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Abstract: The key feature of soft robots is the use of soft materials. On the one hand, the softness is advantageous to fulfill
tasks for which adaptability is important. On the other hand, the softness is challenging in modeling and design. We are sure
that both modeling and design can benefit from sensitivity analysis. To illustrate this, we present two examples of a pneumatic
multi-chamber actuator with load. The first example is based on global sensitivity indices and focuses on finding the model
parameters of the actuator with the most influence. With this information, the model as well as the design of the actuator can be
improved in an iterative process. The second example is based on Monte Carlo filtering and focuses on evaluating the influence of
an eccentric external load on the actuator tip position, and the interaction of the parameters characterising the eccentricity position.
In this case, the sensitivity analysis improves the general understanding of how external loads influence an actuator.
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1 Introduction

While conventional robots consist of stiff components connected by joints, soft robots are made of soft components. Rus and Tolley
(2015) quantify the stiffness of soft robots in a range from 104 Pa to 109 Pa. Soft materials are advantageous when adaptability is
desired to perform a task. For example, the soft STIFF-FLOP manipulator from Cianchetti et al. (2013) is a surgery tool that has a
low probability of damaging a patient’s internal organs. Another example is a soft robot for the care of elderly people. There are
different typical actuation mechanisms in soft robotics, for example pneumatics, tendons or shape memory alloys, as described by
Runge et al. (2017). Soft robots using these actuation mechanisms have in common that they are usually underactuated.
Pneumatic multi-chamber bending actuators are a subgroup often used in soft robotics, cf. Suzumori et al. (1991); Trivedi et al.
(2007); Cianchetti et al. (2013); Abidi et al. (2017); Toshimitsu et al. (2021). They are based on axially stretching chambers in
parallel alignment. The parallel alignment transforms the stretch of the individual chambers into a bending of the actuator. While,
for example, Garriga-Casanovas et al. (2018); Fras and Althoefer (2019); Lenssen et al. (2019); Naghibi et al. (2019); Lamping
et al. (2022) systematically investigate design aspects of these actuators, trial-and-error seems to be still a common method in
soft robotics. However, Garriga-Casanovas et al. (2018) show that useful information regarding the design can be drawn from
an analytical model. As in other disciplines, modeling a system always provides the possibility to evaluate the effect of design
changes in advance by a simulative testing. The Cosserat beam model is a common model approach for pneumatic multi-chamber
bending actuators, cf. Trivedi et al. (2007); Uppalapati et al. (2018); Till et al. (2019); Gilbert and Godage (2019); Bartholdt et al.
(2021); Eugster et al. (2022); Lamping and de Payrebrune (2023), where the three-dimensional structure of an actuator is mapped
to an one-dimensional curve in space. In order to map the structure of the actuator, assumptions need to be made which differ in
each of the studies referred to.
Sensitivity analysis is a generic term for statistical methods which are used to systematically evaluate the influence of input
parameters of a model on its output, where local and global sensitivity analysis are usually distinguished. For example, Garcia
Morales et al. (2022) use local sensitivity analysis to investigate an origami-based soft actuator. They identify the parameters
with the highest influence on the force and contraction of the actuator. The analysis is local since the actuator always remains in
an operating point. Bishay and Sofi (2018) use a comparable approach for a soft shape memory alloy driven finger actuator. In
contrast, global sensitivity analysis takes not only an operating point and the resulting gradient at this point into account, but a
larger range of multiple parameters at once.
To the best of the authors’ knowledge, sensitivity analysis has not yet been used in soft robotics, except for the two studies mentioned.
In the present study, we aim to illustrate the advantage that global sensitivity analysis provides in soft robotics. For this, we apply a
Cosserat beam model of a pneumatic multi-chamber actuator from a preliminary study of Lamping and de Payrebrune (2023) to
two loading conditions. The examples are chosen in order to show different methods of sensitivity analysis. In the first example,
we calculate sensitivity indices for the parameters of the actuator model, aiming to identify those with the highest influence on the
error. In the second example, we evaluate the stability of an actuator for a varying eccentric load by Monte Carlo filtering, aiming
to identify the range of loads that can be applied without forcing the tip of the actuator out of a desired spatial range compared to
the position without load.

The methods introduced in section 2 comprise an introduction to sensitivity analysis, and the Cosserat beam model of a pneumatic
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multi-chamber bending actuator. We use this actuator for the two examples in section 3 and section 4. Finally, we conclude
relevant aspects in section 5.

2 Methods

Saltelli et al. (2004) define sensitivity analysis as “the study of how uncertainty in the output of a model (numerical or otherwise)
can be apportioned to different sources of uncertainty in the model input”. Hence, sensitivity analysis is a generic term that
summarizes a variety of (statistical) methods. We restrict the methods in subsection 2.1 to the use cases of this study. However,
other methods might also be of interest in soft robotics.
Similar to the sensitivity analysis, the soft actuator and its model in subsection 2.2 are a single example out of various pneumatic
multi-chamber actuators and various modeling approaches. We chose this example in order to continue a preliminary study of
Lamping and de Payrebrune (2023) where we presented and validated a novel modeling approach based on the Cosserat beam
theory. The contribution of the modeling approach is that one-dimensional axial force and stretch measurements of an actuator are
sufficient in order to identify the model parameters necessary to simulate its three-dimensional deformation under load. With the
sensitivity analysis presented in this study we can subsequently identify the most important parameters to improve accuracy of the
model.

