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Abstract: Peridynamics is a generalized continuum theory that takes into account long range internal force/moment interactions.

The aim of this paper is to derive closed form analytical solutions for peridynamic rod equations with fixed-fixed and fixed-

free boundary conditions. A family of kernel functions is introduced to analyze the influence on the results for rods under

distributed static load and free vibrations for different initial conditions. To validate the derived solutions, nonlocal results are

compared against classical results for different boundary conditions and horizon sizes. One can observe that when the horizon

size approaches zero, the results according the non-local and local theories converge to each other. Introduced kernels indeed

play different roles in both statics and dynamics. In particular, the Gauss type kernel function gives the results which are closest

to the classical solutions.
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1 Introduction

In the past decades non-local theories have become increasingly important due to many applications in micro- and nanometer

scale components, composite materials with high contrast in properties and laminates with extremely thin layers. To extend the

classical continuum mechanics (CCM) higher order deformation gradients can be introduced as arguments of the strain energy

density, e.g., Cordero et al. (2016). With a variational principle, a family of strain gradient theories according to a maximal order

of the considered deformation gradient can be formulated. For elastic materials, Nth-order gradient terms lead to a system of

linear or nonlinear partial differential equations of the 2Nth order Eremeyev (2023). Strain gradient theories lead to higher order

stress tensors and as a result require many additional boundary conditions.

Another class of extended continuum theories can be formulated within the framework of peridynamics (PD) Silling and Lehoucq

(2010); Silling (2016). Here the balance equations for long-range internal forces are introduced. The deformation gradient,

its higher gradients or gradients of internal state variables are not required. Deformation of bond vectors with initially finite

length are analyzed in contrast to differential line elements in contrast to classical or gradient extended CCM. Besides several PD

theories for three-dimensional solids Silling and Lehoucq (2010), PD formulations for rods Silling et al. (2003), beams Yang et al.

(2022b), plates Naumenko and Eremeyev (2022) and shells Chowdhury et al. (2016) are available. The resulting PD equations

of motion are of integro-differential type, opposed to strain gradient theories, where partial differential equations are introduced.

Numerical methods such as the mesh-free method Silling and Askari (2005) and discontinuous finite element formulation Ren

et al. (2017) were developed to solve PD equations of motion numerically. Various examples of numerical are presented in the

literature, illustrating the ability of PD to capture complex phenomena such as crack initiation Naumenko et al. (2022), crack

branching Mehrmashhadi et al. (2020), and crack kinking Diana and Ballarini (2020), among others.

Despite many numerical results discussed in the literature, analytical solutions to PD integral equations are available only for

few simplified problems. For straight axially-loaded rods, closed-form solutions are derived in Mikata (2012); Nishawala and

Ostoja-Starzewski (2017); Silling et al. (2003); Weckner and Abeyaratne (2005); Yang et al. (2022a). For initially straight beams

with various boundary constraints, series solutions to PD equations are presented in Yang et al. (2022b). Series solutions for

Kirchhoff-typeplates under special boundary conditions are given in Yang et al. (2022c). General analytical solutions of peristatics

and peridynamics for three-dimensional infinite media for an arbitrary body force density, and arbitrary initial conditions are

derived in Mikata (2023). Analytical solutions illustrate the influence of PD settings, such as the horizon size, non-locality of

boundary conditions, etc. on the deformation state explicitly. Furthermore closed-form analytical solutions are useful to validate

the numerical methods developed to solve PD equations and to study the convergence of numerical results.

The aim of this study is to derive closed-form series solutions to peridynamic equations of axially loaded rods. In addition to

solutions presented in Yang et al. (2022a), a family of kernel functions is introduced. The results for rods under distributed static

load and free vibrations for different initial conditions will be presented. In particular the influence of kernel functions on the

axial displacements and natural frequencies will be analyzed.
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2 Peridynamic equation of motion for a rod

The classical equation of motion for elastic rods can be formulated as follows Weaver Jr. et al. (1991)

