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Abstract: The current work explores the effect of (frozen) mixture flow and lift restriction on the stability of direct spring-operated
pressure relief valves. First, we study the effect of frozen mixture (constant mass fraction) flow through a pressure relief
valve with upstream piping. DIER’s 𝜔 technique is employed to cope with the mixture parameters, notably sonic velocity and
choked/non-choked flow through the nozzle. By means of one-dimensional simulation, we show that the change in sonic velocity
plays a fundamental role in both the valve opening time and its stability. Due to the extremely low sonic velocities in certain
range of water-air mass fraction, such valves will have a poor response time (slow opening) and chatter even for short inlet pipings.
Next, we investigate the possibility of improving the dynamical performance of the safety valve by using a larger valve (i.e., a
larger orifice) with a restricted lift option while keeping the vented mass flow rate through the valve constant. Our numerical
investigations reveal that the additional restoring force emerging from the valve restriction at the upper stopper improves the
stability behaviour in the case of gas applications but can hardly have any influence in the case of liquid service.
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1 Introduction

Pressure relief valves (PRVs) are devices protecting the pipeline system and reservoirs from excess pressure by venting the
unnecessary amount of fluid if needed. As such, they are safety-critical devices; inadequate operation (such as insufficient venting
capacity, vibration, the inability of opening due to stuck parts) leads to catastrophic consequences.

These valves are essentially 1 DoF oscillators coupled with the fluid dynamics inside the piping system, resulting in a surprisingly
rich dynamical behaviour; see, e.g., Hős et al. (2017) for an overview. It is well-known that such valves are prone to self-excited
oscillations, see, e.g, (Kasai (1968); Bazsó and Hős (2013); Moussou et al. (2010); Singh (1983, 1982)), and a significant effort
was devoted to predicting instabilities and oscillations in the phase of design (see, e.g., Darby (2012); Hős et al. (2014); Izuchi
(2010); Melham (2014)). One of the cornerstones of such an analysis is the high-fidelity yet relatively simple description of
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the flow force on the valve body and the mass flow rate through the PRV. Although there are standard approaches to describe
these forces – e.g. the ”effective area” technique introduced in Hős et al. (2014) or the use of the jet angle as in Darby (2012);
Narabayashi et al. (1986) – mostly single-phase cases (either pure gas or liquid) are addressed. Boccardi et al. (2005); Dempster
and Alshaikh (2015); Kourakos et al. (2013); Narabayashi et al. (1986); Dempster and Alshaikh (2015) report on the effect of the
two-phase flow on the static characteristics (flow force and mass flux) of the valve. However, the authors are unaware of any study
trying to capture the effect of multiphase flow on the dynamic behaviour of a PRV (notably opening and closing characteristics) or
to predict the effect of restricted valve lift.

This paper addresses the problem of predicting the dynamic behaviour of a PRV in the presence of two-phase flow of constant mass
fraction and in the case of restricted-lift valves. As such, we do not consider phase change and the model will not be (directly)
applicable for systems where interphase mass transfer is present (e.g. flashing flows). However, for multicomponent applications, in
the absence of mass transfer between the components, our model will provide a possible description of the dynamics, for example
in the case of bubbly flows, see, Campagne et al. (2002); Ng and Yap (1989); Alimonti et al. (2010), where, even though the void
fraction changes if pressure changes, the mass fraction remains constant. Another example with constant mass fraction would be
applications in which the humidity content of air is important, see, e.g., Meena et al. (2007) or Kim et al. (2016), especially Figure
8 therein.

The remainder of the paper is structured as follows. First, Section 2 provides a brief literature overview on safety valve dynamics,
including valve chattering and DIER’S 𝜔 method. Next, we present our mathematical model of the frozen mixture in Section 3.
Then, we show the simulation results on estimating valve opening time in Section 4 and valve stability in Section 5. Section 6
explores the impact of restricted valve lift on its stability. Finally, Section 7 summarizes and concludes the study.

2 Literature review

The problem of valve instability (i.e., chatter) has been known and studied since the 1980s, see, e.g. Singh (1982). Also, the
relevant industrial standards, notably API (2015) codes, include guidelines for avoiding valve instabilities, leading to the so-called
3% rule, which claims to overcome the chatter problem by limiting the frictional (non-recoverable) pressure loss in the upstream
piping.

Hős et al. (2014), address the analysis of the instabilities mechanisms of pressure relief valves in gas service, seeking to derive a
model that considers the acoustic coupling between the valve and the pipe. This study revealed that the root cause of valve chatter
is not the frictional pressure drop inside the upstream piping (even though it can also lead to vibrations) but the acoustic coupling
between the first fundamental eigenmode (”organ” mode) of the pipeline. The proposed model and experimental results for three
commercial valves, 1E2, 2J3, and 3LD, at different inlet mass flow rates and pipe lengths, showed a violent oscillation occurred
beyond a critical pipe length even with negligible pipe friction.

Makaryants (2017) addressed a PRV self-excited oscillation mechanism in gas service. The authors tested the valve experimentally
under external vibration conditions. Also, a verified mathematical model has been developed to reveal the nature of self-excited
oscillations onset of PRV and predicts the valve dynamics. The empirical study indicated a low-frequency self-excited oscillation
occurs in the range of 1 − 10Hz. However, other tested valves showed their failure tendency at high-frequency self-excited
oscillations in the range of 100 − 120Hz. The failure is due to the acoustic coupling between the vessel and the pipe, which
results in valve chatter. Finally, the proposed model prevents the undesired high-frequency self-excited oscillations and allows the
appropriate value of friction force needed to eliminate chatter in all valve operating modes.