2.1 Sensitivity analysis

In the following, we introduce the sensitivity analysis methods used in this study. Saltelli et al. (2004) mention that sensitivity
analysis can be subdivided into four settings: Factor Prioritization, Factor Fixing, Variance Cutting and Factor Mapping. An
appropriate sensitivity measure depends on the task of the sensitivity analysis and the setting (Saltelli et al. (2007)). For the
definition of sensitivity measures in this section, we refer to an input factor of a model as 𝑋𝑖 and the corresponding model output
𝑌 = 𝑌 (𝑋1, 𝑋2, . . . , 𝑋𝑛) produced by all input factors 𝑛.
As we are interested in identifying input factors with high influence, we make use of the Factor Prioritization setting according
to Saltelli et al. (2007) and of the variance-based sensitivity measures called global sensitivity indices 𝑆𝑖 and 𝑆𝑇𝑖 described by
Homma and Saltelli (1996). These sensitivity indices offer the ability to be model independent which means they can operate on
non-linear and non-additive models (Homma and Saltelli (1996); Saltelli et al. (2007)). Additionally, they allow the identification
of interactions among different input parameters with a total order sensitivity index 𝑆𝑇𝑖 (Saltelli et al. (2007)).
Besides the interest in parameters with high influence in general, we are also interested in the Factor Mapping setting, where we
use the Monte Carlo filtering method. This method offers the possibility to define a condition for the range of output values and to
determine input factor ranges which particularly contribute to a fulfillment of this condition. This is done by mapping the output
values back to the corresponding input values, cf. Saltelli et al. (2007).
Conclusions on the sensitivity of the model output to individual input parameters can be drawn by different methods using the
different sensitivity settings. We restrict ourselves to the variance-based global sensitivity indices and the Monte Carlo filtering
already introduced.

2.1.1 Global sensitivity indices

The brief summary of the variance-based first and total order global sensitivity indices in this subsection is based on Saltelli et al.
(2007). The first order sensitivity indices 𝑆𝑖 and the total order sensitivity indices 𝑆𝑇𝑖 are defined for each input factor 𝑋𝑖 . The first
order sensitivity indices 𝑆𝑖 describe the change on the variance of the output 𝑌 by the individual input factors 𝑋𝑖 . The total order
sensitivity indices 𝑆𝑇𝑖 take the interaction effects between an input factor and all other remaining input factors into account.
The first order sensitivity index 𝑆𝑖 for an input factor 𝑋𝑖 is

𝑆𝑖 =
𝑉𝑋𝑖

(𝐸𝑋−𝑖 (𝑌 |𝑋𝑖))
𝑉 (𝑌 ) . (1)

The term 𝑉 (𝑌 ) refers to the overall unconditional output variance. 𝐸𝑋−𝑖 (𝑌 |𝑋𝑖) is the conditional expected value of the output 𝑌 for
a fixed value of 𝑋𝑖 over all other values except 𝑋𝑖 , which is denoted by the subscript 𝑋−𝑖 . The term 𝑉𝑋𝑖

(𝐸𝑋−𝑖 (𝑌 |𝑋𝑖)) describes the
variance of this conditional expected value over all possible 𝑋𝑖 values.
The total order sensitivity index 𝑆𝑇𝑖 which, besides the additive part, also includes the interactions with other input factors, is

𝑆𝑇𝑖 = 1 −
𝑉𝑋−𝑖 (𝐸𝑋𝑖

(𝑌 |𝑋−𝑖))
𝑉 (𝑌 ) . (2)

In contrast to the first order sensitivity indices 𝑆𝑖 , the conditional expected value of 𝑌 is calculated just over 𝑋𝑖 by fixing all other
input parameters and is denoted by 𝐸𝑋𝑖

(𝑌 |𝑋−𝑖). The variance 𝑉𝑋−𝑖 (𝐸𝑋𝑖
(𝑌 |𝑋−𝑖)) of this conditional expected value is taken over

all input parameters except 𝑋𝑖 .
Saltelli et al. (2000) define 𝑆𝑖 ”as the expected fractional reduction in variance that would be achieved if 𝑋𝑖 were known” and
𝑆𝑇𝑖 ”as the expected fraction of variance that would be left if only 𝑋𝑖 were to stay undetermined”. We use the extended Fourier
Amplitude Sensitivity Analysis (eFAST) introduced by Saltelli et al. (1999) to estimate the sensitivity measures in Equation 1 and
Equation 2.
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2.1.2 Monte Carlo filtering

The brief summary of the so-called Monte Carlo filtering method in this subsection also refers to Saltelli et al. (2007). Monte
Carlo filtering offers the possibility to determine the influence of input parameters based on a threshold value that categorizes the
values of the output variable into a “behavioral” 𝐵 and “non-behavioral” 𝐵 subset. The behavioral and non-behavioral output
realizations can be mapped back to the driving input factors, which then can be subdivided into a behavioral subset (𝑋𝑖 |𝐵) and a
non-behavioral subset (𝑋𝑖 |𝐵). After subdivision, one obtains two density functions for each input factor 𝑋𝑖 and two associated
cumulative distribution functions.
Let𝑊 (𝑋𝑖 |𝐵) be the cumulative distribution function of the behavioral subset and, accordingly,𝑊 (𝑋𝑖 |𝐵) of the non-behavioral
subset of the input factors 𝑋𝑖 . Then the difference between the two cumulative distribution functions can be used as a measure for
the influence of the input parameter. The larger the difference, the higher is the influence of an input parameter on the specified
threshold condition for the output.
The behavioral subset can be further inspected using a bidimensional projection of this subset into a two dimensional scatter plot
of two input parameters. This allows to detect behavioral interactions between two input parameters graphically.