¥D (G, C) = 2
m2D

mG2
(G, C) , 2 =

�

d
(1)

where D is the displacement, G is the axial coordinate and C is the time variable, d is the density and � is the Young’s modulus. In

order to obtain the corresponding formulation in the non-local framework, one can apply the following Taylor expansion for the

displacement

D (G + b) − D (G) = mD

mG

����
G

b + 1

2

m2D

mG2

����
G

b2 + 1

3!

m3D

mG3

����
G

b3 +$
(
b4
)
, (2)

where b = G′ − G is the coordinate difference between the material point G and its family member G′. Consider a collection of

points of the rod centerline Γ and an open ball centered at point G with radius of the PD horizon size X defined ∀G ∈ Γ as follows

�G := {G′ ∈ Γ : |G′ − G | < X} (3)

Multiplying each term by a kernel function ^ (b) and integrating over an open ball yields

X∫

−X

^ (b) [D (G + b) − D (G)] 3b =

X∫

−X

^ (b)
[
mD

mG

����
G

b + 1

2

m2D

mG2

����
G

b2 + 1

3!

m3D

mG3

����
G

b3 +$
(
b4
)]

3b (4)

We assume that the kernel ^ (b) satisfies the following conditions

^ (−b) = ^ (b) , and lim
b→0

[
b2^ (b)

]
< ∞ (5)

With the kernel according to Eq. (5), odd terms in Eq. (4) cancel out. By neglecting the truncation error, Eq. (4) can be reduced

to

X∫

−X

^ (b) [D (G + b) − D (G)] 3b =
1

2

m2D

mG2

����
G

X∫

−X

^ (b) b23b (6)

which gives

m2D

mG2

����
G

= _ (X)
X∫

−X

^ (b) [D (G + b) − D (G)] 3b, _ (X) = 2



X∫

−X

^ (b) b23b



−1

(7)

Substituting Eq. (7) into (1) yields the one-dimensional wave equation in the non-local form as follows

¥D (G, C) = 2_ (X)
X∫

−X

^ (b) [D (G + b) − D (G)] 3b (8)

Similarly, the one-dimensional non-local Poisson’s equation (peristatic equation for the rod) has the following form

4_ (X)
X∫

−X

^ (b) [D (G + b) − D (G)] 3b + 5 (G) = 0, 4 = ��, (9)

where � is the cross section area of the rod.

2.1 Non-local boundary conditions

The governing equations (8) and (9) are applicable only for the material points whose PD horizon are completely embedded

within the body. However, for material points adjacent to the boundary, it is necessary to introduce fictitious material region for

the sake of ensuring the validation of the PD formulation. In what follows the width of the fictitious region is selected to be of

the PD horizon size, X, as shown in Fig. 1. Below we consider the homogeneous Dirichlet (fixed) and Neumann (free) boundary

conditions (BCs) within nonlocal framework.
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XX

Fictitious
domain

Fictitious
domain Real domain

Fig. 1: Real and fictitious domains for the road

2.2 Fixed boundary

In classical theory, cross section fixed at G = 0 implies that

D (0, C) = 0 ⇒ ¥D (0, C) = 0 ⇒ m2D

mG2

����
(0,C )

= 0 (10)

With the central difference

m2D

mG2

����
(0,C )

= 0 ⇒ D (−b, C) − 2D (0, C) + D (b, C)
b2

= 0 (11)

we obtain

D (−b, C) = −D (b, C) ∀b ∈ [0, X] (12)

Eq. (12) is called nonlocal homogeneous Dirichlet boundary condition, which admits an anti-symmetric relation about boundary

between real and fictitious domain.

2.3 Free boundary

Suppose the following homogenous Neumann boundary condition is applied at G = !

# = 4
mD

mG

����
(!,C )

= 0, (13)

where # is the normal force. Applying the central difference

mD

mG

����
(!,C )

= 0 ⇒ D (! − b, C) − D (! + b, C)
2b

= 0 (14)

it follows

D (! − b, C) = D (! + b, C) ∀b ∈ [0, X] (15)

Eq. (15) is the nonlocal homogeneous Neumann boundary condition, which admits a symmetric relation about boundary between

real and fictitious domain. Let us note that a concentrate force at free boundary can be absorbed in body force associated with

Dirac function.