Zheng et al. (2021) report the dynamic instability of a spring-loaded PSV in gas service. A high-fidelity (CFD) model containing a
PSV, different connected pipes, and the pressure vessel is proposed to investigate the influence of the rate of the vessel pressure
rises, the stem friction, and the connecting pipe length. Furthermore, the acoustic waves along the connecting pipes are successfully
captured, assessing the instability mechanism and optimizing the design and the setup of pressure relief systems. The authors
found that increasing the vessel pressure rise rate opens the valve faster and reduces the valve disk oscillations, leading to increases
in overpressure values. Moreover, increasing the stem friction improves the sensitivity of PSVs, but it increases the blowdown
of the valve. Finally, the expansion/compression wave is reflected as a compression or expansion wave at the vessel. The latter
runs back to the nozzle to enhance/weaken the flutter and chatter of the disk, which with a proper connecting pipe length, plays a
positive role in the stability of the vessel-inlet pipe-safety valve system.

Pressure relief valves are sized and chosen based on their capacity, where the vented mass flow rate is at full opening and 110% of
the set (opening) pressure. For ideal gas or incompressible liquid, it is straightforward to compute the mass flow rate if the valve
lift (flow-through area) and the pressure difference (or, in the case of choked flow, the upstream pressure) are known, together with
the discharge coefficient (provided by the manufacturer). However, predicting the mass flow rate is challenging in the case of wet
steam, non-ideal gases or mixtures, or flashing (partial evaporation of saturated liquid due to pressure drop via the valve). DIER’s
𝜔 technique is one attempt to cope with this problem that assumes both thermal and mechanical homogeneous case and also
neglects the velocity difference between the phases (no slip). Due to its popularity, we will employ this model, even though there
are other, more accurate (and complex) models, such as TPHEM, HNE, and HDI methods (see, e.g., Darby (2005) for details).
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In contrast to the single-phase flow, the two-phase case has one additional degree of freedom, that is the mass fraction of one of the
phases; where gas mass fraction is 𝑥𝑔 = ¤𝑚𝑔/( ¤𝑚𝑔 + ¤𝑚𝑙) and the liquid mass fraction denoted by 𝑥𝑙 = ¤𝑚𝑙/( ¤𝑚𝑔 + ¤𝑚𝑙). ¤𝑚𝑔 and ¤𝑚𝑙 are
the mass flow rates of the gas and liquid in the mixture, respectively.

Leung published a series of papers on the development and use of the 𝜔 technique. In Leung (1986), the author presented the
generalised correlation for one-component homogeneous equilibrium model (HEM) for flashing choked flow validated against
measurement results for eleven fluids with different properties. The key idea was that the flashing two-phase mixture was considered
as a single-phase compressible fluid, and then the use of the 𝜔 parameter already defined by Epstein et al. (1983) for all-liquid
mixtures. Leung and Grolmes (1988) extended the previous correlation for the flashing choked flow of an initially sub-cooled
liquid (for both high and low sub-cooling regions), neglecting the effects of non-equilibrium effects and obtained design charts that
were useful for practical applications. Leung discussed similarities between flashing and non-flashing two-phase flow in Leung
(1990) and showed that, by simply redefining the dimensionless 𝜔 parameter, a unified treatment could be obtained.

In another study, Leung and Nazario (1990) reviewed three methods; (a) DIERS’ 𝜔 method, (b) a technique used by the American
Petroleum Institute (API) and (c) the American Society of Mechanical Engineering (ASME) code, to compare the mass flux of
flashing flow. These methods are widely used in various engineering applications. It has been found the ASME and DIERS’ 𝜔
models are in close agreement. Also, the API method gives significantly higher theoretical mass flux values since it neglects
momentum, heat and mass transfer during the flashing process.

Leung also summarised his previous works in Leung (1995), covering the 𝜔 method for mass flux estimation both for ideal nozzle
flow and pipe flow with different orientations (horizontal and inclined pipe flows), for flashing, non-flashing, inlet sub-cooled and
non-condensible gas. Nine years later, he applied the 𝜔 method for safety relief valves, see, Leung (2004). It was also shown how
the discharge coefficient varies depending on the flow regime, and it was revealed that for the non-flashing flow case, the discharge
coefficient lies between the liquid coefficient and the gas coefficient. Moreover, the author observed a higher discharge coefficient
value in the flashing flow case than in the single-gas case. Lees (2012) proposed techniques for employing the 𝜔 model based on
the stagnation conditions of fluid in the vessel and discussed four main cases; saturated liquid, two-phase (gas-liquid mixture), low
sub-cooled liquid, and high sub-cooled liquid.

Lenzing et al. (1998) studied experimentally the effect of two-phase flow (flashing and non-flashing) on the capacity at the
maximum lift of the valve. The authors compared the measured data against several theoretical predictions, namely the DIERS’ 𝜔
technique, Nastoll’s Homogeneous Frozen Flow model and the Goßlau-Weyl model. The results showed that for non-flashing flow
𝜔 method is the most powerful technique and was superior to the rest of the employed models (see Figure 1. in Lenzing et al.
(1998) and the corresponding text).

Last but not least, Boccardi et al. (2005) discussed measured data of (steam/water) flashing flow through a PRV with a wide range
of operating parameters such as vapour quality, inlet pressure, mass flow rate, and backpressure. The measurement data was
examined against HEM 𝜔 method, and the results showed that the mass flow rates provided by 𝜔 model and the actual (measured)
flow rates correlated reasonably. Later, the same authors in another work, Boccardi et al. (2010) compared the experimental data of
steam-water flow against three models: HEM (homogeneous equilibrium model), HNE (thermodynamic non-equilibrium) and
HNE-DS (proposed by the ISO working group). The results revealed that, even though the HNE-DS method provided the best
results, it was not conservative in some cases as it gave higher flow rates than the measurements. In contrast, the HEM (DIERS’ 𝜔)
technique showed poor accuracy but was conservative.

