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Abstract: In this paper, the stability analysis of hygro-magneto-flexo electricity (HMFE) on functionally graded (FG) viscoelastic
nanobeams accommodate in viscoelastic foundation based on nonlocal elasticity theory is addressed. Higher order refined beam
theory is used for the expositions of the displacement components and the viscoelastic foundation is included with Winkler-Pasternak
layer. The governing equations of nonlocal gradient viscoelastic FG nanobeam are obtained by Hamilton’s principle and solved by
administrating an analytical solution for different boundary conditions. A power-law index model is adopted to describe continuous
variation of temperature-dependent material properties of FG nanobeam. A parametric study is presented to inquire the effect of
the nonlocal parameter on various physical variables.

Keywords: Damping vibration, Magneto-electro-viscoelastic, FG nanobeam, Visco-Pasternak foundation, Nonlocal strain gradient
elasticity.

1 Introduction

The significance of functionally graded materials (FGMs) in contrast to conventional materials, as well as their effectiveness
in overcoming technical challenges, especially in demanding hygro-thermal conditions, has greatly expanded the utilization of
FGM structures. Therefore, hygro-thermal analysis of FGM structures is a benefit study in the research community. For this
purpose, Akbarzadeh and Chen (2013) verified effects of hygro-thermal loading of functionally graded piezoelectric material.
Lee and Kim (2013) investigated Post-buckling analyses of FG plates in hygro-thermal environment. Moreover, Mansouri and
Shariyat (2015) verified hygro-thermal buckling behavior of FGMs plate with negative Poisson ratio. Ebrahimi and Salari (2015a,b)
performed vibration study of orthotropic nanoplates incorporating nonlocal effects using a semi-analytical approach. Ansari
and Gholami (2016) explored nonlocal vibrational response of buckled thermo-electro-elastic nanoplates considering different
boundary conditions. Surface energy effect on nonlinear free vibration behavior of orthotropic piezoelectric cylindrical nano-shells
and double shell structures are analyzed elaborately by Zhu et al. (2018, 2017). Merabet et al. (2017) adopted a novel nonlocal
model to examine the buckling temperature of a single-walled boron nitride nanotube. So many researchers contributed towards
bending of carbon nano tube(CNT) via nonlocal form and their modified versions (Merabet et al. (2017); Kheroubi et al. (2016);
Ebrahimi and Barati (2016); Rakrak et al. (2016); Arda and Aydogdu (2020)). It is clear from the previous papers that, on
nanoplates only the nonlocal elasticity theory is applied to capture small scale effects. However, nonlocal elasticity theory has some
limitations in accurate prediction of mechanical behavior of nanostructures which is unable to examine the stiffness increment
observed in experimental works and strain gradient elasticity. Description of size-dependency is still a challenging issue in
modeling of nanostructures. To evaluate the mechanical behavior of nanoscale structural elements used in nano electro mechanical
systems(NEMS), two types of nonlocal models are proposed, i.e. nonlocal hardening model and nonlocal softening model. Arani
et al. (2016) examined nonlocal vibration of axially moving graphene sheet resting on orthotropic visco-Pasternak foundation under
longitudinal magnetic field. Ke et al. (2015) examined free vibrational response of nonlocal piezoelectric nanoplates considering
different boundary conditions. Also, Li et al. (2014) investigated stability and vibrational behavior of magneto-electro-elastic
nanoplate according to the nonlocal theory. Based on the thin plate theory of Kelvin-Voigt model, they concluded the effect of some
important parameters of the problem such as input voltage, damping coefficient, viscoelastic parameter and excitation frequency
on the results. Theoretical studies are conducted on CNT incorporated with surface effect, linear varying load, low velocity
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and initial imperfections(Ebrahimi and Barati (2017a,b); Ebrahimi and Dabbagh (2018); Ehyaei and Daman (2017)). Vibration
analysis of variable thickness rectangular viscoelastic nanoplates was studied by Mohammadsalehi et al. (2016). Nevertheless, the
influence of viscoelastic properties is not considered in these studies. Ansari and Gholami (2016) explored nonlocal vibrational
response of buckled magneto-electro-thermo-elastic nanoplates considering different boundary conditions. Lim et al. (2015)
proposed the nonlocal strain gradient theory to introduce both of the length scales into a single theory. The nonlocal strain
gradient theory captures the true influence of the two length scale parameters on the physical and mechanical behavior of small
size structures. Ebrahimi and Barati (2016, 2017a,b) applied the nonlocal strain gradient theory in analysis of nanobeams. They
mentioned that mechanical characteristics of nanostructures are significantly affected by stiffness-softening and stiffness-hardening
mechanisms due to the nonlocal and strain gradient effects, respectively. Ebrahimi and Dabbagh (2018) extended the nonlocal
strain gradient theory for analysis of nanoplates to obtain the wave frequencies for a range of two scale parameters. Hosseini and
Jamalpoor (2015) derived an analytical solution for thermal vibration of double-viscoelastic FGM nanoplates. They reported that
both viscoelastic medium and viscoelastic internal damping have a significant influence on the vibration characteristics of FG
nanosystems. So, it is crucial to incorporate both nonlocal and strain gradient effects in analysis of graphene sheets for the first
time. Lei et al. (2013) studied vibration of size-dependent Kelvin-Voigt viscoelastic damped Timoshenko nanobeams. Poures-
maeeli et al. (2013) analyzed vibration of viscoelastic orthotropic nanoscale plates resting on viscoelastic foundation. Hashemi
et al. (2015) presented free vibration evaluation of double layered viscoelastic graphene sheets embedded in visco-Pasternak medium.

