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Abstract: In this article we use a simplified model for vertical three-phase flow in porous media of immiscible fluids like water,
oil and supercritical-𝐶𝑂2. The relative permeability functions of oil and 𝐶𝑂2 phases are assumed to be linear functions of the
respective saturations while the relative permeability of the water phase is a quadratic function of water saturation. For vertical
flow (gravity taken into account) and fluids having small density differences, the model intend to represent the case in which phases
supercritical-𝐶𝑂2 and oil are inclined to miscibility when water phase is absent for certain temperature and pressure conditions,
while the flow gains some immiscibility properties as the water phase becomes present. This model leads to a 2 × 2 system of
conservation laws which loose strict hyperbolicity at three isolated coincidence points at the edges of the saturation triangle. We
use the wave curve method to solve a class of Riemann Problem.
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1 Introduction

Multi-phase flow in porous media phenomena are modelled by hyperbolic conservation laws systems. They are systems of first
order partial differential equations that in most of the applications are often non-linear. Initial value problems for these systems are
studied, being of special interest the so-called Riemann problems Riemann (1860). The Riemann problem is a special Cauchy’s
initial value problem which consists of piecewise constant initial data. Due to the non-linearity of these equations, the intersection
of the plane characteristic curves occurs, leading to shock waves (discontinuities) formation and the necessity of consider a weak
concept of solution for these problems, see classic references such as Courant-Friedrichs Courant and Friedrichs (1948), Gelfand
Gelfand (1959), Leveque LeVeque (1992, 2007), Smoller Smoller (1994), between others.
In 1942 Buckley-Leverett Buckley and Leverett modeled immiscible two-phase flow in a porous medium by a scalar conservation
law, they neglected the gravity and used quadratic permeabilities for both the immiscible fluids. In 1963 Koval Koval (1963)
proposed the use of linear permeabilities to model miscible two-phase flow without gravity. In 1981 Proskurowski Proskurowski
(1981) extended the Buckley-Leverett model for immiscible two-phase with gravity effects taken into account.
On the other hand, for three-phase flow the model leads to a 2 × 2 conservation law systems. In 1956 Corey et al. Corey et al.
(1956) proposed a model of quadratic permeabilities for immiscible three-phase. In 1957 Lax Lax (1957) developed a theory and
entropy criteria to solve the Riemann problem locally for strictly hyperbolic conservation laws systems of order 𝑛. Liu Liu (1974,
1975) developed the “wave curve method” to obtain global Riemann solutions for strict hyperbolic systems. Isaacson, Marchesin,
et. al Isaacson et al. (1992) in 1992, proved the lost of hyperbolicity at an isolated point they called “umbilic” for the Corey model
without gravity, they also extended the wave curve method for that model. In 2010 and following years, Rodriguez-Bermudez and
Marchesin Rodriguez-Bermudez (2010); Rodrı́guez-Bermúdez and Marchesin (2013, 2014) included gravity effects to immiscible
three-phase flow and solved a class of Riemann problems for a Corey-type model, they also found isolated points at the boundary
of the physical space of saturations where strict hyperbolicity fails. Such points were called “quasi-umbilic” points.
Other important works on three phase flow (with or without gravity) are Andrade et al. Andrade et al. (a,b), Azevedo et al.
Azevedo et al. (a,b), Bell et al. Bell et al., Castañeda et al. Castañeda et al.; Castañeda and Furtado; Castañeda et al. (2022), De
Souza de Souza (1992), Holden Holden (1987); Holden and Holden (1989); Holden (1990), Isaacson et al. Isaacson et al. (1988);
Isaacson and Temple (1885), Keyfitz Keyfitz (1988, 1989), Matos et al. Matos et al. (2014), Medeiros Medeiros (1992), Schaeffer
and Shearer Schaeffer and Shearer (1987a,b), Shearer et al. Shearer et al. (1987), Shearer Shearer (1988), Stone Stone (1970),
Trangenstein Trangenstein (1989), between others.
In this work, we propose a simplified model for immiscible three-phase flow with gravity. For horizontal flow (absence of gravity),
this model extends the Koval Koval (1963) model for miscible two-phase flow with an additional third immiscible fluid. For
vertical flow (gravity taken into account) and fluids having small density differences, the model intend to represent the case in
which phases 1 and 2 are inclined to miscibility when phase 3 is absent for certain temperature and pressure conditions, while the
flow gains some immiscibility properties as phase 3 becomes present. Of course, for generic density fluids the addition of gravity
effects breaks all kind of miscibility property of the model, thus in such a case the use of an immiscible Corey’s-type model Corey
et al. (1956) with non-linear (maybe quadratic) permeabilities would be more suitable than the model used in the present work.
We consider linear relative permeabilities for phases 1 and 2 while consider quadratic relative permeability for phase 3. For
instance, phases 1 and 2 could be supercritical-𝐶𝑂2 and oil, and phase 3 could be water for given temperature and pressure reservoir
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conditions. We study a class o Riemann problem for this model, including two-phase flow regimes and genuine three-phase
flow regimes by using the wave curve semi-analytical method to obtain the Riemann solutions for the proposed partially-linear
permeability model. The novelty of the work is characterized by the combination of the proposed model with the used methodology.