2.2 Actuator model

The actuator under investigation is shown in Figure 1a. Its design results from a systematic investigation of design aspects Lamping
et al. (2022) and consists of the following components: three chambers per module in parallel alignment, rings to prevent radial
expansion of the chambers, end caps and linking elements to keep the chambers aligned parallel, and a connector for serial stacking.
All components except the chambers are 3D printed and rigid (Visijet M2R, 3D-Systems GmbH), but could also be made of silicone
preferably stiffer than the chamber. The chambers consist of silicone (Dragon Skin 10, Smooth-On Inc.). Although individual
pressurization of each chamber would be possible, throughout this study stacked chambers are pneumatically connected.
The model of the actuator relates to experiments as shown in Figure 1b. The actuator is clamped in vertical position and deflects
due to pressurization with an additionally applied load of 1 N at the free end.

a) b)
Fig. 1: Three-chamber bending actuator, where stiff components are white and flexible chambers are red a). Experimental setup

with the pressurized actuator clamped in vertical position b). Taken from Lamping and de Payrebrune (2023) by CC BY

2.2.1 Cosserat beam model

Beam models, especially the Cosserat beam theory, are a common approach used in soft robotics, cf. Trivedi et al. (2007);
Uppalapati et al. (2018); Till et al. (2019); Gilbert and Godage (2019); Bartholdt et al. (2021); Eugster et al. (2022). In contrast
to the Euler–Bernoulli beam, the Cosserat beam theory also includes large deformations, axial stretch, twist and shear. This is
necessary in order to cover the full range of deformations of soft robots. Transforming the three-dimensional structure of the
actuator into a one-dimensional curve in space reduces computational costs. However, since this transformation is a reduction of
complexity, accuracy of modeling suffers. The following brief introduction to the Cosserat beam theory is based on Antman (2006)
and Cao and Tucker (2008), and is identical to a preliminary study of Lamping and de Payrebrune (2023).
Referring to Figure 2, the beam is represented by its centerline

q(𝑠) = 𝑥(𝑠)e1 + 𝑦(𝑠)e2 + (𝑠 + 𝑧(𝑠))e3, (3)

where 𝑠 is the arc-length parameter and {e1, e2, e3} is a global coordinate system. The global coordinate system is supplemented
by a local coordinate system {d1, d2, d3}, so-called directors, where d1 and d2 are the principal axis of inertia of the beam and

d3 (𝑠) = d1 (𝑠) × d2 (𝑠). (4)

An arbitrary vector can be transformed between the two coordinate systems by three successive rotations.
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Fig. 2: Coordinate systems of the Cosserat beam. Taken from Lamping and de Payrebrune (2023) by CC BY

The static deformation of the beam results from the equilibrium of forces and moments

n′ (𝑠) + f (𝑠) = 0, (5)
m′ (𝑠) + q′ (𝑠) × n(𝑠) + l(𝑠) = 0, (6)

where f (force) and l (moment) are external line loads, n is the contact force (shear 𝑛1/2, stretch 𝑛3), and m is the contact
moment (bending 𝑚1/2, torsion 𝑚3). The superscript (.)′ denotes the derivation with respect to the arc-length parameter 𝑠.
The magnitude of deformation is measured by v (shear 𝑣1/2, axial stretch 𝑣3) and u (curvature 𝑢1/2, torsion 𝑢3), where

v(𝑠) = q(𝑠)′, (7)
d(𝑠)′ = u(𝑠) × d(𝑠). (8)

The contact forces and moments result from

n = K(v − v0), (9)
m = J(u − u0). (10)

The subscript (.)0 denotes the initial position of the beam, with v0 = (0, 0, 1) and u0 = 0 representing a straight beam in
the e3-direction. Assuming linear-elastic material behavior,

K = 𝐾𝑖 𝑗 (d𝑖 ⊗ d 𝑗 ) (11)

𝐾𝑖 𝑗 =


𝑆 0 0
0 𝑆 0
0 0 𝐸

 ,
where 𝑆 is the shear stiffness and 𝐸 is the extensional stiffness. Analogously,

J = 𝐽𝑖 𝑗 (d𝑖 ⊗ d 𝑗 ) (12)