Hygro-thermo-mechanical analysis of nanostructures is carried out by a limited number of researchers. Kurtinaitiene et al. (2016)
investigated the effect of additives on the hydrothermal synthesis of manganese ferrite nanoparticles. Alzahrani et al. (2013)
investigated size effects on static behavior of nanoplates resting on elastic foundation subjected to hygro-thermal loadings. They
extended nonlocal constitutive relations of Eringen to contain the hygro-thermal effects. Also, Sobhy (2015) studied frequency
response of simply-supported shear deformable orthotropic graphene sheets exposed to hygro-thermal loading. Free vibration of
magneto-electro-elastic (MEE) nanoplates based on the Eringen’s nonlocal theory and Kirchhoff plate theory were studied by Ke
et al. (2015). However, the MEVHT buckling of orthotropic higher order refined beam theory viscoelastic FG nanobeams resting
on four-parameter viscoelastic foundation and magneto-electro properties based on nonlocal theory has not been reported so far.

Based on above studies, we verified the transient damping vibration of magneto-electro-viscoelastic-hygro-thermal (MEVHT)
on functionally graded (FG) viscoelastic nanobeams accommodate in viscoelastic foundation based on nonlocal strain gradient
elasticity equation. Higher order refined beam theory is used for the expositions of the displacement components. The governing
equations of nonlocal strain gradient viscoelastic FG nanobeam are obtained by Hamilton’s principle and solved by administrating
an analytical solution for different boundary conditions. The importance of natural frequency to the mechanical loading, electric
loading and magnetic loading, power-law exponent and slenderness ratio of viscoelastic FG nanobeams are verified.

2 Theory and formulation of the problem

2.1 Effective properties of FGM nanobeam based on neutral axis position

It is regarded that the neutral axis of a FG nanobeam liability to the variation in volume fractions of material phases may not
coincide with its mid-axis which redounds to bending-extension coupling. Considering the exact position of neutral axis, this
coupling can be eliminated. To capture exact position of neutral axis, the 𝑧𝑚𝑠, 𝑧𝑛𝑠 are measured from the middle and neutral
surfaces, respectively as depicted in Fig. 1.

Fig. 1: Geometry of FG nanobeam resting on viscoelastic foundation

Satisfying the first moment with respect to Young’s modulus being zero, the exact position of neutral axis is determined as follows:

∫ ℎ/2

−ℎ/2
𝐸 (𝑧𝑚𝑠) (𝑧𝑚𝑠 − ℎ0)𝑑𝑧𝑚𝑠 = 0 (1)
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In which the neutral axis (𝑧 = ℎ0) is defined by:

ℎ0 =

∫ ℎ/2
−ℎ/2 𝐸 (𝑧𝑚𝑠)𝑧𝑚𝑠𝑑𝑧𝑚𝑠∫ ℎ/2

−ℎ/2 𝐸 (𝑧𝑚𝑠)𝑑𝑧𝑚𝑠
(2)

Assumption of a viscoelastic FG nanobeam bedded in viscoelastic medium having length 𝐿, width 𝑏 and thickness ℎ which its
coordinates are depicted in Fig. 1. The hygro-thermo-viscoelastic material properties of nonlocal FGM beam including Young’s
modulus (𝐸), mass density (𝜌), thermal expansion (𝛼) and moisture expansion coefficient (𝛽) can be represented by:

𝐸 (𝑧𝑛𝑠) = (𝐸𝑐 − 𝐸𝑚)
(
𝑧𝑛𝑠 + ℎ0

ℎ
+ 1

2

) 𝑝
+ 𝐸𝑚, (3a)

𝜌(𝑧𝑛𝑠) = (𝜌𝑐 − 𝜌𝑚)
(
𝑧𝑛𝑠 + ℎ0

ℎ
+ 1

2

) 𝑝
+ 𝜌𝑚, (3b)

𝛼(𝑧𝑛𝑠) = (𝛼𝑐 − 𝛼𝑚)
(
𝑧𝑛𝑠 + ℎ0

ℎ
+ 1

2

) 𝑝
+ 𝛼𝑚, (3c)

𝛽(𝑧𝑛𝑠) = (𝛽𝑐 − 𝛽𝑚)
(
𝑧𝑛𝑠 + ℎ0

ℎ
+ 1

2

) 𝑝
+ 𝛽𝑚, (3d)

Here 𝑝 indicates the power-law exponent which evaluates the distribution of material properties across the thickness. It is reported
in some studies that considering temperature-dependent material properties provide more accurate results for analysis of FGM
structures.Therefore, the following relation can be adopted to represent the temperature-dependent material coefficients:

𝑃 = 𝑃0 (𝑃−1𝑇
−1 + 1 + 𝑃1𝑇 + 𝑃2𝑇

2 + 𝑃3𝑇
3) (4)

in which 𝑃0, 𝑃−1, 𝑃1, 𝑃2 and 𝑃3 are the coefficients of material phases.

