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Abstract: The unique viscoelastic properties and the consideration of MFD (magnetic field dependent) viscosity in the Viscoelastic
ferrofluid model render it highly suitable for the accurate modeling of complex biological fluids, such as blood. The present research
comprises the study of perturbation growth rate in a case of Rivlin-Ericksen Ferrofluid layer with viscosity depending on a vertically
acting magnetic field. The complex growth rate of an arbitrary oscillatory motion with growing amplitude in Rivlin-Ericksen
ferromagnetic convection for free-free boundaries has been analytically proven to be located within a semicircle in the right half of the
𝜎𝑟𝜎𝑖-plane and (𝑟𝑎𝑑𝑖𝑢𝑠)2 =

[
𝑅𝑀1/𝑃𝑟

(
1 + 2(1 + 𝛿𝑀3)𝜋2𝐹𝑣

) ]
. Bounds are also obtained for situation involving rigid boundaries.

For stress-free boundaries, the sufficient condition for PES validity is derived as
[
𝑅𝑀1𝑃𝑟/𝜋4 (

1 + (1 + 𝛿𝑀3)𝜋2𝐹𝑣
) ]

≤ 1, where 𝑅
represents the Rayleigh number, 𝑃𝑟 is the Prandtl number, 𝐹𝑣 characterizes viscoelasticity of Rivlin- Ericksen ferrofluid, 𝑀3 > 0 is
the measure of the nonlinearity of magnetization and 𝑀1 is the magnetic number. The mathematical derivation of these results is
presented in detail. Thus the analysis presented here reveals that the oscillations in Rivlin-Ericksen ferromagnetic convection can
be regulated or halted by taking into account the viscosity dependent on the magnetic field and the viscoelasticity of the fluid.

Keywords: Rivlin-Ericksen ferrofluid, Magnetic field dependent viscosity, Principle of exchange of stabilities, Perturbation growth
rate

1 Introduction

Ferrofluids are a class of nanotechnology-based colloidal suspensions consisting of magnetic nanoparticles that are typically on
the scale of a few nanometers to tens of nanometers in diameter and are suspended in a carrier liquid, often organic solvent or
water-based solution. The magnetic nanoparticles are coated with a surfactant that prevents the particles from aggregating and
settling out of the liquid carrier, resulting in a stable suspension. While Rivlin-Ericksen fluids are a class of non-Newtonian fluids
that exhibit viscoelastic behavior. They are characterized by their ability to store and release energy when subjected to shear stress
or deformation, resulting in a nonlinear relationship between stress and strain. Their rheological properties are governed by their
internal structure rather than any external magnetic field, unlike ferrofluids where the magnetic particles tend to align themselves
in the direction of the field under the influence of an external magnetic field. A thorough and authoritative summary of ferrofluid
research has been presented by Rosensweig (1985).
Thus, Rivlin-Ericksen ferromagnetic fluid is a type of non-Newtonian fluid that exhibits both viscoelasticity and ferromagnetism,
with a wide range of potential applications in various fields, including application in the development of smart fluids (which can
respond to external stimuli such as magnetic fields, temperature, and pressure), fiber optics, in drug delivery systems, magnetic
resonance imaging (MRI) contrast agents, avionics, in tissue engineering scaffolds, in field of robotics, in the field of microfluidics
as a controllable fluid medium for microfluidic devices and so on [Odenbach (2008)].
The study of natural convection in a horizontal layer of fluid, where the fluid is heated from below, has been a topic of research for
several decades as it holds significant implications for the control and utilization of various physical, chemical, and biological
processes, and it has been studied under various conditions by several authors, including Bénard (1900), Rayleigh (1916) and
Jeffreys (1926). Chandrasekhar (1981) provided a detailed analysis of Benard convection and derived mathematical equations that
describe the growth of the instability and the resulting patterns of fluid flow. There is a substantial volume of literature available
that pertains to the study of ferromagnetic convection. To gain a comprehensive understanding of this subject matter, Lalas and
Carmi (1971), Shliomis (1972), Aniss et al. (2001), Suslov (2008), Lee and Shivakumara (2011), Prakash (2013), and Prakash et
al. (2018) are among the works that can be referred to. A correction has been applied to the study of ferromagnetic convection
with viscosity dependent on magnetic field by Prakash et al. (2019; 2020). Despite extensive research on thermal convection in
Newtonian fluids, comparatively little emphasis has been placed on studying this phenomenon in non-Newtonian fluids. Herbert
(1963) conducted an analysis, followed by Green (1968), on the issue of oscillatory convection in a viscoelastic fluid under influence
of small disturbances. Sharma (1975) conducted a study on the stability of an electrically conducting Oldroyd fluid layer (1958)
demonstrating that the presence of a magnetic field has a stabilizing effect on the fluid layer. A study was carried out by Bhatia and
Steiner (1972) to investigate the impact of rotation on convective instability in a viscoelastic fluid layer, and their findings stands in
contrast to the stabilizing effect of rotation on an ordinary viscous fluid. There are several elastic-viscous fluids that cannot be
sufficiently characterized by either Maxwell’s or Oldroyd’s constitutive relations (Oldroyd, 1958). Rivlin-Ericksen’s and Walter’s
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(model B) fluids are examples of such fluids that fall outside the scope of the traditional constitutive models. Rivlin-Ericksen (1955)
proposed a theoretical model to describe one of these classes of elastic-viscous fluids. Siddheshwar (2002) examined oscillatory
convection in viscoelastic ferromagnetic and dielectric liquids, including Rivlin-Ericksen, Maxwell, and Oldroyd types. The study
revealed that Maxwell liquids are less stable than Oldroyd liquids, while Rivlin-Ericksen liquids are relatively more stable.
The validation of the Principle of Exchange of Stabilities (PES) is fundamental in stability analysis, defining the conditions under
which a system undergoes a transition from stability to instability. When applied to instability problems, this principle eliminates
the unsteady terms from the linearized perturbation equations, leading to a significant mathematical simplification. Pellew and
Southwell (1940), demonstrated the applicability of the PES in the classical Rayleigh-Benard instability problem. However,
although the PES provides qualitative insights into instability, it does not inherently quantify the rate at which perturbations grow
during the transition. On the other hand, determining the upper bounds of the growth rate contributes quantitatively, offering
insights into the measure of how fast disturbances can amplify during the stability transition and aiding in predicting the system’s
behavior. The combined validation of the PES and the analysis of upper bounds on the growth rate furnish a comprehensive
understanding of the stability characteristics of a system [Chandrasekhar (1981)]. Thus, the research contributes to fields where
stability and predictability are paramount, such as in control theory, it aids engineers in designing controllers capable of managing
disturbances and uncertainties. The semi-circle theorem for both Veronis and Stern thermohaline configurations describing the
upper bounds for free-free, rigid-rigid, and rigid-free combinations of boundaries is established by Banerjee et al. (1981). Banerjee
and Banerjee (1984) introduced a criterion for characterizing non-oscillatory motions in hydrodynamics, which was later expanded
upon by Gupta et al. (1986). Jyoti Prakash (2013) and Prakash and Gupta (2013) has determined the upper bounds of the complex
growth rate within a porous layer that is fully saturated with ferrofluid and also for a rotating ferrofluid layer with MFD viscosity.