2 Modeling Three-phase Flow in Porous Media

We consider a partially-linear simplified permeability model for gravitational three phase-flow of phase 1 (supercritical 𝐶𝑂2, that
we denote by 𝑔), phase 2 (oil, denoted by 𝑜) and phase 3 (water, denoted by 𝑤). We assume that porosity 𝜙 and absolute rock’s
permeability 𝐾 are constant. We also assume a constant temperature, that there are no interchange of mass between the phases and
that the flow occurs uniformly through the vertical direction due to gravity action. Compressibility effects are neglected and there
are no source or sinks. We also assume that the density differences of the fluids are small.
Let consider the mass conservation law for each phase

𝜕

𝜕𝑡
𝜙𝑠𝑖 +

𝜕

𝜕𝑥
u𝑖 = 0 𝑖 = 𝑔, 𝑜, 𝑤, (1)

𝑠𝑖 denotes the saturation and u𝑖 denotes the seepage velocity of each phase.
The Darcy’s law for seepage velocity of each phase 𝑖 gives:

u𝑖 = −𝐾
𝑘𝑟 ,𝑖

𝜇𝑖

( 𝜕𝑝𝑖
𝜕𝑥

− 𝜌𝑖g
)

𝑖 = 𝑔, 𝑜, 𝑤, (2)

where 𝑝𝑖 is the pressure, 𝑘𝑟 ,𝑖 is the relative permeability function, 𝜇𝑖 is the viscosity (constant) and 𝜌𝑖 the density (constant) for
each phase 𝑖, g is the gravitational constant.
We assume that permeabilities 𝑘𝑟 ,𝑖 are functions only of the saturations 𝑠𝑖 and that porous medium is totally saturated, such that
𝑠𝑔 + 𝑠𝑜 + 𝑠𝑤 = 1.
We define

𝜆𝑖 = 𝑘𝑟 ,𝑖/𝜇𝑖 𝑖 = 𝑔, 𝑜, 𝑤; 𝜆 =
∑︁

𝑖=𝑤,𝑜,𝑔

𝜆𝑖 , (3)

𝑓𝑖 = 𝜆𝑖/𝜆 𝑖 = 𝑔, 𝑜, 𝑤; u =
∑︁

𝑖=𝑤,𝑜,𝑔

u𝑖; (4)

here 𝜆𝑖 is the mobility function and 𝑓𝑖 is the fractional flow function corresponding to each phase 𝑖, 𝜆 is the total mobility and u is
the total Darcy’s seepage velocity. Notice also that 𝑓𝑔 + 𝑓𝑜 + 𝑓𝑤 = 1.
We assume 𝑝𝑖 = 𝑝 𝑗 (i.e., neglecting capillary pressures), thus substituting Darcy’s law (2) in (4) and after some calculations we
have

u𝑖 = u 𝑓𝑖 + 𝐾𝜆𝑖
∑︁
𝑗≠𝑖

𝑓 𝑗 𝜌𝑖 𝑗𝑔, 𝑖 = 𝑔, 𝑜, 𝑤, (5)

where 𝜌𝑖 𝑗 denotes (small) density differences 𝜌𝑖 − 𝜌 𝑗 between phases 𝑖 and 𝑗 . Finally we substitute (5) into Eq. (1) to obtain the
conservation law system for the saturations 𝑠𝑔, 𝑠𝑜 and 𝑠𝑤:

𝜕

𝜕𝑡
𝜙𝑠𝑖 +

𝜕𝐹𝑖

𝜕𝑥
= 0, 𝑖 = 𝑔, 𝑜, 𝑤, (6)

where

𝐹𝑖 = u 𝑓𝑖 + 𝐺𝑖 , 𝑖 = 𝑔, 𝑜, 𝑤, (7)

are the components of the vectorial flux function. (𝐹𝑔, 𝐹𝑜, 𝐹𝑤)𝑇 which contains the gravitational terms

𝐺𝑔 = 𝐾𝜆𝑔
(
(1 − 𝑓𝑔)𝜌𝑔𝑜 + 𝑓𝑤𝜌𝑜𝑤

)
𝑔, (8)

𝐺𝑜 = 𝐾𝜆𝑜
(
(1 − 𝑓𝑜)𝜌𝑜𝑤 + 𝑓𝑔𝜌𝑤𝑔

)
𝑔, (9)

𝐺𝑤 = 𝐾𝜆𝑤
(
(1 − 𝑓𝑤)𝜌𝑤𝑔 + 𝑓𝑜𝜌𝑔𝑜

)
𝑔. (10)

Notice that 𝐺𝑔 + 𝐺𝑜 + 𝐺𝑤 = 0, thus 𝐹𝑔 + 𝐹𝑜 + 𝐹𝑤 = u, the total Darcy’s velocity.
By adding the equations in (5) and using the relations in (3)-(4), we obtain that 𝜕u

𝜕𝑥
= 0; that indicates incompresibility of the fluids.