2.2 Kinematic relations

The displacement field of refined shear deformable FGM beam can be expressed by:

𝑢𝑥 (𝑥, 𝑧𝑛𝑠) = 𝑢(𝑥) − 𝑧𝑛𝑠
𝜕𝑤𝑏

𝜕𝑥
− 𝑓 (𝑧𝑛𝑠)

𝜕𝑤𝑠

𝜕𝑥
(5a)

𝑢𝑧 (𝑥, 𝑧𝑛𝑠) = 𝑤𝑏 (𝑥) + 𝑤𝑠 (𝑥) (5b)

where 𝑢 is axial mid-plane displacement and 𝑤𝑏, 𝑤𝑠 denote the bending and shear components of transverse displacement,
respectively. Also, 𝑓 (𝑧𝑛𝑠) is the shape function representing the shear stress/strain distribution through the beam thickness which
excludes the shear correction factor in view of trigonometric function for the current study (Arani et al. (2016)):

𝑓 (𝑧𝑛𝑠) = 𝑧𝑛𝑠 + ℎ0 − tan[𝑚(𝑧𝑛𝑠 + ℎ0)], 𝑚 = 0.03. (6)

where 𝑚 is the parameter of the shape function. The non-zero strains of the suggested beam model can be expressed as follows:

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
− 𝑧𝑛𝑠

𝜕2𝑤𝑏

𝜕𝑥2 − 𝑓 (𝑧𝑛𝑠)
𝜕2𝑤𝑠

𝜕𝑥2 (7a)

𝛾𝑥𝑧 = 𝑔(𝑧𝑛𝑠)
𝜕𝑤𝑠

𝜕𝑥
(7b)

where 𝑔(𝑧𝑛𝑠) = 1 − 𝑑 𝑓 (𝑧𝑛𝑠 )
𝑑𝑧𝑛𝑠

. Also, the Hamilton’s principle states that:∫ 𝑡

0
𝛿(Π𝑆 + Π𝑊 )𝑑𝑡 = 0 (8)

where Π𝑆 is the total strain energy and Π𝑊 is the work done by external applied forces. The first variation of strain energy Π𝑆 can
be calculated as:

𝛿Π𝑆 =

∫
𝜎𝑖 𝑗𝛿𝜀𝑖 𝑗𝑑𝑣 =

∫
𝜎𝑥𝛿𝜀𝑥 + 𝜎𝑥𝑧𝛿𝛾𝑥𝑧 + 𝜎𝑦𝑧𝛿𝛾𝑦𝑧 . (9)

Substituting Eqs.(5a) - (7b) into Eq.(9) yields:

𝛿Π𝑆 =

∫ 𝑙

0

(
𝑁
𝜕𝛿𝑢

𝜕𝑥
− 𝑀𝑏

𝜕2𝛿𝑤𝑏

𝜕𝑥2 − 𝑀𝑠
𝜕2𝛿𝑤𝑠

𝜕𝑥2 +𝑄 𝜕𝛿𝑤𝑠
𝜕𝑥

)
𝑑𝑥. (10)
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In which the forces and moments expressed in the above equation are defined as follows:

(𝑁, 𝑀𝑏, 𝑀𝑠) =
∫ ℎ/2−ℎ0

−ℎ/2−ℎ0

(1, 𝑧𝑛𝑠 , 𝑓 )𝜎𝑥𝑥𝑑𝑧𝑛𝑠 , 𝑄 =

∫ ℎ/2−ℎ0

−ℎ/2−ℎ0

𝑔𝜎𝑥𝑧𝑑𝐴 (11)

In this study, the nanobeam is subjected to an in-plane axial magnetic field. Hence, to derive the exerted body force from
longitudinal magnetic field 𝐻 = (𝐻𝑥 , 0, 0), the Maxwell relations are adopted:

𝑓𝐼𝑧 = 𝜂(∇ × (∇ × ( ®𝑢 × ®𝐻))) × ®𝐻. (12)

where ®𝑢 = (𝑢𝑥 , 0, 𝑢𝑧) is displacement vector and 𝜂 is magnetic permeability. For a planar beam deformation with the assumed
displacement field, the resultant Lorentz force takes the form:

𝑓𝐼𝑧 = 𝜂

∫
𝐴

𝑓𝑧𝑑𝐴 = 𝜂𝐴𝐻2
𝑥

𝜕2𝑤

𝜕𝑥2 . (13)

The first variation of the work done by applied forces can be written in the form:

𝛿Π𝑤 =

∫ 𝑙

0

(
−𝑁0

𝑥

𝜕𝑤𝑏

𝜕𝑥

𝜕𝛿𝑤𝑏

𝜕𝑥
− 𝑁0

𝑦

𝜕𝑤𝑠

𝜕𝑦

𝜕𝛿𝑤𝑠

𝜕𝑦
+ 2𝛿𝑁0

𝑥𝑦

𝜕𝑤𝑏

𝜕𝑥

𝜕𝛿𝑤𝑠

𝜕𝑦
− 𝑘𝑤𝛿(𝑤𝑏 + 𝑤𝑠) + 𝑘 𝑝

𝜕2 (𝑤𝑏 + 𝑤𝑠)
𝜕𝑥2

)
𝑑𝑥𝑑𝑦

− 𝑐𝑑
𝜕𝛿(𝑤𝑏 + 𝑤𝑠)

𝛿𝑡
− 𝜂𝐴𝐻2

𝑥

𝜕2𝛿(𝑤𝑏 + 𝑤𝑠)
𝜕𝑥2 + 𝑓13𝛿(𝑤𝑏 + 𝑤𝑠) (14)

where 𝑓13 is the flexoelectricity coefficient, 𝑁𝑇 and 𝑁𝐻 are applied forces due to variation of temperature and moisture and are
defined as:

𝑁𝑇 =

∫ ℎ/2−ℎ0

−ℎ/2−ℎ0

𝐸 (𝑧𝑛𝑠)𝛼(𝑧𝑛𝑠) (Δ𝑇)𝑑𝑧𝑛𝑠 ,

𝑁𝐻 =

∫ ℎ/2−ℎ0

−ℎ/2−ℎ0

𝐸 (𝑧𝑛𝑠)𝛽(𝑧𝑛𝑠) (Δ𝐶)𝑑𝑧𝑛𝑠
(15)

where Δ𝑇 = 𝑇 − 𝑇0 and Δ𝐶 = 𝐶 − 𝐶0 in which 𝑇0 and 𝐶0 are the reference temperature and moisture concentration.

The governing equations are obtained by inserting Eqs. (10)-(15) in Eq. (8) when the coefficients of 𝛿𝑢, 𝛿𝑤𝑏 and 𝛿𝑤𝑧 are equal to
zero:

𝜕𝑁

𝜕𝑥
+ 𝜂𝐴𝐻2

𝑥 (𝑤𝑏 + 𝑤𝑠) = 0 (16)

𝜕2𝑀𝑏

𝜕𝑥2 + (−𝑁𝐸 − 𝑁𝐻 − 𝑁𝑇 + 𝐾𝑝)∇2 (𝑤𝑏 + 𝑤𝑠) + 𝑘𝑤(𝑤𝑏 + 𝑤𝑠) + 𝑐𝑑
𝜕 (𝑤𝑏 + 𝑤𝑠)

𝜕𝑡
= 0 (17)

𝜕2𝑀𝑏

𝜕𝑥2 + 𝜕𝑄
𝜕𝑥

+ (−𝑁𝐸 − 𝑁𝐻 − 𝑁𝑇 ) 𝜕
2 (𝑤𝑏 + 𝑤𝑠)

𝜕𝑥
− 𝐾𝑝

𝜕2 (𝑤𝑏 + 𝑤𝑠)
𝜕𝑥

+ 𝑘𝑤(𝑤𝑏 + 𝑤𝑠) + 𝑐𝑑
𝜕 (𝑤𝑏 + 𝑤𝑠)

𝜕𝑡
− 𝑘2

𝜕4𝑤𝑠

𝜕𝑥2𝜕𝑡2
= 0

(18)

2.3 Nonlocal elasticity theory for the hygro-thermo-magneto-electro-elastic materials

The main point of the nonlocal elasticity theory is that the nonlocal stress tensor at a reference point relies not only on the strain
tensor of the same coordinate but also on other points in the solid.

The nonlocal theory can be extended for the piezoelectric nanoplates as:

𝜎𝑖 𝑗− (𝑒𝑎)2∇2𝜎𝑖 𝑗 = [𝐶𝑖 𝑗𝑘𝑙𝜀𝑘𝑙 − 𝐶𝑖 𝑗𝑘𝑙𝛼𝑘𝑙Δ𝑇 − 𝐶𝑖 𝑗𝑘𝑙𝛽𝑘𝑙Δ𝐶 − 𝑒𝑚𝑖 𝑗𝐸𝑚] (19)

𝐷𝑖 𝑗− (𝑒𝑎)2∇2𝐷𝑖 𝑗 = [𝑒𝑖𝑘𝑙𝜀𝑘𝑙 − 𝑠𝑖𝑚𝐸𝑚] (20)