Based on the theoretical and experimental work published in the above reports, Leung’s 𝜔 technique provides a reasonable
compromise between modelling complexity and prediction accuracy and we will employ this approach in this paper.

3 Mathematical model

3.1 Frozen mixture model

Consider the frozen mixture of an ideal gas and a liquid, that is the gas mass fraction 𝑥𝑔 =
𝑚𝑔

𝑚𝑚
=

¤𝑚𝑔

¤𝑚𝑚
is constant, where

¤𝑚𝑚 = ¤𝑚𝑔 + ¤𝑚𝑙 is the mixture flow rate and, clearly, 𝑥𝑙 = 1 − 𝑥𝑔.

We assume that the gas obeys the ideal gas law, that is, 𝑝/𝜌𝑔 = 𝑅𝑇 , where 𝑝 stands for the pressure, 𝑇 is the absolute temperature
(𝐾), 𝑅 is the specific gas constant, and 𝜌𝑔 denotes the gas density. For an isentropic change of state, the sonic velocity for pure gas
(𝑥𝑔 = 1) is 𝑎𝑔 =

√
𝜅𝑅𝑇 and 𝜅 is the adiabatic exponent of the gas (e.g. 𝜅 = 1.4 for air). The equation of state of the liquid phase

describes the liquid density is

𝜌𝑙 = 𝜌𝑟𝑒 𝑓 +
1
𝑎2
𝑙

(
𝑝 − 𝑝𝑟𝑒 𝑓

)
, (1)

where the reference values are the reference pressure 𝑝𝑟𝑒 𝑓 = 1bar, the liquid (water) reference density 𝜌𝑟𝑒 𝑓 = 1000 𝑘𝑔/𝑚3, and 𝑎𝑙
is the sonic velocity measured in pure liquid.
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The 𝛼𝑔 volume fraction is

𝛼𝑔 =
𝑉𝑔

𝑉𝑔 +𝑉𝑙
=

𝑚𝑔

𝑚𝑔 + 𝑚𝑙
𝜌𝑔

𝜌𝑙

=
𝑥𝑔

𝑥𝑔 + (1 − 𝑥𝑔)
𝜌𝑔

𝜌𝑙

, (2)

where 𝑉𝑔, 𝑉𝑙 , 𝑚𝑔, and 𝑚𝑙 are gas volume, liquid volume, gas mass, and liquid mass in the frozen mixture, respectively.

The mixture density 𝜌𝑚 (𝑝, 𝑇, 𝑥𝑔) becomes

𝜌𝑚 =
𝑚𝑚

𝑉𝑚
=
𝜌𝑔𝑉𝑔 + 𝜌𝑙𝑉𝑙
𝑉𝑔 +𝑉𝑙

= 𝛼𝑔𝜌𝑔 + (1 − 𝛼𝑔)𝜌𝑙

=
𝑝
(
𝑝 − 𝑝𝑟𝑒 𝑓 + 𝑎2

𝑙
𝜌𝑟𝑒 𝑓

)
(𝑝𝑟𝑒 𝑓 − 𝑝)𝑅𝑇𝑥𝑔 + 𝑎2

𝑙

(
𝑝(𝑥𝑔 − 1) − 𝑅𝑇𝑥𝑔𝜌𝑟𝑒 𝑓

) , (3)

where 𝑉𝑚 stands for the mixture volume.

It is easy to check that 𝜌𝑚 (𝑥𝑔 = 1) = 𝑝

𝑅𝑇
and setting 𝑥𝑔 = 0 recovers Eq. (1). We will also need the pressure as a function of

temperature, (mixture) density and gas mass fraction 𝑝(𝜌𝑚, 𝑇, 𝑥𝑔), which is

𝑝 =
1
4

(
−𝑏 +

√︁
𝑏2 − 4𝑐

)
, with

𝑏 = −
(
𝑝𝑟𝑒 𝑓 + 𝑅𝑇𝑥𝑔𝜌𝑚 + 𝑎2

𝑙

(
𝜌𝑚 (1 − 𝑥𝑔) − 𝜌𝑟𝑒 𝑓

) )
, and

𝑐 = 𝑅𝑇𝑥𝑔𝜌𝑚

(
𝑝𝑟𝑒 𝑓 − 𝑎2

𝑙 𝜌𝑟𝑒 𝑓

)
. (4)

Now we are in the position of computing the mixture sonic velocity. First, we eliminate the temperature dependence from Eq. (3)
by assuming isentropic change of state for the gas, and then compute

𝑎2
𝑚 =

(d𝜌𝑚 (𝑝, 𝑥𝑔)
d𝑝

)−1
�����
𝑖𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐

=
𝜅 (𝑎0 + 𝑎1)2

𝑏0 + 𝑏1 + 𝑏2 + 𝑏3
, where

𝑝 = 𝑝𝑟𝑒 𝑓 ,𝑔

(
𝑇

𝑇𝑟𝑒 𝑓 ,𝑔

) 𝜅
𝜅−1

𝑎0 = (𝑝 − 𝑝𝑟𝑒 𝑓 )𝑅𝑇𝑥𝑔
𝑎1 = 𝑎2

𝑙

(
𝑝(1 − 𝑥𝑔) + 𝑅𝑇𝑥𝑔𝜌𝑟𝑒 𝑓

)
𝑏0 = −𝑝2𝑅𝑇𝑥𝑔

𝑏1 = 𝑎2
𝑙 𝑝

2 (𝑥𝑔 − 1)

𝑏2 = 2𝑝𝑅𝑇𝑥𝑔
(
𝑝𝑟𝑒 𝑓 − 𝑎2

𝑙 𝜌𝑟𝑒 𝑓

)
𝑏3 = −𝑅𝑇𝑥𝑔

(
𝑝𝑟𝑒 𝑓 − 𝑎2

𝑙 𝜌𝑟𝑒 𝑓

)2
.