𝐽𝑖 𝑗 =


𝐺 0 0
0 𝐺 0
0 0 𝑇

 ,
where 𝐺 is the bending stiffness and 𝑇 is the torsional stiffness. For ease of reading, the stiffnesses 𝑆, 𝐸 , 𝐺 and 𝑇 are combined
quantities, which comprise material stiffness as well as geometrical aspects, e.g. the extensional stiffness 𝐸 for linear elasticity
(unit N) is defined as the product of the Young’s modulus and the cross sectional area and the bending stiffness 𝐺 (unit Nm2) is
defined as the product of Young’s modulus and second moment of inertia. Similar to others, as Trivedi et al. (2007); Uppalapati
et al. (2018); Till et al. (2019); Gilbert and Godage (2019); Uppalapati and Krishnan (2020), we restrict the model to the extensional
stiffness 𝐸 and the bending stiffness 𝐺 when performing simulations in this study. The shear stiffness 𝑆 and the torsional stiffness 𝑇
are considered infinite.
An important aspect being related to pneumatic soft robots is to consider pressurization in the beam model. One opportunity
is to assume an initial deformation induced by pressure as in Uppalapati et al. (2018); Gilbert and Godage (2019). Another
opportunity used by Trivedi et al. (2007); Hadi Sadati et al. (2017); Till et al. (2019); Bartholdt et al. (2021); Eugster et al. (2022),
and also chosen in this study, is to modify the equilibrium of forces and moments

(n − F)′ (𝑠) + f (𝑠) = 0 (13)
m′ (𝑠) + q′ (𝑠) × n(𝑠) + M′ (𝑠) + q′ (𝑠) × F(𝑠) + l(𝑠) = 0, (14)

and to apply counteracting jumping conditions for F and M at the ends of a pressurized section. Here, F = 𝐹d3 is the axial force
induced by pressure and M = 𝑀1d1 + 𝑀2d2 are the corresponding moments.
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2.2.2 Model preparation for sensitivity analysis

To simulate the experimental setup in Figure 1b, we implemented the Cosserat beam as a boundary value problem in Matlab
R2021b using the bvp4c solver. According to Figure 3 and Table 1, we axially divide the beam in five regions because the actuator
under investigation consists of multiple components of different weight and length. The weight attached to the free end of the
actuator is considered as additional point load (force and moment) at the end of the beam. All components except the chambers are
rigid. Thus, we consider infinite extensional stiffness 𝐸 and bending stiffness 𝐺 for regions 1, 3, and 5.

Fig. 3: Schematic of the experimental setup with parameters used in the simulation

Tab. 1: Weight and length of regions used in the simulation, from fixed end to free end

Region Components of real actuator Weight in kg Length in m

1 Fixed end cap 4.0 · 10−3 3.5 · 10−3

2 Chambers + rings 25.0 · 10−3 44.8 · 10−3

3 Connector cap 8.3 · 10−3 9.0 · 10−3

4 Chambers + rings 25.0 · 10−3 44.8 · 10−3

5 Free end cap 4.0 · 10−3 3.5 · 10−3

In addition to the weight and length, four groups of parameters need to be known in order to simulate a pneumatic soft actuator as a
Cosserat beam: 1. the dimensions of the actuator, 2. the stiffness of the material, 3. the effect of pressurization, and 4. external
loads. Table 2 and Table 3 list all parameters we vary for the beam parameter analysis in section 3 and the stability analysis in
section 4, respectively. All parameters are uniform distributed in the specified range. The superscript (.)I/II denotes that a quantity
is individually varied for the chambers in region 2 and region 4 of the actuator.
In the following, we discuss the individual parameters of the four groups. If no other explanation is given, the assumptions chosen
are based on a preliminary study of Lamping and de Payrebrune (2023). However, since the presented sensitivity analysis is
independent from the preliminary study, the parameters only need to be consistent relative to each other in order to create a realistic
example.

Tab. 2: Beam parameters varied for the beam parameter analysis (section 3)

Parameter Ideal Range

𝐿I/II Length of chambers in m 44.8 × 10−3 ±0.2 × 10−3

𝑟 I/II Radius of chamber arrangement in m 11.55 × 10−3 ±0.5 × 10−3

𝐸 I/II Extensional stiffness in N 200 ±20
𝑝 Air pressure in kPa 90 ±1
𝑘 Scaling factor of cross section area in kPa−1 5.3 × 10−3 ±1 × 10−3

𝑀 External load in N 1 ±0.02
𝐿𝑀 Distance of the external load to the actuator tip in m 17.5 × 10−3 ±1 × 10−3

𝑟𝑀 Eccentricity radius of the load in m 0 1 × 10−3

𝛽 Eccentricity angle of the load in ◦ - 0 to 360
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Tab. 3: Beam parameters varied for the stability analysis (section 4)

Parameter Ideal Range

𝑀 External load in N 0 2.5
𝐿𝑀 Distance of the external load to the end cap in m - 0 to 50 × 10−3

𝑟𝑀 Distance of the external load to the centerline m - 0 to 10 × 10−3

𝛽 Angular position of the external load in ◦ - 0 to 360

Dimensions of the actuator While other quantities, such as the stiffness of the material, need to be determined experimentally,
the dimensions of the actuator are known. However, due to hand manufacturing, little deviations between planned design and real
actuator might occur.
From the variety of dimensions, we vary the length of the chambers 𝐿I/II and the radius of the chamber arrangement 𝑟 I/II in a small
range. As shown in the next paragraph, the radius 𝑟 I/II has an influence on the bending stiffness. 𝐿I/II as well as 𝑟 I/II have a direct
influence in the model. Other dimensions are considered implicitly. For example, the inner and outer radius of the chambers
influence the extensional stiffness 𝐸 I/II which is a combined quantity of cross section and material stiffness, and a varying distance
between rings influences the scaling factor 𝑘 of the cross section area for ballooning introduced later.