On the other hand, we observe that the system (1) has a redundant equation, i.e., any of the equations of the system can be obtained
from the other two by considering incompresibility of the phases and that the porous medium is totally saturated. Therefore, we
can neglect anyone of the equations in (6) and obtain a 2 × 2 conservation laws system to be studied. The equation to be neglected
can be chosen in a convenient way for each case.
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After a proper dimensionless process Rodriguez-Bermudez (2010) and neglecting the redundant equation for the phase 𝑤 we obtain
a model for oil and gas saturations

𝜕𝑠𝑖

𝜕𝑡
+ 𝜕

𝜕𝑥

(
𝛼 𝑓𝑖 (𝑠𝑜, 𝑠𝑔) + 𝐺𝑖 (𝑠𝑜, 𝑠𝑔)

)
= 0, 𝑖 = 𝑜, 𝑔, (11)

with “gravitational flux functions” given by

𝐺𝑜 = 𝐾𝜆𝑜
(
𝜆𝑤𝜌𝑜𝑤 + 𝜆𝑔𝜌𝑜𝑔

)
/𝜆, (12)

𝐺𝑔 = 𝐾𝜆𝑔
(
𝜆𝑜𝜌𝑔𝑜 + 𝜆𝑤𝜌𝑔𝑤

)
/𝜆. (13)

where 𝑠𝑤 = 1− 𝑠𝑜 − 𝑠𝑔 and 𝛼 is a dimensionless parameter that represents a “convection/gravity rate” Rodriguez-Bermudez (2010);
Rodrı́guez-Bermúdez and Marchesin (2013, 2014), which has roughly the meaning of the ratio between pressure gradient-induced
and gravity-induced flows. In this paper we are interested into study only gravitational flow, so we set 𝛼 = 0 and study the following
conservation law system

𝜕𝑠𝑖

𝜕𝑡
+ 𝜕

𝜕𝑥

[
𝐺𝑖 (𝑠𝑜, 𝑠𝑔)

]
= 0, 𝑖 = 𝑜, 𝑔, (14)

with flux components 𝐺𝑜, 𝐺𝑔 given in (12)-(13).

2.1 Partially-Linear permeability Model

We consider a simplified permeability model such that oil-phase and 𝐶𝑂2-phase permeabilities are linear functions of their
saturations while the water-phase permeability is a quadratic function of its saturation as follows

𝑘𝑟 ,𝑤(𝑠𝑤) = 𝑠2
𝑤, 𝑘𝑟 ,𝑖 (𝑠𝑖) = 𝑠𝑖 , 𝑖 = 𝑜, 𝑔. (15)

The motivation to choose this simplified permeability model is that for horizontal flow (absence of gravity, or analogously for high
values of 𝛼), this model extends the Koval Koval (1963) model for miscible two-phase flow with an additional third immiscible
fluid. For vertical flow (gravity taken into account) and fluids having small density differences, this model intend to represent the
case in which phases oil and supercritical-𝐶𝑂2 are inclined to miscibility when water phase is absent for certain temperature and
pressure conditions, while the flow gains some immiscibility properties as the water phase becomes present. Of course, for generic
density fluids the addition of gravity effects breaks all kind of miscibility property of the model and we do not recommend the use
of this model for such a case.

3 Riemann Problem and Elementary Waves

We denote by 𝑆 the saturation vector 𝑆 = (𝑠𝑜, 𝑠𝑔). The Riemann problem for the conservation law (14) is a piecewise constant
initial data Cauchy problem

𝑆(𝑡 = 0, 𝑥) =
{
𝑆𝑇 if 𝑥 < 0
𝑆𝐵 if 𝑥 > 0. (16)

𝑆𝑇 denotes the “left” (Top) initial Riemann state while 𝑆𝐵 denotes the “right” (Bottom) initial Riemann state. The pure gravitational
problem usually have both negative and positive characteristic speeds, so in such a problem the Riemann solutions contains waves
travelling “to the left” (upwards in the reservoir) and waves travelling “to the right” (downwards in the reservoir). The Riemann
solutions generically are sequences of shock waves, rarefaction waves and constant-saturation states as shown in figure 1.

Saturation

g
x

Fig. 1: Riemann solution example.