(5)

It is straightforward again to check that 𝑎2
𝑚 (𝑥𝑔 = 0) = 𝑎2

𝑙
and 𝑎2

𝑚 (𝑥𝑔 = 1) = 𝜅𝑅𝑇 . Fig. 1 depicts the change of sonic velocity (solid
line) and gas void fraction 𝛼𝑔 (dashed line) as a function of gas mass fraction. These results are in good agreement with the
literature data, see, e.g., Nguyen et al. (1981) for example. The sonic velocity will play a central role in our further analysis, hence
we highlight two well-known facts, namely that: (1) the sonic velocity can be as low as 20-50 m/s and (2) a relatively small amount
of air (say, 𝑥𝑔 = 10−6, 𝛼𝑔 = 8.3 × 10−4) changes the sonic velocity drastically.

3.2 Upstream pipe dynamics

The governing equations for 1D unsteady flow of an arbitrary fluid in a tube of constant cross-section (that is, a pipe with 𝐷 𝑝

diameter and friction factor 𝜆) are as follows

𝜕U
𝜕𝑡

+ 𝜕F
𝜕𝑥

= S, (6)

with

U =
©«

𝜌𝑚
𝜌𝑚𝑣

𝜌𝑚𝑣𝑒𝑡𝑜𝑡

ª®¬ , F =
©«

𝜌𝑚𝑣

𝜌𝑚𝑣
2 + 𝑝

𝜌𝑚𝑣𝑒𝑡𝑜𝑡 + 𝑝𝑣
ª®¬ , 𝑎𝑛𝑑 S =

©«
0

− 𝜆
2𝐷𝑝

𝑣 |𝑣 |
0

ª®¬ , (7)

141
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Fig. 1: Sonic velocity (left axis) and gas void fraction (right axis) as a function of gas mass fraction.

where the total energy 𝑒𝑡𝑜𝑡 is the sum of the internal energy 𝑒 and kinetic energy 𝑣2

2 ; hence, 𝑒𝑡𝑜𝑡 = 𝑒 + 𝑣2

2 . The mixture internal
energy is 𝑒𝑚 = 𝑒𝑔 +𝑒𝑙 = 𝑐𝑉,𝑔𝑇𝑥𝑔 +𝑐𝑉,𝑙𝑇 (1−𝑥𝑔) = 𝑐𝑉,𝑚𝑇 , and each of 𝑒𝑔 and 𝑒𝑙 are the gas and liquid internal energy, respectively.
Note that the mixture specific heat capacity at constant volume is 𝑐𝑉,𝑚 = 𝑥𝑔𝑐𝑉,𝑔 + 𝑐𝑉,𝑙 (1 − 𝑥𝑔), where 𝑐𝑉,𝑔 and 𝑐𝑉,𝑙 denote the
specific heat capacity of gas and liquid in the mixture content.

3.3 Valve dynamics

The valve is modelled by a simple 1 DoF oscillatory system, whose governing equation is given by

𝑚𝑣 ¥𝑥 + 𝑘 ¤𝑥 + 𝑠 (𝑥 + 𝑥0) = 𝐴𝑒 𝑓 𝑓 (𝑥)𝐴𝑣 (𝑝𝑢 − 𝑝𝑏) , (8)

with 𝑚𝑣 being the valve mass, 𝑠 standing for the spring stiffness, and 𝑘 is the viscous damping coefficient. 𝐴𝑣 refers to the valve seat
area, 𝑥0 is the spring pre-compression, and 𝑥, ¤𝑥, ¥𝑥 denote the valve lift, velocity and acceleration, respectively. 𝐴𝑒 𝑓 𝑓 (𝑥) is the dimen-
sionless effective area curve as a function of the relative valve lift 𝑥 = 4𝑥

𝐷𝑝
, which models the force component due to the momentum

of the fluid (see Burhani and Hős (2020, 2021) for more details). The pressure difference (𝑝𝑢 − 𝑝𝑏) contains the upstream pressure
𝑝𝑢 and the backpressure 𝑝𝑏, which does not necessarily equal the ambient pressure 𝑝𝑎. By adjusting the 𝑥0 spring pre-compression,
one can change the opening or set pressure 𝑝𝑠𝑒𝑡 , which, by definition, is a gauge pressure: 𝑝𝑠𝑒𝑡 = 𝑠𝑥0

𝐴𝑣
− 𝑝𝑎. Pressure relief valves in

oil and gas industry typically contain no artificial damping mechanism but only natural damping, hence we will set 𝑘 = 0.01×2√𝑠𝑚𝑣.

The mass flow rate through the valve is ¤𝑚𝑣 = 𝐶𝑑𝐴 𝑓 𝑡 (𝑥)
√
𝑝𝑢𝜌𝑢G(𝜂), where 𝐶𝑑 stands for the discharge coefficient, 𝐴 𝑓 𝑡 is the flow

through area, 𝜌𝑢 refers to the upstream fluid density, and G(𝜂) is the dimensionless mass flux as a function of the pressure ratio
𝜂 = 𝑝𝑑/𝑝𝑢, and 𝑝𝑑 is the downstream pressure. The dimensionless mass flux G(𝜂) can be given as

for an incompressible fluid:

G(𝜂) =
√︁

2 (1 − 𝜂). (9)

for non-choked, single-phase ideal gas:

G(𝜂) =
√︂

2
𝜅

𝜅 − 1
(
𝜂2/𝜅 − 𝜂 (𝜅+1)/𝜅 ) . (10)

for choked, single-phase ideal gas:

G(𝜂) =

√√
𝜅

(
2

𝜅 + 1

) 𝜅+1
𝜅−1

. (11)

for non-choked frozen mixture flow:

G(𝜂) = (−2(𝜔 ln 𝜂 + (𝜔 − 1) (1 − 𝜂))1/2

𝜔( 1
𝜂
− 1) + 1

. (12)

for choked frozen mixture flow:

G(𝜂) = 𝜂𝑐√
𝜔
, (13)
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where the critical pressure ratio 𝜂𝑐 =
𝑝𝑐
𝑝𝑢

can be calculated by solving the following implicit equation:

𝜂2
𝑐 + (𝜔2 − 2𝜔) (1 − 𝜂𝑐)2 + 2𝜔2 ln 𝜂𝑐 + 2𝜔2 (1 − 𝜂𝑐) = 0. (14)

and the compressible flow number 𝜔 = 𝛼𝑔/𝜅 in the case of frozen mixture flow, see Leung (1995).

3.4 Reservoir dynamics

The rate of change of pressure inside a reservoir of volume 𝑉𝑟 is

¤𝑝𝑡 =
𝑎2
𝑟

𝑉𝑟
( ¤𝑚𝑖𝑛 − ¤𝑚𝑜𝑢𝑡 ) . (15)

We shall assume constant inlet flow rate ¤𝑚𝑖𝑛 and variable outlet flow rate ¤𝑚𝑜𝑢𝑡 , typically, through a pipeline. The reservoir sonic
velocity 𝑎𝑟 depends on the reservoir temperature, which is connected to the reservoir pressure 𝑝𝑟 by an arbitrary, user-defined
change of state (e.g. isentropic, isotherm, etc.).

3.5 Numerical solution procedure

We use a standard Lax-Wendroff scheme for updating the pipe. The boundary conditions are implemented with the help of Method
of Characteristics (MoC, see Anderson (1995)), the details can be found in Erdődi and Hős (2017). The valve and reservoir model
are integrated by a standard 5th-order adaptive Runge-Kutta solver. Special care is devoted to the proper handling of the valve
impingement on the seat or upper stopper. The time step is chosen by the CFL criteria, with a CFL number of 0.7-0.9. The whole
framework is implemented in Matlab 2021b.

4 Valve opening time

In Burhani and Hős (2020), an approximate formula was derived for ’fast’ valve opening time. Let the timescale of the valve be
𝑡𝑣𝑎𝑙𝑣𝑒 = 2𝜋/𝜔𝑣 = 2𝜋

√︁
𝑚/𝑠, where 𝜔𝑣 stands for the eigenfrequency of valve . We define the opening time 𝑡𝑜𝑝 as the time needed

for a closed valve to reach the 95% of the equilibrium lift 𝑥𝑒 for a prescribed mass flow rate ¤𝑚𝑖𝑛. If 𝑡𝑜𝑝 ≪ 𝑡𝑣𝑎𝑙𝑣𝑒, we have

𝑡𝑜𝑝 ≈ 2 × 0.95𝑥𝑒𝜔2
𝑣

𝑚𝑣

∑
𝑉

𝐴𝑣𝑎
2 ¤𝑚𝑖𝑛

. (16)

(The condition 𝑡𝑜𝑝 ≪ 𝑡𝑣𝑎𝑙𝑣𝑒 or, equivalently, 𝜔𝑣𝑡𝑜𝑝 ≪ 2𝜋 must be checked a posteriori). The above equation was derived by
assuming a valve mounted directly to the reservoir. Intuitively, a pipe between the valve and reservoir would add additional
volume and, if long enough, it will give rise to wave phenomena that also increase the valve opening time. Hence we have∑
𝑉 = 𝑉𝑟 + 𝐴𝑝𝐿𝑝 , where 𝐴𝑝 is the pipe cross-section area and 𝐿𝑝 denotes the pipe length.

We have run several computations to analyse the effect of the mass fraction on the valve opening time with the parameter values
provided in Tab. 1. For the water case, we have set 𝑉𝑟 = 2m3 and the valve lift and pressure in equilibrium position were
𝑥𝑒 = 0.33mm and 𝑝𝑒 = 4.11 bara, respectively. This gives (by virtue of Eq. (16)) 𝑡𝑜𝑝 = 0.0278 s for opening time. Fig. 2 depicts
the first 0.05 s of the opening process with three different pipe lengths. The dashed horizontal line represents the equilibrium
valve lift, and the asterisk is the estimated opening time. We observe a slightly increasing opening time due to the increasing
pipe length, which changes the overall volume (capacity) in the system. The change in the opening time (Eq. (16)) due to the
increasing pipe length is less than 1%. We also experienced ”opening instability” (see Hős et al. (2014) for details). From
the mechanical point of view, this case is under-damped as the maximum of the valve lift is 50% higher than the equilibrium position.

Tab. 1: Parameters

valve mass 𝑚𝑣 0.2 kg
spring stiffness 𝑠 47.3 kN/m
valve eigenfreq. 𝑓𝑣 77 Hz
valve timescale 𝑡𝑣 0.013 s
set pressure 𝑝𝑠𝑒𝑡 3 bar(g)
pipe diameter 𝐷 𝑝 45.5 mm
pipe friction coeff. 𝜆 0.02
inlet mass flow rate ¤𝑚𝑖𝑛 0.77 kg/s

In the case of pure air, we have 𝑉𝑟 = 0.02m3, 𝑥𝑒 = 5.97mm and 𝑝𝑒 = 5.9bara. This case is over-damped, even though the
viscous damping parameter was unchanged and the reservoir volume is smaller; see Fig. 3. Again, the dashed line represents the
equilibrium lift, and the asterisk depicts the opening time estimated by Eq. (16). In this case, we do not experience opening instability.