Stiffness of the material The extensional stiffness 𝐸 I/II and the bending stiffness 𝐺I/II fully define the stiffness of the material,
since the shear stiffness and torsional stiffness are considered infinite. In the preliminary study, we experimentally identified
𝐸 = 180 N to 220 N, and, for practical reasons, used the mean value 𝐸 = 200 N. However, for the sensitivity analysis, we use the
experimentally identified range. We assume that the bending stiffness is

𝐺I/II =
𝐸 I/II

2
· (𝑟 I/II)2 · 𝑣3, (15)

where 𝑣3 is the axial stretch from Equation 7. Hence, in the sensitivity analysis the bending stiffness is implicitly varied by the
variation of the extensional stiffness 𝐸 I/II and the radius 𝑟 I/II.

Effect of pressurization The quality of the pressure control directly influences the effect of pressurization. We assume that an
industrial pressure controller is able to control a pressure of 90 kPa with an uncertainty of 1 kPa.
In order to determine the axial force 𝐹 induced by pressure 𝑝, we use an experimentally identified cross section area 𝐴 = 76×10−6 m2.
Since the chambers of the actuator balloon between rings, we also consider a scaling factor 𝑘 for the cross section area such that

𝐹𝑗 = 𝐴 · (1 + 𝑘 𝑝 𝑗 ) · 𝑝 𝑗 , (16)

𝐹 =

3∑︁
𝑗=1

𝐹𝑗 , (17)

where the subscript (.) 𝑗 distinguishes between the individual chambers of the actuator. Eugster et al. (2022) use a similar factor
which scales the radius instead of the cross section area. Note that we assume pressurization of only a single chamber as shown in
Figure 3.
The moment induced by pressure results from the axial forces 𝐹𝑗 of the individual chamber and the radius of the chamber
arrangement 𝑟 I/II. Hence, the moment is implicitly varied by the pressure 𝑝, the scaling factor 𝑘 and the radius 𝑟 I/II.

External loads From the model perspective, the self-weight of the actuator is a load similar to other external loads. Referring to
Table 1, we assume that the weight and length of the individual components are known. We vary only the length of the chambers
𝐿I/II in the sensitivity analysis while keeping their self-weight at a fixed value.
In the real experiment shown in Figure 1b, a weight is attached to the free end of the actuator. Referring to Figure 3, we assume
that this weight is a point load 𝑀 with a distance 𝐿𝑀 to the end cap that induces a force and a moment at the end of the actuator.
However, the point load is eccentric, which means it is not on the extension of the centerline of the actuator. We use polar
coordinates 𝑟𝑀 and 𝛽 to define the position of the point load relative to the centerline in the local d1-d2-plane. Note that, due to
the polar coordinates, a uniform distribution of 𝑟𝑀 and 𝛽 leads to a non-uniform sample density of weight positions with a higher
density close to the centerline of the actuator.

Model ouput The aim of sensitivity analysis is to study the influence of the described model parameters on an output. In our
case, the output is the euclidean distance Δ𝑅 of the sampled actuator tip positions to a nominal position. The nominal position is
the position for “ideal parameters” as shown in Table 2 and Table 3. We thus assume that the real actuator is described exactly by
the ideal parameters and evaluate the influence if those parameters are not identified correctly experimentally or if the external load
at the actuator tip changes.
For the Monte Carlo filtering, the sample tip positions need to be subdivided in a behavioral group and a non-behavioral group. We
perform the subdivision by defining an accepted euclidean distance Δ𝑅 between sample tip positions and nominal position.
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3 Beam parameter analysis

The first example of the application of sensitivity analysis in soft robotics is a critical evaluation of beam model parameters. We
start from the hypothesis that the “ideal” parameters in Table 2 are the exact parameters of a real actuator and that the “range”
represents the uncertainties of an experimental parameter investigation.

3.1 Effect of single parameter changes

To visualize the effect of a parameter change on the elongated soft robot a local approach is used first. In this approach the
parameters pressure 𝑝 and external load 𝑀 are varied within their respective ranges and all other parameters are set to the “ideal”
values. Figure 4a shows the elongated soft robot modeled as a beam through its centerline. The effect from the variation of the
external load 𝑀 is not directly visible on the macroscopic level. To illustrate the change in the tip position of the soft robot, a
detailed view is shown in Figure 4b. Only the displacements in e1- and e3-direction are shown because the bending of the soft
robot only occurs in the e1-e3-plane. As the changes are minor compared to the size of the soft robot we focused on the change of
tip position. If the pressure 𝑝 is increased, the displacement in e1-direction increases, whereas if the external load 𝑀 increases the
displacement in e1-direction decreases. The tip positions have been projected in the e1-𝑀-plane and the projected points with
equal pressure have been connected by a line.
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Fig. 4: Beam curvature of the simulated soft robot when changing pressure 𝑝 and external load 𝑀 for the complete beam a), and

detailed view at the tip position b)