Shocks and rarefactions are also known as the “elementary waves” of the Riemann problem. A centered rarefaction wave
corresponding to the family 𝑖 is constructed through the integral curves of the “differential equation”
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(a) Hugoniot locus example (b) Local shocks and rarefaction curves

Fig. 2: Local Riemann Problem: Shocks and Rarefactions in space state

¤𝑆 = 𝑟𝑖 (𝑆), (17)

where 𝑟𝑖 (𝑆) is the 𝑖-th eigenvector of the Jacobian matrix of the conservation law system, i.e., 𝑑𝐹 (𝑆)𝑟𝑖 (𝑆) = 𝜆𝑖 (𝑆)𝑟𝑖 (𝑆). Notice
that Eq. (17) is an ODE only locally in regions where strict hyperbolicity holds. A rarefaction wave corresponds to an integral
curve along which the characteristic speed 𝜆𝑖 is non-decreasing, with 𝜆𝑖 (𝑆) = 𝑥/𝑡.
A shock wave is a discontinuous front traveling at constant speed. The formation of shocks is a typical phenomenon of nonlinear
conservation laws even for smooth initial conditions, due to the crossing of the plane characteristic curves of the hyperbolic partial
differential equation. The speed of the shock satisfies an algebraic relation known as the Rankine-Hugoniot condition, which at the
same time defines, for the case of systems, a curve of states 𝑆 that can be connected through shocks with a given state 𝑆− .

Definition 1 (Hugoniot locus) For a fixed 𝑆− , the set of states 𝑆 such that the pair 𝑆− , 𝑆 satisfy (18) for some 𝜎 comprises the
Hugoniot locus, H(𝑆−), see an example in Figure 2a.

−𝜎[𝑆 − 𝑆−] + 𝐹 (𝑆) − 𝐹 (𝑆−) = 0, (18)

(18) is called the Rankine-Hugoniot jump condition and 𝜎 is the shock speed.

In general, solutions of the Riemann problem are not unique and entropy criteria are used to select the physically correct shocks.
We use the generalized Lax’s entropy conditions.

Definition 2 (Entropic Generalized Lax 1-shock and 2-shock waves) We assume that a shock connecting states 𝑆− , 𝑆+ with
speed 𝜎 is entropic (physically correct) if

1-shock: 𝜆1 (𝑆+) ≤ 𝜎 ≤ 𝜆1 (𝑆−), and 𝜎 ≤ 𝜆2 (𝑆+); 𝑜𝑟 (19)
2-shock: 𝜆2 (𝑆+) ≤ 𝜎 ≤ 𝜆2 (𝑆−), and 𝜆1 (𝑆−) ≤ 𝜎. (20)

with at most one equality (19) or (20).

In Figure 2b it is shown typical entropic shock and rarefaction local curves in space state.

3.1 Wave groups and Riemann solutions

We take into account only solutions satisfying the following criteria, see Fig. 3:

• The Riemann solutions consist of two wave groups separated (at most) by a constant state.
• Each wave group consists on a sequence of rarefaction waves and adjacent shock waves, or contact waves.
• Shock waves must satisfy the Generalized Lax conditions.
• No 1-wave is preceded by a 2-wave

4 Riemann Solutions along Two-Phase Regimes Containing 𝐶𝑂2 in the Pure Gravitational Flow

The Jacobian matrix of the conservation law system (14) with fluxes (12)-(13) is
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Saturation

x
g

Fig. 3: typical Wave groups in Riemann solutions
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(a) Flux function along 𝐶𝑂2-Oil regime
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(b) Flux function along Water-𝐶𝑂2 regime

Fig. 4: Flow functions along the two-phase regimes in the edges

𝑑𝐺 (𝑠𝑜, 𝑠𝑔) =
(

𝜕𝐺𝑜

𝜕𝑠𝑜

𝜕𝐺𝑜

𝜕𝑠𝑔
𝜕𝐺𝑔

𝜕𝑠𝑜

𝜕𝐺𝑔

𝜕𝑠𝑔
.

)
. (21)

The not-ordered characteristic speeds (𝛼 and 𝛽) are the eigenvalues of the Jacobian matrix 𝑑𝐺 in (21).
Along the two-phase 𝐶𝑂2-Oil regime (where water phase is absent, 𝑠𝑤 = 0) in the saturation triangle, we have that 𝑠𝑜 = 1 − 𝑠𝑔
and 𝐺𝑜 = −𝐺𝑔 so both the equations of the conservation laws system are redundant and we can drop, for instance, the equation
corresponding to the phase 𝑔. Thus the two-phase flow on this regime, for the pure gravitational flow case (𝛼 = 0) reduces to an
scalar equation in the variable 𝑠𝑜 with flux given by

𝐹 (𝑠𝑜) =
𝐾𝑠𝑜 (1 − 𝑠𝑜)𝜌𝑜𝑔

(𝑠𝑜/𝜇𝑜 + (1 − 𝑠𝑜)/𝜇𝑔)
. (22)