In both cases, the simulations with longer pipe lengths resulted in unstable valve motion, leads us to our next section.
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Fig. 2: Valve openings with different pipe lengths for pure water. The dashed line represents the equilibrium lift, and the asterisk
depicts the opening time estimated by Eq. (16).

0 0.05 0.1 0.15
t, s

0

1

2

3

4

5

6

7

x,
 m

m

x
g

=1 (pure air)

L
p

=0.1m

L
p

=0.15m

L
p

=0.2m

L
p

=0.25m

L
p

=0.30m

L
p

=0.35m

Fig. 3: Valve openings with different pipe lengths for pure air. The dashed line represents the equilibrium lift, and the asterisk
depicts the opening time estimated by Eq. (16).

5 Instability thresholds

In Hős et al. (2016), the authors derived an analytical criteria for computing the critical inlet pipe length, that is

𝐿𝑐𝑟𝑖𝑡 =
𝜋𝑎

2𝜔𝑣

1√︃
2 𝐴𝑣 𝑝𝑒

𝑥𝑒𝑠
+ 1

, (17)

where 𝑥𝑒 and 𝑝𝑒 are the equilibrium valve lift and (absolute) pressure at the valve inlet. Beyond the critical pipelength defined by
the above equation, self-excited oscillations will be born, whose dominant frequency will coincide with the pipe’s first natural
’organ-mode’ eigenfrequency, 𝑓𝑝 = 𝑎/(4𝐿𝑝).

Izuchi (2010) provided a similar equation, that is

𝐿∗𝑐𝑟𝑖𝑡 =
𝜋𝑎

2𝜔𝑣

1√︃
𝑥𝑒+𝑥0
𝑥𝑒

. (18)

We notice that due to the force equilibrium of the valve, we have 𝑠 (𝑥𝑒 + 𝑥0) = 𝐴𝑣 (𝑝𝑢 − 𝑝𝑏), hence, if 𝑝𝑢 is measured as a relative
(gauge) pressure above 𝑝𝑏 (which is often the ambient pressure), and the momentum forces can be neglected (𝐴𝑒 𝑓 𝑓 = 1 in Eq. (8)),
we have 𝐴𝑣 𝑝𝑒

𝑥𝑒𝑠
=

𝑥𝑒+𝑥0
𝑥𝑒

, which is similar to Izuchi’s equation, but still, the factor of 2 and the +1 terms are missing.
We have run simulations with two set pressure, that is 𝑝𝑠𝑒𝑡 = 3 barg and 15 barg. Fig. 4 and Fig. 5 depict the result. As it can be
seen by virtue of Eq. (17), the critical pipe length depends on the equilibrium lift and pressure (𝑥𝑒 and 𝑝𝑒) and the sonic velocity.
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The uppermost panels show the equilibrium lift: it remains constant up to 𝑥𝑔 ≈ 0.01, beyond which it increases due to the fact that
the density of the mixture decreases but the overall vented mass flow rate is kept constant. We observe a similar trend in the case of
the equilibrium pressure.
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Fig. 4: Equilibrium lift, pressure and critical pipe length for 𝑝𝑠𝑒𝑡 = 3 barg and ¤𝑚𝑖𝑛 = 0.77 kg/s.

However, the shape of the critical pipe length (bottom panels) resembles on the shape of the sonic velocity, see Fig. 1. More
importantly, in the range of 𝑥𝑔 < 10−2, the equilibrium lift and pressure are constant yet the critical pipe length changes. This is
another observation supporting the importance of the sonic velocity. Again, in the range of the low sonic velocity, the valve will be
unstable basically for any (small) pipe length.
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Fig. 5: Equilibrium lift, pressure and critical pipe length for 𝑝𝑠𝑒𝑡 = 15 barg and ¤𝑚𝑖𝑛 = 0.77 kg/s.

6 Restricted valves

A well-known solution against excessive (> 3%) inlet pressure drop and/or valve chatter is to employ a larger lift with restricted lift.
For instance, some manufacturers, such as Baker Hughes, offer the Consolidated 1900 Series API 526 pressure relief valve with
a restricted lift option (Hughes (2017)), which allows the adjustment of capacity in a secure and cost-effective way as only the
washer needs to be added. Also, the lift restriction is more suitable to match the required capacity of the protected vessel or pipe
with the actual and rated capacities of the relief valve, providing over-pressure protection. The inlet piping pressure losses and the
acoustic wave effects will also be decreased, improving the stability of the safety valve performance (see, e.g., API (2015)). How-
ever, ASME Code and API 526 require that restriction not to be less than 30% of the PRV maximum (full) lift 𝑥𝑚𝑎𝑥 or less than 2 mm.
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Tab. 2: Crosby valve data. The restriction – see text below – is computed such that the restricted valve vents the capacity of the J
orifice valve @ 110% of 𝑝𝑠𝑒𝑡 .

orifice J K L M
orifice area 𝐴𝑣 = 𝐷

2
𝑜𝜋/4 𝑚𝑚2 830 1186 1841 2323

𝐷𝑜, 𝑚𝑚 32.5 38.9 48.4 54.4
𝑥𝑚𝑎𝑥 = 𝐷𝑜/4, 𝑚𝑚 8.12 9.71 12.1 13.6
capacity, air kg/s
@ 𝑝𝑠𝑒𝑡 = 4 barg 0.97 1.38 2.14 2.70

required restriction ratio RT, % 0 30 54.9 64.3

Lift restriction is executed by installing a limit washer between the valve guide and disc holder, whose length should meet the
required valve lift. Later, if the capacity is insufficient, only the location of the limit washer needs to be changed to get a larger
capacity (larger orifice valve), see, e.g., (Hellemans (2009)).

