully developed flow, yields

𝐹± (𝑐±)
𝑐0𝑢𝜏

=
𝐷

𝑢𝜏ℎ

(
− ℎ

𝑐0

𝜕𝑐±
𝜕𝑦

∓ 𝐷𝑐±ℎ

𝑐0𝑉𝑇

𝜕Φ

𝜕𝑦

)
, (22)

where the prefactor expresses the space-charge regeneration time scale in units of the viscous time scale for imbalanced nonzero
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Fig. 7: ODT mean concentration boundary layer over the anode for turbulent flow conditions for various Re and Sc, but fixed
𝑉̂ = 4, 𝛽 = 0.5, and 𝜆D/ℎ = 0.01. (a) Anion concentration 𝑐+ and (b) cation concentration 𝑐− exhibiting a weakening of
the equilibrium state shown in Fig. 6(a) due to turbulent entrainment of neutrally charged bulk fluid. Mean deviations from
𝑐0 remain confined to the Debye layer of thickness 𝜆D.

flux off the wall during the transient relaxation. The momentary momentum flux to the wall, 𝐹𝑖 = −𝜈 (𝜕𝑢𝑖/𝜕𝑦), is correspondingly
expressed in viscous units as 𝐹+

𝑖
= 𝐹𝑖/𝑢2

𝜏 = −Re−1
𝜏 (𝜕𝑢+

𝑖
/𝜕𝑦+). The prefactor in Eq. (22) is dimensionless, representing the inverse

friction Peclet number, Pe𝜏 = 𝐷/(𝑢𝜏ℎ) = 𝑆𝑐−1Re−1
𝜏 . The dimensionless ion fluxes due to drift-diffusion processes are, hence, by a

factor Sc−1 smaller than the dimensionless viscous momentum flux. This implies a reduced space-charge regeneration time for high
Sc irrespective of Re𝜏 , since, by dimensional arguments, Sc = 𝜈/𝐷 = 𝜏diff/𝜏visc is precisely the ratio of the molecular diffusion
time scale, 𝜏diff, and the viscous time scale, 𝜏visc. This explains why, for strong enough turbulence, the near-wall space-charge
regions are depleted, as captured by the ODT.

4.5 Features of emerging transients and scale interactions

A consequence of the reduction of the mean space charge in the Debye layers is a decrease of the screening effect. The perturbation
electric potential 𝜙 reduces in the bulk, as shown previously for preliminary ODT results (Schmidt et al., 2021), yielding stronger
total electric fields in the bulk. Small-scale features at the wall strongly affect the bulk electric field remote from the wall. This
constitutes a multiscale and nonlocal feedback mechanism in wall-bounded fully-coupled EHD turbulence that is investigated next.
Fig. 8 shows space-time diagrams of the ODT-resolved profile evolution of the momentary total electric potential Φ(𝑦, 𝑡) =