3 Analytical solutions

3.1 Peristatic equation

Recall the one-dimensional peristatic equation obtained above

4_ (X)
X∫

−X

^ (b) [D (G + b) − D (G)] 3b + 5 (G) = 0 (16)

Consider a rod fixed at both ends, as explained earlier. In this case the boundary conditions for non-local governing equation

should be considered as

D (−b) = −D (b) and D (! − b) = −D (! + b) ∀b ∈ [0, X] (17)

Periodically extending Eq. (17) over the entire real line indicates that D (G) is odd with respect to G = =!, = = 0, 1, 2, . . . , as

shown in Fig. 2. According to the periodicity property, D (G) can be expressed in terms of the Fourier series as
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G

G

D(G)

D(G)

!!

Periodic extension

−X ! + X

Fig. 2: Periodic extension of the displacement for fixed-fixed rod

D (G) =
∞∑

==1

1= sin
=cG

!
(18)

Substituting Eq. (18) into (16) yields

∞∑

==1

1= sin
=cG

!

X∫

−X

^ (b)
(
cos

=cb

!
− 1

)
3b = − 5 (G)

4_ (X) (19)

where the coefficients can be obtained based on orthogonality

1= =
2

!4_ (X)

!∫

0

5 (G) sin =cG
!

3G

X∫

−X

^ (b)
(
1 − cos

=c b

!

)
3b

(20)

Plugging Eq. (20) into (18) gives the complete solution to one-dimensional non-local Poisson’s equation

D (G) = 2

!4_ (X)

∞∑

==1

!∫

0

5 (G) sin =cG
!

3G

X∫

−X

^ (b)
(
1 − cos

=c b

!

)
3b

sin
=cG

!
(21)

Regarding fixed-free BCs, as explained above the following conditions hold for non-local cases

D (−b) = −D (b) , and D (! − b) = D (! + b) ∀b ∈ [0, X] (22)

If we periodically extend Eq. (22) over the entire real line, a function anti-symmetric with respect to G = 2=! and symmetric with

respect to G = (2= − 1) ! can be obtained as shown in Fig. 3. Based on such periodicity and symmetry, we can assume that the

solution has the following form

D (G) =
∞∑

==1

1= sin
(2= − 1) cG

2!
(23)

Plugging Eq. (23) back into (16) gives

∞∑

==1

1= sin
(2= − 1) cG

2!

X∫

−X

^ (b)
(
cos

(2= − 1) cb
2!

− 1

)
3b = − 5 (G)

4_ (X) (24)

in which coefficients can be casted as

1= =
2

!4_ (X)

!∫

0

5 (G) sin
(2=−1) cG

!
3G

X∫

−X

^ (b)
(
1 − cos

(2=−1) c b

!

)
3b

(25)
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−X ! + X

Fig. 3: Periodic extension of the displacement for fixed-free rod

Thus, by substituting Eq. (25) into (23), the complete solution for non-local Poisson’s equation with fixed-free BCs can be given

as

D (G) = 2

!4_ (X)

∞∑

==1

!∫

0

5 (G) sin
(2=−1) cG

!
3G

X∫

−X

^ (b)
(
1 − cos

(2=−1) c b

!

)
3b

sin
(2= − 1) cG

2!
(26)

3.2 Peridynamic equation

Recall the non-local one-dimensional PD equation of motion

¥D (G, C) = _ (X)
X∫

−X

^ (b) [D (G + b, C) − D (G, C)] 3b (27)

Let us separate spatial and time variables as follows

D (G, C) = - (G) ) (C) (28)

Plugging into Eq. (27) provides

- (G) ¥) (C) = 2_ (X)
X∫

−X

^ (b) [- (G) ) (C) − - (G + b) ) (C)] 3b (29)

and consequently

1

2_ (X)
¥) (C)
) (C) =

1

- (G)

X∫

−X

^ (b) [- (G) − - (G + b)] 3b = −:, (30)

where : is a parameter independent of G and C. The following two eigen-functions can be obtained as follows

¥) (C) + :2_ (X)) (C) = 0,

X∫

−X

^ (b) [- (G) − - (G + b)] 3b = −:- (G)
(31)

Let us first consider a (fixed-fixed) rod subject to some arbitrary initial conditions. By comparing Eq. (31)2 with (16), we can

consider - (G) as an analogue to D (G) and −:- (G) to − 5 (G )
2_( X) . Therefore, associating with Eq. (18), one can obtain that

- (G) =
∞∑

==1

1= sin
=cG

!
(32)
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and

∞∑

==1

1= sin
=cG

!