See at figure 4-(a) the graph of the flux function (22) defined on the edge 𝐶𝑂2-Oil of the saturation triangle, the dimensionless
parameters were taken as 𝐾 = 1, 𝜌𝑤 = 1, 𝜌𝑜 = 0.99, 𝜌𝑔 = 0.98, 𝜇𝑤 = 0.3, 𝜇𝑜 = 0.6, 𝜇𝑔 = 0.65. Notice that along this two-phase
edge the scalar flux function is concave and its maximum point is reached at the coincidence point 𝐶3 where both characteristic
speeds are equal to zero, i.e., 𝐹′ (𝐶3) = 0 and 𝛼(𝐶3) = 𝛽(𝐶3) = 0. Notice also that along the edge, occurs a characteristic-family
change in the coincidence point 𝐶3, this transition is represented by a change of color (red to blue) in the graph of the flux function
4-(a).
Due to the concavity of the scalar flux function along 𝐶𝑂2-Oil two-phase regime, the solution of the Riemann problem (16) are
very simple. Given 𝑆𝑇 = (𝑠𝑇𝑜 , 𝑠𝑇𝑔 ) and 𝑆𝐵 = (𝑠𝐵𝑜 , 𝑠𝐵𝑔 ) the initial Riemann data. If 𝑠𝑇𝑜 > 𝑠𝐵𝑜 the Riemann solution is a rarefaction
wave that can change family depending on the relative position of these states with respect to the coincidence point 𝐶3. For the
case in which 𝑠𝑇𝑜 < 𝑠𝐵𝑜 the Riemann solution is a shock wave connecting these states. Notice that in both cases, there could be
waves travelling upwards and (or) downwards in the reservoir because of the presence of both negative and positive derivatives in
the scalar flux function plotted in Fig. 4-(a).
Along the Water-𝐶𝑂2 two-phase regime (absence of oil) we have 𝑠𝑜 = 0 and therefore 𝜕𝐺𝑜/𝜕𝑠𝑜 = 0, which leads to an upper
triangular Jacobian matrix with characteristic speeds being 𝛼 = 𝜕𝐺𝑜/𝜕𝑠𝑜 and 𝛽 = 𝜕𝐺𝑔/𝜕𝑠𝑔. By using the fluxes in (12)-(13) for
the pure gravitational flow case (𝛼 = 0), and the partially linear permeability model (15) we obtain that the characteristic speeds
along the Water-𝐶𝑂2 edge are
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𝛼(𝑠𝑔) =
𝐾 (1/𝜇𝑜)

[
((1 − 𝑠𝑔)2/𝜇𝑤)𝜌𝑜𝑤 + (𝑠𝑔/𝜇𝑔)𝜌𝑜𝑔

]
((1 − 𝑠𝑔)2/𝜇𝑤) + (𝑠𝑔/𝜇𝑔)

, (23)

𝛽(𝑠𝑔) =
𝐾 (1 − 𝑠𝑔)𝜌𝑔𝑤

𝜇𝑔𝜇𝑤

[ ((1 − 𝑠𝑔)3/𝜇𝑤) − 2(𝑠2
𝑔/𝜇𝑔)

((1 − 𝑠𝑔)2/𝜇𝑤) + (𝑠𝑔/𝜇𝑔)

]
. (24)

On the other hand, the scalar flux function associated to the two-phase flow along the Water-𝐶𝑂2 edge of the saturation triangle is
the same 𝐺𝑔 function restricted to that edge, thus the derivative of the scalar two-phase flux along this edge coincide with the
eigenvalue 𝛽 in (24). In figure 4-(b) is shown the graph of the scalar flux function along the two-phase regime in the Water-𝐶𝑂2
edge of the saturation triangle. The coincidence points of characteristic speeds 𝐶1 and 𝐶2 (where 𝛼 = 𝛽) allow the transition
between characteristic-families along this edge (transition represented by the change of colors: blue-red-blue in the flux graph).
The state denoted by 𝐼2 represents an inflection point corresponding to the fast family while the states denoted by 𝐸1 and 𝐸2
represent boundary-extensions of the pure state of 𝐶𝑂2 corresponding to the slow and fast families respectively. Notice the
tangency representing a fast characteristic-shock joining the pure 𝐶𝑂2 state and the state 𝐸2. For saturation values 𝑠𝑔 of phase 𝐶𝑂2
such that 𝐶1 < 𝑠𝑔 < 𝐶2 we have that 𝛼 < 𝛽 while for saturation values 𝑠𝑔 such that 0 < 𝑠𝑔 < 𝐶1 or 𝐶2 < 𝑠𝑔 < 1 we have 𝛼 > 𝛽.
The Riemann solutions along the Water-𝐶𝑂2 regime can be obtained through the Oleinik construction by using the convex hull of
the scalar flux function (for 𝑠𝑇𝑔 < 𝑠𝐵𝑔 ) and the concave hull of the scalar flux function (for 𝑠𝑇𝑔 > 𝑠𝐵𝑔 ). We illustrate the solution for a
simple case where the state 𝑆𝑇 initially at the top of the reservoir consists on pure water (𝑠𝑇𝑔 = 0) while the state 𝑆𝐵 initially at the
bottom of the reservoir consists on pure 𝐶𝑂2 (𝑠𝐵𝑔 = 1). In such a case the Riemann solution consists on a wave sequence as follows

pure Water = 𝑆𝑇
𝑅𝑠−−→ 𝐶1

𝑅 𝑓−−→ 𝐸2
𝐶𝑆 𝑓−−−→ 𝑆𝐵 = pure 𝐶𝑂2, (25)

where 𝑅𝑠 represents a slow rarefaction wave, 𝑅 𝑓 represents a fast rarefaction wave; the change of family occurs at the characteristic
coincidence point 𝐶1. The notation 𝐶𝑆 𝑓 represents a fast left-characteristic shock wave, whose speed coincides with the
characteristic speed 𝛽(𝐸2).