Even though lift restriction is well-known in the industry, little work has been done on exploring its effect on the stability of the
valve. In what follows, we present the results of a systematic parametric computation series on the effect of lift restriction. We
shall search for the critical pipe length (instability threshold), beyond which the valve chatters for several valve (nozzle) sizes
restricted such that the capacity (mass flow rate at 110% of set pressure and full - restricted - lift) is kept constant.

6.1 Governing equations and data set

We begin by establishing steady-state performance charts for restricted valves, which will be useful when analysing the stability
properties. The valve flow rate is

¤𝑚𝑣 = 𝐶𝑑𝐴 𝑓 𝑡 (𝑥)
√
𝑝𝑢𝜌𝑢G(𝜂), (19)

which was already explained in Section 3.3 (𝜂 = 𝑝𝑑/𝑝𝑢 < 1 is the pressure ratio). The flow-through area is 𝐴 𝑓 𝑡 (𝑥) = 𝐷𝑜𝜋𝑥,
where 𝐷𝑜 is the orifice (often referred to as bore or nozzle) diameter and we shall emphasize that valves of different size will have
different orifices: the data set for the Crosby standard valves is given in Tab. 2.

Restriction is the ”infeasible” section of the valve lift given in percent of full lift (0% is unrestricted), and, by definition, capacity is
the mass flow rate through the valve at 𝑝𝑣 = 110% of 𝑝𝑠𝑒𝑡 and maximum (possibly restricted) lift. Let us assume that we want to vent
the capacity flow rate of valve with orifice A with a valve with orifice 𝐵, then, the required restriction is RT(%) =

(
1 − 𝐴𝑜,𝐴

𝐴𝑜,𝐵

)
× 100,

and the restricted maximum lift is 𝑥𝑚𝑎𝑥,𝑅𝑇 = (1 − 𝑅𝑇/100)𝑥𝑚𝑎𝑥 .

If the valve is restricted, an additional force component emerges at the upper stopper, which we shall refer to as restoring force 𝐹𝑟 .
Now, If the valve body is in contact with the upper stopper, the force balance reads

𝑠(𝑥0 + 𝑥) = 𝐴𝑣 (𝑝𝑣 − 𝑝𝑏) + 𝐹𝑟 . (20)

In what follows, we present the performance curves of restricted valves. However, due to some data being unavailable in the
catalogues, some parameters were simply computed and might differ from the Crosby’s actual data. We require that the valve opens
at 𝑝𝑠𝑒𝑡 , hence 𝑠𝑥0 = 𝐴𝑣 (𝑝𝑎 + 𝑝𝑠𝑒𝑡 − 𝑝𝑏) (𝑝𝑠𝑒𝑡 is gauge pressure and the backpressure 𝑝𝑏 might differ from the ambient pressure
𝑝𝑎). Also, the valve should reach full lift at 1.1𝑝𝑠𝑒𝑡 , that is 𝑠(𝑥0 + 𝑥𝑚𝑎𝑥) = 𝐴𝑣 (𝑝𝑎 + 1.1 × 𝑝𝑠𝑒𝑡 − 𝑝𝑏). These two equations
allow us to compute the required spring stiffness 𝑠 and pre-compression 𝑥0 for all valves in Tab. 2, giving different values for all
orifice sizes and set pressures. Finally, the discharge coefficient𝐶𝑑 was set such that the capacity meets that data provided by Crosby.

After setting up the parameters we have plotted the mass flow rate of different valves as a function of the valve pressure 𝑝𝑣, in the
range of 100% ≤ 𝑝𝑣/𝑝𝑠𝑒𝑡 ≤ 115%, as show in Fig. 6. The upper figure depict the mass flow rate (relative to the capacity of the J
orifice) vs. the pressure (gauge, relative to the set pressure). Notice that the spring stiffness and spring precompressions are set
such that all valves have 100% of capacity at 110% of set pressure. Valve J reaches full lift and capacity at 110% of set pressure,
while the rest of the valves reach full lift earlier (at the sudden slope change of the curves) and beyond that point, the valve lift is
fixed yet the flow rate slightly increase as the pressure difference increase. Once the valve is fully open, the restoring force (bottom
figure) increases as the pressure increases. For example, at 106% of 𝑝𝑠𝑒𝑡 , valve with orifice J reaches approx. 60% of its capacity
(the valve is not fully open), valve with orifice K reaches approx. 90% of the capacity, while orifices K and L almost reach full
capacity plus experience approx. 10 and 20 N of restoring force. Our working hypothesis at this point is that the restoring force
helps in stabilizing the valves against chatter.

6.2 Stability of restricted valves

We have tested the performance of the valves (numerically). Initially, the valve was closed and the incoming flow rate into the
reservoir ( ¤𝑚𝑟 ,𝑖𝑛) was kept constant over the entire simulation. The actual flow rate was chosen to match the capacity of the valve
with J orifice at the prescribed set pressure. We have run several tests but only two representative cases are depicted here. The first
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Fig. 6: Mass flow rate (relative to the capacity of the J orifice valve at 𝑝𝑠𝑒𝑡 = 4barg) vs. valve pressure for valves with orifice J
(red), K (green), L (blue) and M (black). The dashed lines are the data points at absolute lifts (e.g., 1, 2, 3 ,4 , and 5 mm).
Note that for valve with orifice M, the maximum lift is 𝑥𝑚𝑎𝑥 = 4.89 mm at 𝑅𝑇 = 64.3%, so there is no data reported in the
figure at the absolute lift 5 mm.

set of computations were performed under air service at 4, 10, and 50 barg of 𝑝𝑠𝑒𝑡 , while the second series of computations were
assuming water service with the same set pressures.