3.2 Spatial distribution

The first step of a sensitivity analysis is to create sample points from the parameters and their range, and to perform simulations
with these samples. Figure 5 shows the scatter of the spatial sample distribution in the e1-e3-plane, each with a color bar for
the length 𝐿I of Region 2, the pressure 𝑝, and the scaling factor 𝑘 . The e1-e2-plane and the e2-e3-plane are not shown since the
deviations in these planes are little. In order to demonstrate that some conclusions can be drawn even without the statistic methods
of the sensitivity analysis, we chose these three parameters as an example.
The gradient of colors in Figure 5a clearly indicates a dependency of the sample points on the length 𝐿I of Region 2. However, the
gradient is roughly along the e3-direction, while the main spread of the sample point distribution is in e1-direction. Thus, the
influence of the uncertainty of 𝐿I is little.
The influence of the pressure 𝑝 in Figure 5b is also little since the sample points are randomly distributed and no gradient is visible.
In contrast, a significant influence of the scaling factor 𝑘 results from Figure 5c. The gradient of colors is roughly along the
e1-direction, in which the sample point distribution also mainly spreads.

3.3 Sensitivity indices

The sensitivity indices in Figure 6 result from the distribution of sample points in Figure 5. Note that we increased the number of
sample points when determining the sensitivity indices.
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a) b) c)
Fig. 5: Scatter plots of output uncertainty with ideal positions marked by a red cross and color mapping for the input parameters

length 𝐿I of Region 2 a), pressure 𝑝 b) and scaling factor 𝑘 c)

Regarding the first order sensitivity indices 𝑆𝑖 , only the extensional stiffness 𝐸 I of Region 2 and the scaling factor 𝑘 have noticeable
influence. The influence of 𝐸 I is higher than that of 𝐸 II since Region 2 is at the base of the actuator which increases the leverage.
The total sensitivity indices 𝑆𝑇𝑖 also take the interaction of the beam parameters into account. With this measure, the extensional
stiffness 𝐸 II of Region 4, the radius of the chamber arrangement 𝑟 I of Region 2, and the pressure 𝑝 also have a noticeable influence.
However, the influence of the extensional stiffness 𝐸 I of Region 2 and the scaling factor 𝑘 are still most significant.
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Fig. 6: First sensitivity indices 𝑆𝑖 and total order global sensitivity indices 𝑆𝑇𝑖 for each parameter of Table 2

3.4 Discussion of beam parameters

Some relevant conclusions to improve model accuracy can be drawn from the sensitivity indices. Naturally, a more refined
experimental parameter identification itself leads to higher accuracy. However, we restrict to conclusions beyond improving
experiments.

Scaling factor 𝑘 The scaling factor 𝑘 represents ballooning of the actuator chambers at higher pressure. The higher the pressure
is, the more influence has 𝑘 . For the actuator under investigation, ballooning is likely to occur due to the large distance between the
reinforcing rings. The high significance of uncertainties of the scaling factor 𝑘 depicts the relevance of ballooning. This can be
anticipated in two ways in order to model an actuator accurately.
On the one hand, the model itself could be improved, since the scaling factor is only a rough approximation of the effect of
ballooning. This would also reduce the uncertainty of the parameter identification since the parameters of such an improved model
have a physical counterpart. For example, in a preliminary study of Lamping and de Payrebrune (2021), we propose a model for
individual pneumatic cylinders which takes ballooning into account.
On the other hand, the design is relevant for the intensity of ballooning and could be adapted. For example, the wall thickness
and the distance between rings influence ballooning, as shown in a preliminary study (Lamping et al. (2022)). Thicker walls
would reduce the effect of a varying distance between rings due to manufacturing errors. The distance between rings or fibers,
respectively, should be as regular as possible.
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Extensional stiffness 𝐸 As already mentioned, the uncertainty of the extensional stiffness 𝐸 I of Region 2 has a higher influence
on the model output than the uncertainty of the extensional stiffness 𝐸 II of Region 4 due to leverage. However, it can be assumed
that in reality both are not determined individually. Remember that the extensional stiffness 𝐸 combines the stiffness of the material
as well as its cross section. Hence, both aspects are relevant to reduce the uncertainty of the extensional stiffness 𝐸 .
The stiffness of the material depends on the manufacturing process. Case et al. (2015) state that the properties of two samples of
silicone typically used in soft robotics are never the same unless they are from the same charge. Nevertheless, the deviations can be
reduced through careful manufacturing. One reason for deviations is a varying amount of air bubbles in every charge (Schmitt et al.
(2018)), another reason is the mix ratio of the silicone components which might differ (Schmitt et al. (2018); Case et al. (2015)).
Experience shows that the curing temperature also has an influence. However, to the best of the authors’ knowledge, there has been
no systemic study of this aspect yet.
The cross section of the material can deviate through tolerances of the casting process. Assuming that the absolute tolerance of
casting is constant, the relative error of the tolerances increases for thinner walls. Therefore, any tapering of the actuator wall
should be prevented.