5 Riemann Solutions for a Genuine Three-phase Flow in the Pure Gravitational Flow

In this section, we solve a class of Riemann problems for the genuine three-phase flow (all three phases are present) modelled
by the conservation laws system in (14) with fluxes (12)-(13) for the pure gravitational flow case (𝛼 = 0), and permeabilities in
(15). All calculations were performed by using the following values of the dimensionless parameters 𝐾 = 1, 𝜌𝑤 = 1, 𝜌𝑜 = 0.99,
𝜌𝑔 = 0.98, 𝜇𝑤 = 0.3, 𝜇𝑜 = 0.6, 𝜇𝑔 = 0.65. We assume that initially at the top of the reservoir there is a mixture of water and oil
separated by an (imaginary) interface of pure supercritical-𝐶𝑂2 which is at the bottom of the reservoir, see Fig. 5.

Gravity

Interface

Fig. 5: Initial state in the reservoir. Top: we use blue color for water fluid and we use red color for light oil. Bottom: we use green color for
supercritical-𝐶𝑂2

In Fig.6-(a) are shown the integral curves (rarefaction curves in state space), in blue color are represented the slow-family integral
curves while in red color are represented the fast-family integral curves. The arrows indicate the increasing of the characteristic
speeds. At the boundaries of the saturation triangle are been represented (two-coloured squares) the three coincidence points
where strict hyperbolicity of conservation law system fails. Next, we define relevant bifurcation curves used to obtain Riemann
solutions in this paper.

Definition 3 A state 𝑆 belongs to the inflection curve for the family 𝑖 (denoted by i-Inflection i=1,2) if

∇𝜆𝑖 (𝑆) · 𝑟𝑖 (𝑆) = 0. (26)

Remark 1 Inflection is the curve where genuine nonlinearity is lost, i.e., the eigenvalue does not vary monotonically along an
integral curve. Rarefaction curves stop at the inflection manifold.
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Fig. 6: (a) Rarefaction curves. (b)Bifurcations curves

Definition 4 The state 𝑆′ belongs to the boundary-extension curve for the family 𝑖, denoted by i-Extension if there exist a state 𝑆
on the boundary such that

𝑆′ ∈ H (𝑆) and 𝜆𝑖 (𝑆′) = 𝜎(𝑆′, 𝑆). (27)

In Fig.6-(b) 𝐶1, 𝐶2 and 𝐶3 represent the coincidence points of characteristic speeds at the boundary of the triangle. The (slow and
fast) inflection curves and (slow and fast) boundary-extension curves of the edge 𝐶𝑂2-𝑂 are also represented. The values of the
ordered-characteristic speeds 𝜆1 (slow) and 𝜆2 (fast) at the vertices of the triangle (pure-phase states) were calculated and are
shown in the figure. The states 𝐸1 and 𝐸2 which represent respectively the slow and fast extensions of the 𝐶𝑂2 pure state are also
indicated in the figure.

5.1 Riemann Solutions by the wave curve method

We use the wave curve method to obtain the Riemann solutions. Wave curves in this type of problems (in which strict hyperbolic
and genuine non-linearity fail) differ from wave curves appearing in Lax’s Theorem in several aspects, see Liu (1974). First, they
are represented in state space by three types of elementary curves, shock curves and rarefaction curves as in the classical case as
well as composite curves, which represent shock waves adjacent to rarefaction waves; the shocks lies to the right of the rarefactions.
Any state 𝑆′ of a composite curve satisfies

𝑆′ ∈ H (𝑆) with 𝜆𝑖 (𝑆) = 𝜎(𝑆′, 𝑆),

where 𝑆 traverses a rarefaction segment. Second, in each wave curve there are many such elementary curves. Each elementary
curve must stop whenever its wave speed attains an extremum, and the type of elementary curve that follows is determined by
simple rules. Third, since Hugoniot curves possess nonlocal (i.e., detached) branches, wave curves also may have disconnected
parts or branching points, see Isaacson et al. (1992).
When constructing a wave curve, successions of elementary curves obey certain rules; along shock and composite curves these
rules are justified by the Bethe-Wendroff theorem, see Wendroff (1972). In any case, the rules determine the qualitative behavior of
the wave speed along a wave curve, to ensure the monotonicity of the wave speed along the wave group.
We are interested into solve Riemann problems with a fixed right (bottom) initial state (the pure 𝐶𝑂2 state with 𝑠𝐵𝑔 = 1) while
considering several left (top) initial states (𝑆𝑇 lying on𝑊 −𝑂 edge). In order to simplify the notation, we use the same notation for
both shock and composite curves as dashed lines in the wave curve diagram, while we use solid lines to represent rarefaction
curves, see Fig. 7.
For left (top) initial Riemann state 𝑆𝑇 taken on 𝑊 − 𝑂 edge, there is an state 𝑆4