X∫

−X

^ (b)
(
cos

=cb

!
− 1

)
3b = −

∞∑

==1

:=1= sin
=cG

!
(33)

Thus, the eigenvalue can be casted as

:= =

X∫

−X

^ (b)
(
1 − cos

=cb

!

)
3b (34)

By utilizing above result, the general solution to Eq. (31)1 can be written as

)= (C) = �∗
= cos

(√
:=2_ (X)C

)
+ �∗

= sin
(√

:=2_ (X)C
)

(35)

Coupling Eq. (32), (35) with (28), the general solution to Eq. (27) with fixed-fixed BCs can be formulated as

D (G, C) =
∞∑

==1

[
�= cos

(√
:=2_ (X)C

)
+ �= sin

(√
:=2_ (X)C

) ]
sin

=cG

!
(36)

where the undetermined coefficients �= and �= depend on the initial conditions. Suppose that the following initial conditions are

specified

D (G, 0) = D0 (G) , and ¤D (G, 0) = {0 (G) (37)

By associating with Eq. (36), one can obtain the following coefficients

�= =
2

!

!∫

0

D0 (G) sin
=cG

!
3G and �= =

2

!

1
√
:=2_ (X)

!∫

0

{0 (G) sin
=cG

!
3G (38)

By collecting the derivations above, the solution to one-dimensional non-local wave equation subjected to fixed-fixed boundary

condition can be summarized as

D (G, C) =
∞∑

==1

[
�= cos

(√
:=2_ (X)C

)
+ �= sin

(√
:=2_ (X)C

) ]
sin

=cG

!
(39)

with

�= =
2

!

!∫

0

D0 (G) sin
=cG

!
3G, �= =

2

!

1
√
:=2_ (X)

!∫

0

{0 (G) sin
=cG

!
3G,

:= =

X∫

−X

^ (b)
(
1 − cos

=cb

!

)
3b, _ (X) = 2



X∫

−X

^ (b) b23b



−1 (40)

In a similar manner, the solution to one-dimensional non-local wave equation subjected to fixed-free boundary condition can be

given as follows

D (G, C) =
∞∑

==1

[
�= cos

(√
:=2_ (X)C

)
+ �= sin

(√
:=2_ (X)C

) ]
sin

(2= − 1) cG
2!

(41)

with

�= =
2

!

!∫

0

D0 (G) sin
(2= − 1) cG

2!
3G, �= =

2

!

1
√
:=2_ (X)

!∫

0

{0 (G) sin
(2= − 1) cG

2!
3G

:= =

X∫

−X

^ (b)
[
1 − cos

(2= − 1) cb
2!

]
3b, _ (X) = 2



X∫

−X

^ (b) b23b



−1 (42)

264



Z. Yang, K. Naumenko, C.-C. Ma, and Y. Chen Tech. Mech., Vol. 43, Is. 2, (2023), 259–270

4 Numerical examples

In order to analyze the influence of the kernel, several cases are tested and compared against the corresponding classical solutions.

The following four kernel functions are taken into consideration

^1 (b) = � (b + X) − � (b − X) ,

^2 (b) =
(
1 − sign (b) b

X

)
[� (b + X) − � (b − X)] ,

^3 (b) =
1

|b | [� (b + X) − � (b − X)] ,

^4 (b) = exp

[

−
(
2b

X

)2
]

[� (b + X) − � (b − X)] ,

(43)

where � denotes the Heaviside function. Figure 4 illustrates the kernel functions defined by Eqs (43).