𝜙(𝑦, 𝑡) + 𝜙0 (𝑦) normalized by half of the supplied voltage difference 𝑉 for various Sc keeping all other parameters fixed at the
values given in the caption of Fig. 4. The stochastically sampled sequence of ODT eddy events in a flow realization is shown on
top of the continuous profile evolution by black line intervals. This demonstrates how turbulence scales are affected by and interact
with the momentary electric field. Both the evolution of the model-resolved electric potential and the sequence of turbulent eddies
are a result of the fully coupling by incorporating changes in the electrostatic potential energy, Eq. (11), in the eddy rate expression,
Eq. (3). By varying Sc, the space-charge regeneration time scale is modified, resulting in transient screening effects. The screening
governs the bulk electric field, leading to shorter or longer transients in the electric potential depending on Sc as shown in Fig. 8.
Small Sc = 0.3 and even moderate Sc = 3 imply short equilibration time scales so that transients are too short to allow for a notable
interaction of bulk turbulence with nonzero model-resolved electric fields, 𝐸2 = −𝜕Φ/𝜕𝑦. The fast fluctuations in the electric
potential average out not allowing for changes of the velocity due to inertia. Large Sc = 300, by contrast, yield very long transients
and prevented screening so that bulk turbulence effectively experiences an almost homogeneous background electrical field. It is
therefore not surprising that bulk turbulence is affected the most by EHD effects, resulting in visually smaller turbulence scales.
Fig. 9 shows distribution functions of the stochastically sampled ODT eddy events for various Re and Sc corresponding to cases in
Figs. 4 and 8. The cumulative density function (c.d.f.) for the eddy size 𝑙 is shown in Fig. 9(a). By shifting towards smaller scales
with increasing Sc at Re = 12,000, the c.d.f. demonstrates that small-scale turbulence intensified by EHD effects, but only when
Re is sufficiently large (Klein and Schmidt, 2021). This is consistent with the observation for 𝐶f in Fig. 4 and also in line with the
physical interpretation of the viscous boundary layer 𝑢̄+ (𝑦+) shown in Fig. 5(b) together with the mean field effects shown in
Figs. 7 and 8 above.
In order to further consolidate the physical interpretation, Fig. 9(b) shows the corresponding probability density function (p.d.f.)
of the lower edge ODT eddy location 𝑦0 showing only the bottom half [0, ℎ] of the flow domain. The p.d.f. reveals a change
in the turbulent flow regime when Re is increased. While eddy locations are not affected by elektrokinetics for low Re = 3000,
a significant reduction of wall-attached eddies (Townsend, 1976) is observed for moderate Re = 12,000. In addition, the eddy
location p.d.f. switches from a unimodal distribution at Re = 3000, where the maximum is located at the wall, to a bimodal
distribution at Re = 12,000. The developing broad peak on the right of the plotting range corresponds to EHD-enhanced bulk
turbulence in the center of the flow domain. The eefect increases with Sc and is consistent with the qualitative observation in Fig. 8.
This suggests that turbulent drag enhancement in fully coupled EHD Couette flow is the result of EHD-enhanced small-scale bulk
turbulence. The increased mixing more efficiently depletes the near-wall space charge by entrainment of neutral bulk fluid. The
EHD-enhanced mixing, therefore, sustains the reduced screening, yielding strong bulk electric fields. This constitutes a positive
feedback mechanism involving processes on multiple scales, coupling wall properties and bulk flow.
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Fig. 8: Hovmöller diagrams of the the momentary total electric potential, Φ = 𝜙 + 𝜙0, for various Sc using fixed Re = 12,000,
𝛽 = 0.5, 𝜆D/ℎ = 0.01, and 𝑉̂ = 10, showing the spatio-temporal evolution of , resolved along the ODT domain within the
standalone model formulation. (a) Sc = 0.3. (b) Sc = 3. (c) Sc = 30. ODT eddy events are overlaid by black vertical line
intervals showing their size, location, and time of occurrence.

Fig. 9: ODT eddy event statistics for various Sc and Re using fixed 𝛽 = 0.5, 𝜆D = 0.01, and 𝑉̂ = 10. (a) Cumulative density
function (c.d.f.) of the eddy size 𝑙. Vertical dotted lines with matching color indicate the expectation value for 𝑙 for various
Sc and Re. This figure is reproduced from Klein and Schmidt (2021) under Creative Commons 4.0 (CC-BY-NC) License.
(b) Probability density function (p.d.f.) of the lower-edge eddy location 𝑦0. Wiggles are due to finite sample variability.