𝑇
= (𝑠𝑇4

𝑜 , 𝑠
𝑇4
𝑔 ) see Fig. 7, for which occurs a

bifurcation in the solution, i.e., for top initial saturation state 𝑆𝑇 such that 𝑠𝑇𝑜 < 𝑠𝑇4
𝑜 the water phase becomes dominant with respect

to the oil phase (i.e., the leading wave travelling downwards does contain water but does not contain oil); for top initial saturation
state 𝑆𝑇 such that 𝑠𝑇𝑜 > 𝑠𝑇4

𝑜 the oil phase becomes dominant with respect to the water phase. This “bifurcation property” was
already found in other three-phase flow models and it was called in the recent literature as “universally structure” of the Riemann
Solutions, see Castañeda et al., 2022). When 𝑆𝑇 = 𝑆4

𝑇
and 𝑆𝐵 = 𝐶𝑂2, the Riemann solution consists in a slow rarefaction wave up

to the intermediate state denoted by 𝑆4
𝑀

= 𝐸1 and an adjacent two-phase fast shock wave connecting 𝑆4
𝑀

= 𝐸1 with the pure 𝐶𝑂2
state (vertex of the triangle), see the Riemann profiles corresponding to this case in Fig. 8d.
The Riemann solutions can be split in three cases, for cases I and II the water phase is dominant with respect to the oil phase, while
for case III the oil is dominant with respect to the water. The difference between cases I and II is the structure of the fast waves, for
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case I the fast waves are a sequence of a rarefaction wave and a left characteristic adjacent shock while for case II the fast waves
consist only of a shock. The initial data 𝑆1

𝑇
belongs to case I, 𝑆3

𝑇
belongs to the case II, while 𝑆2

𝑇
is the limit case, see figures 8a, 8b

and 8c for the profiles of the solutions. For initial data like 𝑆5
𝑇

or 𝑆6
𝑇

the structure of the solution is the same: a sequence of a slow
rarefaction and a left characteristic adjacent shock up to an intermediate state 𝑆𝑀 (lying on the 𝐶𝑂2 − 𝑂 edge) following of a
fast rarefaction up to the pure 𝐶𝑂2 state, see Fig. 8e. The general structure for the Riemann solutions with this initial data are
described in (28)-(32).

case I

case II

case III

bifurcation in 

the solution

Fig. 7: Wave curves for six distinct initial data in case I, case II, case III

𝑆𝑇 = 𝑆1
𝑇

𝑅𝑠−−→ 𝑆1
𝑀

𝑅 𝑓−−→ 𝐸2
𝐶𝑆 𝑓−−−→ 𝑆𝐵 = pure 𝐶𝑂2, (28)

𝑆𝑇 = 𝑆2
𝑇

𝑅𝑠−−→ 𝑆2
𝑀

= 𝐸2
𝐶𝑆 𝑓−−−→ 𝑆𝐵 = pure 𝐶𝑂2, (29)

𝑆𝑇 = 𝑆3
𝑇

𝑅𝑠−−→ 𝑆3
𝑀

𝑆 𝑓−−→ 𝑆𝐵 = pure 𝐶𝑂2, (30)

𝑆𝑇 = 𝑆4
𝑇

𝑅𝑠−−→ 𝑆4
𝑀

= 𝐸1
𝑆 𝑓−−→ 𝑆𝐵 = pure 𝐶𝑂2, (31)

𝑆𝑇 = 𝑆6
𝑇

𝑅𝑠 ,𝐶𝑆𝑠−−−−−−→ 𝑆6
𝑀

𝑅 𝑓−−→ 𝑆𝐵 = pure 𝐶𝑂2. (32)

6 Conclusions

A simplified model for vertical three-phase flow in porous media of immiscible fluids like water, oil and supercritical-𝐶𝑂2 is being
proposed. This model extends the Koval Koval (1963) model for miscible two-phase flow with an additional third immiscible
fluid. For vertical flow (gravity taken into account) and fluids having small density differences, the model seams to fit well in the
intention of representing the case in which phases 1 and 2 are inclined to miscibility when phase 3 is absent for certain temperature
and pressure conditions, while the flow gains some immiscibility properties as phase 3 becomes present. The simplified model
studied in this work leads to a 2 × 2 system of conservation laws which loose strict hyperbolicity at three isolated coincidence
points at the edges of the saturation triangle. The wave curve method is used to solve a class of Riemann Problem, including
two-phase flow regimes and genuine three-phase flow regimes. Riemann solutions were obtained and qualitatively characterized.
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P. Castañeda, D. Marchesin, and F. Furtado. Universality of riemann solutions in porous media. Bol. Soc. Mat. Mex., 28(6), 2022.

doi: 10.1007/s40590-021-00398-0.
A. Corey, C. Rathjens, J. Henderson, and M. Wyllie. Three-phase relative permeability. Trans. AIME, 207:349–351, 1956.
R. Courant and K. Friedrichs. Supersonic flow and shock waves. Wiley, New York, 1948.
A. de Souza. Stability of singular fundamental solutions under perturbations for flow in porous media. Mat. Aplic. Comp., 11(2):

73–115, 1992.
I. Gelfand. Some problems in the theory of quasi-linear equations. Usp. Math. Nauk., 14:87–158, 1959.
H. Holden and L. Holden. On the riemann problem for a prototype of a mixed type conservation law, ii. In Keyfitz B., editor,

Contemporary Mathematics: Current Progress in Hyperbolic Systems: Riemann Problems and Computations, volume 100,
pages 331–367. American Mathematical Society, Providence, USA, 1989.