4.1 Peristatic equation

Consider a rod subjected to a distributed load 5 (G) = − 5a sin (cG), where 5a is the loading amplitude. Figure 5 illustrates the

normalized axial displacement as a function of the normalized axial coordinate. Four values of the horizon size are considered.

To analyze the influence of the kernel function the plots of the displacements around the midpoint of the rod are enlarged. One

can recognize that for the horizon size X = 10−3! the results of the non-local theory with different kernels almost coincide and

correspond to the classical theory of rods. With an increase of the horizon size the increasing difference between the results is

observed. The solution with the kernel function ^4 provides the result which is closest to the classical one.

In the second case of fixed-free boundary conditions, the same model is chosen except right end is set free. Figure 6 shows the

normalized axial displacement vs normalized axial coordinate. Similarly to the previous example, with an increase of the horizon

size the difference between the classical solution and the solutions based on the non-local theory increases.

4.2 Free vibration

Consider the following initial conditions

D (G, 0) = Da

G

!

( G
!
− 1

)2

, ¤D (G, 0) = {a sin
( cG
!

)
, {a = 103

√
2

!
Da,

where Da and {a are amplitudes of the displacement and velocity, respectively. Figure 7 shows the plots of the derived analytical

solutions for the normalized axial displacement of the fixed-fixed rod as a function of the normalized time for different kernel

functions and the horizon sizes. The same tendency as in the static cases is observed. The kernel function ^4 leads to the smallest

deviation to the classical solution for all selected horizon sizes.
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Fig. 4: Kernel functions defined by Eqs. (43)
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Fig. 5: Axial displacement in a statically loaded rod with fixed-fixed boundary conditions for different kernels and horizon sizes
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Fig. 6: Axial displacement in a statically loaded rod with fixed-fixed boundary conditions for different kernels and horizon sizes

Let us assume the following initial conditions

D (G, 0) = Da

[( G
!

)3

+
( G
!

)2

+ G

!

]
, ¤D (G, 0) = {a sin

( cG
!

)
, {a = 103

√
2

!
Da

Figure 8 shows the normalized axial displacement as a function of the normalized time for the fixed-free boundary conditions.

Compared to the previous case of fixed-fixed boundary conditions the results are more sensitive to the horizon size and to the

type of the kernel function. Nevertheless similar tendency as in the previous case can be observed.
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4.3 Frequencies

As illustrated above, kernels indeed play different roles in both statics and dynamics. In general PD converges to classical theory

for small horizon size X for all kernel cases, and diverge with increment of delta. In particular, the Gauss type kernel ^4 provides

the best approximation to the classical solution, followed by ^2, ^3 and ^1.

In order to further investigate this subtlety, we compare the natural frequencies of PD and classical solution with gradual increment

of horizon size delta. Figures 9 and Fig. 10, show the natural frequencies of first 6 modes of fixed-fixed rod and fixed-free rod,
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Fig. 9: Natural frequencies vs horizon size

respectively. Based on the results a similar conclusion can be made that PD solution converges to classical one as horizon delta

approaches zero and diverges as delta increases.

5 Conclusions

This study provides a generalized PD formulation for one-dimensional rod structure and its analytical solutions. Based on

the assumption of relations of PD pairwise interactions, various kernel functions can be selected. In particular, four common

integration kernels are analyzed via benchmark problems. To validate the capacity, nonlocal results are compared against the

corresponding classical solutions with consideration of different boundary conditions. One can observe that when the horizon size

X approaches zeros, the results according to the nonlocal theory converge to the classical results, while as X increases, divergence

emerges. This is reasonable, since as X decreases, nonlocality of PD fades away and PD reduces to local theory consequently.

On the other hand, the introduced kernels play different roles in both statics and dynamics. In particular, the Gauss type kernel ^4

gives the result which is closest to classical solution followed by ^2, ^3 and ^1. For small values of the horizon size X/! < 10−2

the difference between the solutions with different kernel functions becomes negligible.

The approach provided in this study can be extended to the analysis of two-dimensional structures, such as membranes, plates and

shells. Furthermore,other physical problems such as heat diffusion and acoustics can be analyzed within the framework of PD.
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