Pressure 𝑝 Although the uncertainty of the pressure 𝑝 has the third highest influence on the model output, the influence of
the scaling factor 𝑘 and of the extensional stiffness 𝐸 is significantly higher. We assume that the error of the pressure control is
constant, i.e. the relative error is larger for lower pressure and the influence on the model output increases.

Dimensions The uncertainty of the length of the chambers 𝐿I/II and of the radius of the chamber arrangement 𝑟 I/II have little
influence on the model output. Deviations of 𝐿I/II can occur since the chambers are cut to the correct length after casting, the
deviations of 𝑟 I/II result from 3D-printing.

External load We assume that the load in an experimental setup is well known. In the setup in Figure 1b, the external load
is an aluminum cube. In this case, the hrough-hole required to attach the cube to the actuator might not be perfectly centered.
Nevertheless, for the assumptions chosen, the influence of the uncertainty of the external load is little.

Influence of assumptions The conclusions just discussed refer to the individual scenario in Table 2. We point out that the results
of a sensitivity analysis strongly depend on the underlying assumptions. This is important since the uncertainty of some parameters
can only be estimated. For example, the scaling factor 𝑘 has no physical counterpart, which makes an estimation challenging.
Halving 𝑘 from ±1 × 10−3 Pa−1 to ±0.5 × 10−3 Pa−1, the influence of the extensional stiffness 𝐸 I becomes higher than of the
scaling factor 𝑘 . Consequently, the assumptions of a sensitivity analysis should be chosen carefully.
From another perspective, the sensitivity analysis can be seen as a part of the design and modeling process. First, those parameters
with the highest influence, based on the current assumptions, are identified. Second, the model or the design are adapted and the
assumptions of the sensitivity analysis updated. With this procedure, an optimal solution for a simple, but detailed model, and a
design with little influence of manufacturing errors can be found.

4 Stability analysis

The second example of the application of sensitivity analysis in soft robotics is a stability analysis. We start from the hypothesis that
the loads acting on a soft robot in a real application can deviate from the loads assumed in the design process, but should thereby
influence the deformation behavior as little as possible. Sensitivity analysis is a useful tool for identifying load limits at which the
deformations of a soft robot are most likely to remain within a desired range, and for better understanding the interrelationship
between the parameters external load 𝑀 , distance 𝐿𝑀 between the external load and the actuator tip, eccentricity radius 𝑟𝑀 , and
eccentricity angle 𝛽.

4.1 Output distribution

The output distribution of the samples of the sensitivity analysis in Figure 7 is a possibility for an analysis without statistical
tools, similar to the spatial distribution in Figure 5. An output distribution shows the scatter of the sample points relative to one
parameter. For example, in Figure 7a, the euclidean distance Δ𝑅 of all samples depending on the mass is given. Conclusions can
be drawn from the distribution of the samples.
The sample output distribution relative to the external load 𝑀 in Figure 7a has little spread compared to the other parameters in
Figure 7b-d. This implies that the influence of the external load 𝑀 on the model output Δ𝑅 dominates the influence of the other
parameters. Consequently, the limit of the load that should be applied to the actuator is mostly determined by the external load 𝑀 ,
while the eccentricity can vary in the range assumed. However, some conclusions can also be drawn from the output distribution of
the other parameters.
The expected value of the distance 𝐿𝑀 between the external load and the actuator tip slightly slopes in Figure 7b. The slope
indicates lower deviations of the actuator tip with load compared to a tip without load if the load is close to the actuator tip.
We assume that a load is always preferred to be applied centered. Although the range of the eccentricity radius 𝑟𝑀 in Table 3
is relatively large, the expected value of the output does not change noticeable. Only the maximums of Δ𝑅 indicate that the
eccentricity radius 𝑟𝑀 has any influence.
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In contrast, the expected value slightly depends on the eccentricity angle 𝛽𝑀 . This is the case because the angle has an influence
on the leverage when the actuator is in a bent position, as in the experimental setup chosen. However, the angle with the lowest
spread depends on the direction of bending.

a) b)

c) d)
Fig. 7: Distribution of euclidean distance Δ𝑅 from sample position to nominal position, conditional expected value (dashed) and

threshold value (solid) for external load 𝑀 a), load distance 𝐿𝑀 b), eccentricity radius 𝑟𝑀 c) and eccentricity angle 𝛽 d).

4.2 Cumulative distribution functions

We use a threshold of Δ𝑅 = 15 × 10−3 m to subdivide the samples into “behavioral” and “non-behavioral”. Figure 8 shows the
resulting cumulative distribution functions of both groups. Remember that the maximum of the difference of both distribution
functions measures the influence of a parameter on the output. The higher the maximum difference, the more important is the
parameter. In the following, we interpret the course of the cumulative distribution functions in Figure 8.
Figure 8a has the highest maximum difference between the cumulative distribution functions which indicates a significant influence
of the external load 𝑀 . The slope of the behavioral curve is high for little loads, i.e. little loads increase the chance that the actuator
tip remains in the desired range.
According to the maximum difference of the cumulative distribution functions, the influence of the distance 𝐿𝑀 between the
external load and the actuator tip on the model output in Figure 8b is the second highest. Again, the slope of the behavioral curve is
higher for smaller 𝐿𝑀 , i.e. 𝐿𝑀 should be chosen as small as possible.
The difference of the cumulative distribution functions of the eccentricity radius 𝑟𝑀 is approximately zero, indicating no influence
of this parameter. The difference for the eccentricity angle 𝛽𝑀 is little, where the slope indicates the angle should be chosen close
to 0◦ or 360◦, respectively. This angle is due to the experimental setup and would differ for bending in another direction.