In order to test the improvement in stability, we also compute the critical pipe length according to Eq. (17). For the air service case,
we have 𝑚𝑣 = 0.2kg, 𝑠 = 4.08kN/m, giving 𝜔𝑣 = 143rad/s (22.7 Hz). The sonic velocity in air at room temperature is 𝑎 = 343m/s
and the reservoir volume is assumed to be 𝑉𝑟 = 0.5m3. At full lift, 𝑝𝑒 = 𝑝𝑎 + 1.1 × 𝑝𝑠𝑒𝑡 = 5.4bar and 𝑥𝑒 = 𝑥𝑚𝑎𝑥 = 8.12mm,
which gives

𝐿𝑐𝑟𝑖𝑡 ,𝑎𝑖𝑟 =
𝜋𝑎

2𝜔𝑣

1√︃
2 𝐴𝑣 𝑝𝑒

𝑥𝑒𝑠
+ 1

= 0.71𝑚 (orifice: J, 𝑝𝑠𝑒𝑡 = 4barg). (21)

In the case of water service – 𝑎 = 1300m/s, 𝑝𝑠𝑒𝑡 = 50barg, 𝑠 = 51kN/m, 𝜔𝑣 = 505rad/s (80.4 Hz), 𝑉𝑟 = 5m3 – we obtain

𝐿𝑐𝑟𝑖𝑡 ,𝑤𝑎𝑡𝑒𝑟 =
𝜋𝑎

2𝜔𝑣

1√︃
2 𝐴𝑣 𝑝𝑒

𝑥𝑒𝑠
+ 1

= 0.83𝑚 (orifice: J, 𝑝𝑠𝑒𝑡 = 50barg). (22)
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Fig. 7: Stability map of valve with orifices J, K, L and M at 𝑝𝑠𝑒𝑡 = 4 and 50 bar, in air service.

We start by analysing the valve behaviour at air service. Fig. 7 depicts the stability properties at 4 barg and 50 barg (the
10 barg case was qualitatively the same as the 4 bar case). The horizontal axis depicts the orifice area ratios while the
vertical axis is the pipe length. The horizontal dashed line show the analytical estimate Eq. (21) for the J orifice. Note that
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for the rest of the orifices, one needs to recompute it; however, we depict the same value for all orifices to highlight the
improvement. All valves vent the capacity of the J orifice at the prescribed pressure (e.g. approx. 1 kg/s at 𝑝𝑠𝑒𝑡 = 4barg),
the required restriction was set as reported in Tab. 2. It is striking how the stability improves once restriction is applied,
far beyond the critical pipe length (e.g. the J orifice goes unstable beyond approx. 0.8m, yet the K orifice – while venting
the same mass flow rate – is stable up to pipe lengths of 5m). We stress that pipe friction was switched off in theses simula-
tions to keep different physical effects separated, as well as the influence of the effective area and lift-dependent discharge coefficient.

Similar improvement was experienced in the case of higher set pressure, see the right-hand-side panel of Fig. 7. Higher set
pressures result in systems more prone to instability (the critical pipe length is shorter, see the horizontal dashed line); indeed, in
this case, orifices L and M exhibit instabilities for longer pipes.

Fig. 8 depicts the same results for orifices in water service. It is interesting to observe that the stability boundary is higher than
predicted by the analytical expression. This is due to the fact that Eq. (17) was developed for mid-lift cases (by perturbation around
an equilibrium position), while in this case – as at the capacity flow rate the valves reach the upper stopper – no equilibrium exists
in the dynamic theory sense (for further reading on this topic, we refer to Di Bernardo et al. (2008)). As in the water case, we see an
improvement in the stability in the case of low set pressure (4 barg, left panel). However, in the case of high set pressure (50 barg,
right panel) no improvement was found, rendering the restricted valves just as inadequate as the unrestricted, original J orifice.
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Fig. 8: Stability map of valve with orifices J, K, L and M at 𝑝𝑠𝑒𝑡 = 4 and 50 bar, in water service.

To sum up, applying larger orifice with restriction seems to improve significantly the chatter situation in the case of gas service,
which is probably due to the additional restoring force 𝐹𝑟 . In the liquid case, the situation is more subtle; even though we
experienced some improvement in the case of low set pressure, the restriction did not help if the set pressure was high. We
speculate that this might be due to the hysteresis of valve chatter in the liquid case, that is, once the oscillation (chatter) is born, it
immediately exhibits a large-amplitude oscillation that cannot be suppressed by re-setting the critical parameter value (in this
case, pipe length), see Hős et al. (2016) for details. In mathematical terms, the Hopf bifurcation giving rise to the valve chatter is
subcritical in the liquid case and supercritical in the gas case, see Kuznetsov (1998) for more details.

7 Conclusion

We have explored the effect of frozen mixture flow and restriction on valve chatter via numerical simulation and shown the
importance of sonic velocity on valve stability and opening time. The following points can be concluded.

• Lower sonic velocities will result in slow valve motions and highly unstable valve operation.
• Mixtures of intermediate-mass fractions, i.e. extremely low sonic velocity, give rise to heavy valve chattering, even with

short inlet piping.
• Both analytical formulae of opening time in Eq. (16) and critical pipe length in Eq. (17) provide simple means for an

order-of-magnitude estimation even in the case of mixture flow, where the mixture sonic velocity is appropriately adjusted.
• The restoring force that emerges at the upper stopper of restricted valves assists in stabilizing the valves against chattering,

notably in gas service (see Fig. 7), whereas it shows little (if any) improvement in terms of chattering in liquid service ((see
Fig. 8).

This study was the precursor of further investigation towards exploring the possibility of predicting valve dynamics and stability in
the case of non-ideal and/or flashing fluids.
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