4.6 Discussion

The dimensionally reduced, fully coupled ODT formulation for electroconvection has been utilized to investigate EHD-induced
enhancement of the turbulent drag by broadly varying the molecular Schmidt number for sufficiently large turbulence intensities.
Within the 1-D framework, the model results suggest a multiscale feedback mechanism between EHD-enhanced bulk turbulence
and increased entrainment of bulk fluid into the boundary layer that reduces screening effects giving rise tstronger electric fields
in the bulk. This mechanism is self-sustaining and efficient for high Schmidt numbers slowing down molecular drift-diffusion
currents that result in long charge-relaxation time scales and long transients, increasing the coupling efficiency of hydrodynamic
and electrokinetic processes.
A limitation of the present standalone model is the 1-D formulation of the Gauss law. The 3-D spatial structure of the electric
potential is not resolved and it is implied that ions and electric fields are organized in large scale structures forming layers that
are parallel to the wall. This might not be physically justified under all circumstances. The result would be an overestimation of
turbulence effects, which means an overestimation of the magnitude of the drag enhancement, but less of the sign. This is because,
in the 1-D representation, both the strength of bulk electric fields (due to differences in the spatial structure between the operator
Green’s function for the 3-D and 1-D Gauss law, e.g. Jackson, 1975) and the entrainment (due to map-based advection) would be
overestimated together, resulting in artificial drag enhancement. Since DNS are to costly to reach high enough Reynolds and
Schmidt numbers, and the modeling required for LES is unknown, it would be interesting to assess the present model prediction by
dedicated laboratory experiments.

5 Conclusion

EHD turbulence denotes a chaotic flow that is influenced by inertial, viscous, and Coulomb forces across a range of scales.
Dynamical processes are nonuniversal and reach down to the diffusive scales while coupling to the large scales due to the nonlocal
interaction of Coulomb forces, which result from the interaction of local electric charges with the background electric fields.
This places a strong burden on numerical simulation and modeling of EHD flows. Not only because of multiphysical flow
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features but also because the emerging EHD scales can be even smaller than the Kolmogorov and Batchelor scales, increasing the
cost of numerical simulations. In applications, like membraneless redox flow batteries, liquid metal batteries, electrochemistry
applications, and electrostatic precipitators, EHD flows are confined so that velocity and scalar boundary layers and the surface
physics at domain walls or internal interfaces have to be resolved. Resolution and forward-modeling requirements have been
addressed here by utilizing the stochastic one-dimensional turbulence (ODT) model for numerical investigation of wall-bounded
EHD-enhanced flows.
In one-way coupled vertical EHD pipe flow with a coaxial central electrode, ODT captures some relevant drag enhancement effects,
relating them to increased mixing. Turbulent drag is enhanced by an EHD-based amplification of the rate of change of the turbulent
kinetic energy as revealed by an analysis of the contributions to the pressure drop per unit pipe length of the spatially developing
flow. Based on boundary layer similarity regime overlap, we assert that the mechanism is at work for the radial direction in the
gas-phase EHD pipe flow must be similar to that in temporally evolving EHD Couette flow of an ionic liquid that facilitates a more
detailed investigation of the boundary layer flow.
In fully (fully) coupled EHD Couette flow, ODT predicts EHD-enhanced bulk turbulence that affects the entire turbulent boundary
layer, giving rise to a multiscale coupling of wall and bulk properties. The turbulent drag increases like 𝐶f ∼ ln(Sc) for
Sccrit ≈ 30 < Sc < 500 for the nonsaturated drag enhanced regime for all turbulent cases investigated. The results suggest that
charge carriers have to be immobile enough to allow for long transients and slow charge relaxation in order to allow for strong
coupling of hydrodynamic entrainment of neutral bulk fluid into the electric boundary layer and electrokinetic charge separation by
molecular drift-diffusion currents. Albeit the physical mechanism is consistently represented in the model, the magnitude of the
drag enhancement may be overestimated. Some model predictions therefore await experimental validation.
We conclude that ODT is a self-contained, dimensionally reduced flow model that combines fidelity, predictability, and numerical
efficiency. We have demonstrated the applicability to EHD-enhanced flows, which facilitates future application as advanced
subgird-scale model in LES for advanced modeling of EHD turbulence.
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