𝐵𝑖− (𝑒𝑎)2∇2𝐵𝑖 = [𝑞𝑖𝑘𝑙𝜀𝑘𝑙 + 𝑑𝑖𝑚𝐸𝑚] . (21)

where 𝐶𝑖 𝑗𝑘𝑙 is the elastic moduli and 𝜀𝑘𝑙 is strain tensor. The constitutive Eq. (19) can be developed to capture the influence of
hygro-thermal loading as:

𝜎𝑖 𝑗− (𝑒𝑎)2∇2𝜎𝑖 𝑗 =

[
𝐶𝑖 𝑗𝑘𝑙𝜀𝑘𝑙 − 𝑓𝑘𝑙𝑖 𝑗

𝜕𝐸𝐾

𝜕𝑥𝑙
+ 𝐶𝑖 𝑗𝑘𝑙𝛼𝑘𝑙 − 𝐶𝑖 𝑗𝑘𝑙𝛽𝑘𝑙Δ𝐶 − 𝜂𝐴𝐻2

𝑥

]
(22)
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where 𝛼𝑖 𝑗 and 𝛽𝑖 𝑗 are thermal and moisture expansion coefficients respectively; Δ𝑇 and Δ𝐶 denote the temperature and moisture
variation, respectively.

Where 𝜇 = (𝑒𝑎)2, inserting Eqs. (19)-(22) in Eq. (10) and considering Kelvin-Voit viscoelastic model(Hashemi et al. (2015)) and
integrating Eq. (18) over the cross-section area of nanobeam provides the following nonlocal relations for a refined FGM beam
model as

𝑁 − 𝜇 𝜕
2𝑁

𝜕𝑥2 =

(
𝐴
𝜕𝑢

𝜕𝑥
− 𝐵𝜕

2𝑤𝑏

𝜕𝑥2 − 𝐵𝑠
𝜕2𝑤𝑠

𝜕𝑥2

)
− 𝑁𝑇𝑥 − 𝑁𝐻𝑥 (23)

𝑀𝑏 − 𝜇
𝜕2𝑀𝑏

𝜕𝑥2 =

(
𝐵
𝜕𝑢

𝜕𝑥
− 𝐷 𝜕

2𝑤𝑏

𝜕𝑥2 − 𝐷𝑠
𝜕2𝑤𝑠

𝜕𝑥2

)
− 𝑀𝑇

𝑏 − 𝑀𝐻
𝑏 (24)

𝑀𝑠 − 𝜇
𝜕2𝑀𝑠

𝜕𝑥2 =

(
𝐵𝑠
𝜕𝑢

𝜕𝑥
− 𝐷𝑠

𝜕2𝑤𝑏

𝜕𝑥2 − 𝐻𝑠
𝜕2𝑤𝑠

𝜕𝑥2

)
− 𝑀𝑇

𝑏 − 𝑀𝐻
𝑏 (25)

𝑄 − 𝜇 𝜕
2𝑄

𝜕𝑥2 = 0 (26)

where the cross-sectional rigidities are calculated as follows:

(𝐴, 𝐵, 𝐵𝑠 , 𝐷, 𝐷𝑠 , 𝐻𝑠) =
∫ ℎ/2−ℎ0

−ℎ/2−ℎ0

𝐸 (𝑧𝑛𝑠) (1, 𝑧𝑛𝑠 , 𝑓 , 𝑧2
𝑛𝑠 , 𝑧𝑛𝑠 𝑓 , 𝑓

2)𝑑𝑧𝑛𝑠 , (27)

𝐴𝑠 =

∫ ℎ/2−ℎ0

−ℎ/2−ℎ0

𝑔2𝐺 (𝑧𝑛𝑠)𝑑𝑧𝑛𝑠 (28)

and

{𝑁𝑇𝑥 , 𝑀𝑇
𝑏 , 𝑀

𝑇
𝑠 } =

∫ ℎ/2−ℎ0

−ℎ/2−ℎ0

𝐸 (𝑧𝑛𝑠)𝛼(𝑧𝑛𝑠) (𝑇 − 𝑇0){1, 𝑧𝑛𝑠 , 𝑓 }𝑑𝑧𝑛𝑠 ,

{𝑁𝐻𝑥 , 𝑀𝐻
𝑏 , 𝑀

𝐻
𝑠 } =

∫ ℎ/2−ℎ0

−ℎ/2−ℎ0

𝐸 (𝑧𝑛𝑠)𝛽(𝑧𝑛𝑠) (𝐶 − 𝐶0){1, 𝑧𝑛𝑠 , 𝑓 }𝑑𝑧𝑛𝑠 .
(29)

The governing equations of shear deformable viscoelastic FGM nanobeam resting on three-parameter viscoelastic medium in
hygro-thermal environment in terms of displacements are obtained by inserting for 𝑁 , 𝑀𝑏, 𝑀𝑠 and 𝑄 from Eqs. (23)-(26),
respectively into Eqs. (16)-(18) as follows:

𝐴

(
𝜕2𝑢

𝜕𝑥2

)
− 𝐵

(
𝜕3𝑤𝑏

𝜕𝑥3

)
− 𝐵𝑠

(
𝜕3𝑤𝑠

𝜕𝑥3

)
= 0 (30)

𝐵

(
𝜕3𝑢

𝜕𝑥3

)
− 𝐷

(
𝜕4𝑤𝑏

𝜕𝑥4

)
− 𝐷𝑠

(
𝜕4𝑤𝑠

𝜕𝑥4

)
− 𝑘𝑤(𝑤𝑏 + 𝑤𝑠) − 𝜂𝐴𝐻2

𝑥 (𝑤𝑏 + 𝑤𝑠) + 𝑘 𝑝
𝜕2 (𝑤𝑏 + 𝑤𝑠)

𝜕𝑥2

− 𝑐𝑑
𝜕 (𝑤𝑏 + 𝑤𝑠)

𝜕𝑡
+ 𝜇((𝑁𝑇 + 𝑁𝐻 ) 𝜕

4 (𝑤𝑏 + 𝑤𝑠)
𝜕𝑥4 + 𝑘𝑤

𝜕2 (𝑤𝑏 + 𝑤𝑠)
𝜕𝑥2 + 𝑘 𝑝

𝜕4 (𝑤𝑏 + 𝑤𝑠)
𝜕𝑥4 + 𝜂𝐴𝐻2

𝑥

𝜕2 (𝑤𝑏 + 𝑤𝑠)
𝜕𝑥2

+ 𝑐𝑑
𝜕3 (𝑤𝑏 + 𝑤𝑠)
𝜕𝑥2𝜕𝑡

− 𝑒31
2𝑘33

𝑓13

(
𝜕2𝑤𝑏

𝜕𝑥2 + 𝜕
2𝑤𝑠

𝜕𝑥2

)
(31)

𝐵𝑠

(
𝜕3𝑢

𝜕𝑥3

)
− 𝐷𝑠

(
𝜕4𝑤𝑏

𝜕𝑥4

)
− 𝐻𝑠

(
𝜕4𝑤𝑠

𝜕𝑥4

)
+ 𝐴𝑠

(
𝜕2𝑤𝑠

𝜕𝑥2

)
− 𝑘𝑤(𝑤𝑏 + 𝑤𝑠) − 𝜂𝐴𝐻2

𝑥 (𝑤𝑏 + 𝑤𝑠) + 𝑘 𝑝
𝜕2 (𝑤𝑏 + 𝑤𝑠)

𝜕𝑥2

− 𝑐𝑑
𝜕 (𝑤𝑏 + 𝑤𝑠)

𝜕𝑡
+ 𝜇((𝑁𝑇 + 𝑁𝐻 ) 𝜕

4 (𝑤𝑏 + 𝑤𝑠)
𝜕𝑥4 + 𝑘𝑤

𝜕2 (𝑤𝑏 + 𝑤𝑠)
𝜕𝑥2 + 𝑘 𝑝

𝜕4 (𝑤𝑏 + 𝑤𝑠)
𝜕𝑥4 + 𝜂𝐴𝐻2

𝑥

𝜕2 (𝑤𝑏 + 𝑤𝑠)
𝜕𝑥2

+ 𝑐𝑑
𝜕3 (𝑤𝑏 + 𝑤𝑠)
𝜕𝑥2𝜕𝑡

− 𝑒31
2𝑘33

𝑓13

(
𝜕2𝑤𝑏

𝜕𝑥2 + 𝜕
2𝑤𝑠

𝜕𝑥2

)
(32)

3 Solution procedure

An analytical solution is implemented in this section for the generalized displacements by expanding a double Fourier series in
terms of unknown parameters. The selection of the functions in these series is associated to those which satisfy the boundary
edges of the nanoplate. These boundary edges are given as :
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• Simply-supported:

𝑤𝑏 = 𝑤𝑠 = 𝑁𝑥 = 𝑀𝑥 = 0 at 𝑥 = 0, 𝑎 (33)
𝑤𝑏 = 𝑤𝑠 = 𝑁𝑦 = 𝑀𝑦 = 0 at 𝑦 = 0, 𝑏 (34)

• Clamped:

𝑢 = 𝑣 = 𝑤𝑏 = 𝑤𝑠 = 0 at 𝑥 = 0, 𝑎 and 𝑦 = 0, 𝑏 (35)

To satisfy the above-mentioned boundary conditions, the displacement quantities are presented in the following form:

𝑢 =

∞∑︁
𝑚=1

∞∑︁
𝑛=1

𝑈𝑚𝑛
𝜕𝑋𝑚 (𝑥)
𝜕𝑥

𝑌𝑛 (𝑦) (36)

𝑤𝑏 =

∞∑︁
𝑚=1

∞∑︁
𝑛=1

𝑊𝑏𝑚𝑛
𝑋𝑚 (𝑥)𝑌𝑛 (𝑦) (37)