4.3 Bidimensional projections

Bidimensional projections as shown in Figure 9 are a possibility for a graphical analysis of the interaction of parameters after
subdividing them into behavioral and non-behavioral groups. In these projections, only the samples of the behavioral group are
plotted with two parameters as axis. Since the external load 𝑀 has the highest influence, we only discuss the interaction of 𝑀 with
the other parameters.
The scatter of the samples in Figure 9a suggests that external loads 𝑀 and distance 𝐿𝑀 of the external load to the actuator tip are
inversely proportional to each other. The lower the distance 𝐿𝑀 is, the higher the load 𝑀 can be chosen. This is in accordance
with reality, where the moment applied to the actuator tip is the product of 𝐿𝑀 and 𝑀 .
In contrast, the interrelation of the load 𝑀 and the eccentricity radius 𝑟𝑀 in Figure 9b is less pronounced but proportional, i.e. a
higher load can be applied for a larger radius. This contraintuitive behavior is due to the experimental setup, where an eccentricity
can reduce the leverage of the external load.
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Fig. 8: Cumulative distribution functions𝑊 for behavioral and non-behavioral subset of the external load 𝑀 a), the load distance
𝐿𝑀 , b) the eccentricity radius 𝑟𝑀 c) and the eccentricity angle 𝛽𝑀 d).

As already mentioned, eccentricity angles 𝛽𝑀 close to 0◦ and 360◦, respectively, allow higher external loads due to the direction of
bending in the experimental setup. The scatter of samples in Figure 9c also indicates this fact. Neither a proportional nor an
inversely proportional relation can be identified.

a) b) d)
Fig. 9: Bidimensional projections of samples of 𝑀 in the behavioral subset in combination with the load distance 𝐿𝑀 a), the

eccentricity radius 𝑟𝑀 b) and the eccentricity angle 𝛽𝑀 c)

4.4 Discussion of stability analysis

We chose the example of stability analysis in order to illustrate Monte Carlo filtering. The external load 𝑀 is the parameter with
the highest influence on the model output, which becomes clear both from the output distribution and the cumulative distribution
functions.
With this previous knowledge, it is reasonable to investigate the interaction of the load 𝑀 with the other parameters by bidimensional
projections. While the importancy of 𝑀 could also have been identified by the same sensitivity indices as in section 3, the
interaction is a useful additional information. For example, the interaction with the eccentricity angle 𝛽𝑀 points out that the
eccentricity in the example is not only a disadvantage, but can be used to lower the influence of the load.

281



F. Lamping, L. Schindler, and K.M. de Payrebrune Tech. Mech., Vol. 43, Is. 2, (2023), 271–283

5 Conclusion

The aim of this study is to illustrate the advantage that sensitivity analysis provides in soft robotics. Specified discussions and
remarks regarding the two examples can be found in section 3 and section 4. In the following, we conclude sensitivity analysis in
soft robotics on a more general level.
The sensitivity indices in section 3 quantify the influence of uncertainties of individual beam parameters on the model output.
With this knowledge, the model as well as the underlying design can be optimized in an iterative process. For example, irrelevant
parameters provide a possibility to reduce the complexity of the model while relevant parameters provide the possibility to
appositely modify the model. In a similar fashion, the relevant parameters suggest changes of the design. After adaptions, another
sensitivity analysis is the basis for the next iteration. In the long-term, the accuracy of the model improves while the computational
costs reduce. This is beneficial for all areas of soft robotics where models are applied, for example control or path planning.
Monte Carlo filtering allows to deduce the interaction of parameters such that a desired behavior is maintained within a defined
range. The threshold condition or the threshold value for the Monte Carlo filtering can be chosen with an application specific
strictness. A lower threshold value should be used where accuracy is necessary. The interaction of parameters is an important
general information for better understanding an actuator and its model. For example, section 4 shows that the deviation of the
actuator tip can decrease for a certain eccentricity angle 𝛽𝑀 . Hence, external loads can be applied in a fashion which reduces the
influence on the actuator. A better understanding of the actuator also allows to define use cases with high informative value. This
could be used to develop specified tests in order to compare different actuators.
Using a different assumption in order to investigate the elongation of the soft robot, the interaction of the load parameters could
vary. This is due to the way how the eccentric load acts on the tip of the soft robot. Considering a straight elongation of the soft
robot the influence of the eccentric radius 𝑟𝑀 might be much higher than the influence of the distance 𝐿𝑀 , depending on the
assumed uncertainties. Therefore it might be beneficial to set up not just one orientation and actuation of the soft robot, but a set of
different spatial arrangements with different actuations to classify the influence of parameters for each of these.
From the authors’ perspective, the examples presented in this study illustrate the advantage of sensitivity analysis in soft robotics.
However, the bandwidth of applications is large and depends on the type of actuator and the information that should be extracted
from the sensitivity analysis. Hence, further research should be made in future.
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