L. Holden. On the riemann problem for a prototype of a mixed type conservation law. Comm. Pure Appl. Math., 40:229–264, 1987.
L. Holden. On the strict hyperbolicity of the buckley-leverett equations for the three-phase flow in porous medium. SIAM J. Appl.

Math., 50:667–683, 1990.
E.L. Isaacson and J.B. Temple. Examples and classification of non-strictly hyperbolic systems of conservation laws. In Proceedings

of the Amer. Math. Soc. Meeting, 1885.
E.L. Isaacson, D. Marchesin, B.J. Plohr, and J.B. Temple. The riemann problem near a hyperbolic singularity: The classification

of solutions of quadratic riemann problems. SIAM J. Appl. Math., 48(5):1009–1032, 1988.
E.L. Isaacson, D. Marchesin, B.J. Plohr, and J.B. Temple. Multiphase flow models with singular riemann problems. Mat. Aplic.

Comp., 11(2):147–166, 1992.
B.L. Keyfitz. An analytic model for change of type in three-phase flow. In Wheeler, M., editor, IMA Volumes in Mathematics and

Its Applications: Proceedings of Numerical Simulation in Oil Recovery, volume 11, pages 149–160. Springer, New York, 1988.
B.L. Keyfitz. Change of type in three-phase flow: a simple analogue. J. Differential Equations, 80:280–305, 1989.
E.J. Koval. A method for predicting the performance of unstable miscible displacement in heterogeneous media. SPE Journals,

1963.
P. Lax. Hyperbolic systems of conservation laws ii. Comm. Pure Appl. Math., X:537–566, 1957.
R.J. LeVeque. Numerical Methods for Conservation Laws. Birkhauser, Basel; Boston; Berlin, 1992.
R.J. LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equations. SIAM, 2007.
T.-P. Liu. The riemann problem for general 2 × 2 conservation laws. Trans. Amer. Math. Soc., 199:89–112, 1974.
T.-P. Liu. The riemann problem for general systems of conservation laws. J. Differential Equations, 18:218–234, 1975.
V. Matos, J. C. Mota, A.V. Azevedo, and D. Marchesin. Bifurcation under parameter change of riemann solutions for nonstrictly

hyperbolic systems. Zeitschrift fur Angewandte Mathematik und Physik (Printed ed.), 2014(1), 2014.
H.B. Medeiros. Stable hyperbolic singularities for three-phase flow models in oil reservoir simulation. Acta Applicandae

Mathematicae, 28:135–159, 1992.
W. Proskurowski. A note on solving the buckley-leverett equation in the presence of gravity. J. Comput. Phys., 41:136–141, 1981.
G. F. B. Riemann. Uber die fortpflanzung ebener luftwellen von endlicher schwingungsweite. Abhandlungen der Gesellschaft der

Wissenschaften Zu Gottingen, 8(43), 1860.
P. Rodriguez-Bermudez. Buoyancy Driven Three-Phase Flow in Porous Media. PhD Thesis, IMPA, Rio de Janeiro, Brazil, 2010.
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P. Rodrı́guez-Bermúdez and D. Marchesin. Loss of strict hyperbolicity for vertical three-phase flow in porous media. In Ancona,

F.; Bressan A.; Marcati P.; Marson A., editor, Aims on Applied Mathematics: Hyperbolic Problems: Theory, Numerics,
Applications. Proceedings of Hyp2012,Padova, Italy, volume 8, pages 881–888. American Institute of Mathematical Sciences
(AIMS), Springfield, 2014.

D.G. Schaeffer and M. Shearer. The classification of 2× 2 systems of non-strictly hyperbolic conservation laws, with application to
oil recovery. Communications on Pure and Applied Mathematics, XL:141–178, 1987a.

D.G. Schaeffer and M. Shearer. Riemann problems for nonstrictly hyperbolic 2 × 2 systems of conservation laws. Trans. Amer.
Math. Soc., 304:267–306, 1987b.

M. Shearer. Loss of strict hyperbolicity of the buckley-leverett equations for three-phase flow in a porous medium. In Wheeler, M,
editor, IMA Volumes in Mathematics and Its Applications: Proceedings of Numerical Simulation in Oil Recovery, volume 11,
pages 263–283. Springer-Verlag, New York, 1988.

247

http://dx.doi.org/10.1007/s40590-021-00398-0
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