𝑤𝑠 =

∞∑︁
𝑚=1

∞∑︁
𝑛=1

𝑊𝑠𝑚𝑛
𝑋𝑚 (𝑥)𝑌𝑛 (𝑦) (38)

where (𝑈𝑚𝑛, 𝑊𝑏𝑚𝑛
, 𝑊𝑠𝑚𝑛

) are the unknown coefficients and for different boundary conditions (𝛼 = 𝑚𝜋/𝑎, 𝛽 = 𝑛𝜋/𝑏),
where:

( [𝒦] + [𝒞])


𝑈

𝑊𝑏
𝑊𝑠

 = 0 (39)

Where [𝒦], [𝒞] are the stiffness, damping matrixes for FG nanobeam respectively.

𝑘1,1 = 𝐴(𝛼3 − 𝜂𝛼11), 𝑘1,2 = 𝐵(𝛼9 − 𝜂𝛼13), 𝑘1,3 = 𝐵𝑠 (𝛼9 − 𝜂𝛼13)
𝑘2,3 = (𝑁𝐻 + 𝑁𝑇 − 𝑘 𝑝) (−𝛼7 + 𝜇𝛼9) − 𝑘𝑤(𝛼5 − 𝜇𝛼7) − 𝑓𝑙𝑧 (𝛼5 − 𝜇𝛼7) − 𝐷𝑠 (𝛼9 − 𝜂𝛼13)
𝑘2,2 = (𝑁𝐻 + 𝑁𝑇 − 𝑘 𝑝) (−𝛼7 + 𝜇𝛼9) − 𝑘𝑤(𝛼5 − 𝜇𝛼7) − 𝑓𝑙𝑧 (𝛼5 − 𝜇𝛼7) − 𝐷 (𝛼9 − 𝜂𝛼13)

𝑘3,3 = (𝑁𝐻 + 𝑁𝑇 − 𝑘 𝑝) (−𝛼7 + 𝜇𝛼9) − 𝑘𝑤(𝛼5 − 𝜇𝛼7) − 𝐴𝑠 (𝛼5 − 𝜇𝛼7) −
𝑒31

2𝑘33
𝑓13 (𝛼5 − 𝜇𝛼7) − 𝐻𝑠 (𝛼9 − 𝜂𝛼13)

𝑐1,1 = 𝐴ℑ(𝛼3 − 𝜂𝛼11), 𝑐1,2 = 𝐵ℑ(𝛼9 − 𝜂𝛼13), 𝑐1,3 = 𝐵𝑠 ℑ(𝛼9 − 𝜂𝛼13)
𝑐3,3 = −𝑐𝑑𝑖(𝛼5 − 𝜇𝛼7) + 𝐴𝑠 ℑ(𝛼7 − 𝜇𝛼9) − 𝐻𝑠 (𝛼9 − 𝜂𝛼13)

(40)

in which

𝛼1 =

∫ 𝐿

0
𝑋 ′
𝑚𝑋

′
𝑚𝑑𝑥, 𝛼3 =

∫ 𝐿

0
𝑋 ′′′
𝑚 𝑋

′
𝑚𝑑𝑥 (41)

𝛼5 =

∫ 𝐿

0
𝑋𝑚𝑋𝑚𝑑𝑥, 𝛼7 =

∫ 𝐿

0
𝑋 ′′
𝑚𝑋𝑚𝑑𝑥, 𝛼9 =

∫ 𝐿

0
𝑋 ′′′′
𝑚 𝑋𝑚𝑑𝑥 (42)

𝛼11 =

∫ 𝐿

0
𝑋 ′′′′′
𝑚 𝑋 ′

𝑚𝑑𝑥, 𝛼13 =

∫ 𝐿

0
𝑋 ′′′′′′
𝑚 𝑋𝑚𝑑𝑥 (43)

4 Numerical Results and Discussion

In this section, we studied the buckling critical loading behavior of nonlocal strain gradient magneto-piezoelectric FG on
viscoelastic substrate. The model introduces two scale coefficients related to nonlocal and strain gradient effects for more accurate
analysis of smart FG nanobeams under various boundary conditions (Simply-supported and Clamped). Material properties
of the FG nanobeams are presented in Table 1. Configuration of FG nanobeams on viscoelastic medium is shown in Fig. 1.
Temperature-dependent material properties are shown in Table 1 for a P-FGM nanobeam which include of metal (SUS304) at
𝑧 = −ℎ/2 with 𝛽𝑚 = 0.0005 and ceramic (Si3N4) at 𝑧 = +ℎ/2 with 𝛽𝑐 = 0. The length of nanobeam is considered to be 𝐿 = 10nm.
Also, the dimensionless buckling and dimensionless form of viscoelastic parameters are adopted as:

�̄� = 𝑁𝑏
𝑎2

𝐷𝑐
, 𝐾𝑤 =

𝑘𝑤𝑎
4

𝐷𝑐
, 𝐾𝑝 =

𝑘 𝑝𝑎
2

𝐷𝑐
, 𝐷𝑐 = 𝑐

𝑢
11ℎ

3 (44)

The effect of magnetic field length scale parameter on vibration behavior of FG nanobeams at 𝐿/ℎ = 30, 𝐾𝑝 = 𝐾𝑤 = 0 is presented
in Fig. 2. It is visible from this figure that the magnitudes of natural frequencies become larger as the parameter increases for all
values of magnetic field intensity. Magnetic field shows a significant effect on vibration behavior of FG nanobeams. Increasing
magnetic field intensity leads to larger frequencies.
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Tab. 1: Temperature-dependent material properties of FGMs (Sobhy (2015))

Material Properties 𝑃0 𝑃−1 𝑃1 𝑃2 𝑃3
Si3N4 𝐸(Pa) 348.43e+9 0 −3.070e−4 2.160e−7 −8.946e−11

𝛼(K−1) 5.8723e−6 0 9.095e−4 0 0
𝜌(Kg/m3) 2370 0 0 0 0

𝜈 0.24 0 0 0 0
SUS304 𝐸(Pa) 201.04e+9 0 3.079e−4 −6.534e−7 0

𝛼(K−1) 12.330e−6 0 8.086e−4 0 0
𝜌(Kg/m3) 8166 0 0 0 0

𝜈 0.3262 0 −2.002e−4 3.797e−7 0

Fig. 2: Critical loading versus magnetic field intensity(𝐻) for different length scale parameters under flexoelectric effect (𝐿/ℎ = 30,
𝜇 = 2, 𝐾𝑝 = 𝐾𝑤 = 0)

Figs. 3 and 4 demonstrate the effect of Winkler and Pasternak coefficients on the critical buckling moisture with changing of
side-to-thickness ratio (𝑎/ℎ) when 𝜇 = 2nm2 and 𝑉 = 0, 𝜂 = 0.01. It can be deduced that effect of foundation coefficients is more
sensible at lower side-to-thickness ratios for all thermal environments. In fact, effect of foundation parameters vanishes at larger
side-to-thickness ratios. Thus, it can be concluded that effect of Winkler-Pasternak foundation is negligible for thinner piezo
nanoplates.

Fig. 3: Critical buckling of moisture versus side-to-thickness ratio for various Pasternak parameters (𝜂 = 0.01, 𝜇 = 2, Ω = 𝑉 = 0)
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Fig. 4: Critical buckling moisture versus side-to-thickness ratio for various Winkler parameters (𝜇 = 2, 𝑉 = 0, 𝜂 = 0.01)

Fig. 5: Critical loading versus power law index for various Winkler parameter (𝐿/ℎ = 20, 𝐾𝑝 = 5, 𝜇 = 2)

The effects of Winkler and Pasternak parameters on the variations of the first non-dimensional buckling FG nanobeams versus
power-law exponent for different electric voltages at 𝐿/ℎ = 10 and 𝑝 = 1 are presented in Figs. 5, 6. It is seen that for all values of
elastic foundation constants the non-dimensional buckling reduces with the increase of power-law exponent.

5 Conclusion

The stability analysis of hygro-magneto-flexo electricity on functionally graded (FG) viscoelastic nanobeam accommodate in
viscoelastic foundation is verified via nonlocal elasticity theory. The displacement exposition is modelled via higher order refined
beam theory. The bedded viscoelastic foundation is considered as Winkler-Pasternak layer. The governing equations of nonlocal
gradient viscoelastic FG nanobeam are obtained by Hamilton’s principle and solved by administrating an analytical solution for
different boundary conditions. Power-law model is adopted to describe continuous variation of temperature-dependent material
properties of FG nanobeam. A parametric study is presented to inquire the effect of the nonlocal parameter on various physical
variables of HMFE nanoplates. The bolded points are

• The critical loading of piezoelectric FG nanobeam reduces by inclusion of nonlocal parameter.
• The buckling of piezoelectric FG nanobeam increases with increase of length scale parameter.
• Frequency of piezoelectric FG nanobeam increases with increase of length scale parameter which highlights the thermal

loading effect due to the strain gradients.
• The impact of flexoelectricity on critical loading increases, with its effect being contingent on nonlocality.
• Pasternak layer provides a continuous interaction with piezoelectric sheet, while Winkler layer has a discontinuous interaction

with the FG nanobeam.
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Fig. 6: Critical loading versus power law index for various Winkler parameter (𝐿/ℎ = 20, 𝐾𝑤 = 25, 𝜇 = 2)

• Nonlocal parameter exerts a stiffness-softening effect which leads to lower critical loading.
• The magnitude of both real and imaginary eigen frequencies reduces by increasing gradient index (p), especially at lower

gradient indexes.
• This study can be extended to the nonlinear vibration of FG nano beam by including proper geometric relation.
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