To the best of our knowledge and taking into account all the previously mentioned literature regarding the determination of
bounds, no such results exist for the Rivlin-Ericksen ferromagnetic fluid that offers a versatile platform for various scientific and
technological applications. Most of the authors’ findings on characterizing non-oscillatory motions, as well as determining bounds
for the growth rate of neutral and unstable oscillatory perturbations, are not influenced by changes in viscosity, thus limiting their
practical utility. Keeping in mind the importance of field dependence on viscosity, the present study attempts to establish the
upper bounds on the complex growth rate of arbitrary oscillatory movements of rising or neutral amplitude in a Rivlin-Ericksen
ferromagnetic fluid layer with MFD viscosity, heated from below for the case of both free- free and rigid-rigid boundaries.

2 Mathematical Formulation

A layer of Rivlin-Ericksen ferromagnetic fluid that is finitely thin, incompressible, and electrically non-conductive is considered.
This fluid layer of uniform finite thickness ‘𝑑’ unit, is confined by two infinitely extended horizontal planes. The system is
heated underneath. Let 𝑇0 and 𝑇1 (< 𝑇0) represent the temperatures of the lower and upper boundaries, respectively, ensuring
the maintenance of a uniform temperature gradient across the layer. A uniform magnetic field ®𝐻 = (0, 0, 𝐻0) and gravity field
®𝑔 = (0, 0,−𝑔) are present, both acting vertically along the 𝑧-axis as shown in Fig. 1. The viscosity of the fluid layer is assumed to
vary with the magnetic field, given by 𝜇 = 𝜇1 (1 + 𝛿 · ®𝐹), where 𝜇1 is the fluid viscosity in the absence of an external magnetic field,
and ®𝐹 is the magnetic induction. The isotropic nature of the viscosity variation coefficient 𝛿 is considered i.e., 𝛿1 = 𝛿2 = 𝛿3 = 𝛿.
Here, the magnetic induction ®𝐹 and the magnetic field ®𝐻 are assumed to be parallel to each other.

Fig. 1: Geometrical configuration

The fundamental hydrodynamic equations describing thermal convection in a ferrofluid subjected to a vertical magnetic field have
been outlined in Finlayson (1970). For Viscoelastic ferrofluid with magnetic field-dependent viscosity, these equations can be
reformulated using the approach proposed by Chandrasekhar (1981). Consequently, the set of governing equations for the present
physical configuration, under the Boussinesq approximation, is as follows:
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Expressing the fluid velocity as ®𝑞 = (𝑢, 𝑣, 𝑤), the continuity equation is formulated as :

∇ · ®𝑞 = 0, (1)

The momentum equation for viscoelastic ferromagnetic fluid with magnetic field-dependent viscosity is given as [Siddheshwar (1999),
(2002)] :(

1 + 𝜆1
𝜕

𝜕𝑡

) [
𝜌0
𝐷 ®𝑞
𝐷𝑡

+ 𝜌®𝑔 + ∇𝑃 − ∇ · ( ®𝐻 ®𝐹)
]
=

(
1 + 𝜆2

𝜕

𝜕𝑡

) [
𝜇∇2 ®𝑞

]
, (2)

where 𝜆1 and 𝜆2 represent the relaxation and retardation time, respectively, and their values vary depending on the type of
viscoelastic fluid under consideration. For Rivlin-Ericksen viscoelastic fluid 𝜆1 → 0, 𝜆2 → 𝜇2

𝜇1
where 𝜇2 is fluid elasticity

coefficient. Thus momentum equation for the present problem is formulated as :

𝜌0

[
𝐷 ®𝑞
𝐷𝑡

]
+ ∇𝑃 + 𝜌®𝑔 − ∇ · ( ®𝐻 ®𝐹) =

(
1 + 𝜆2

𝜕

𝜕𝑡

)
𝜇∇2 ®𝑞. (3)

Energy and state equations pertaining to the current problem are given as :[
𝜌0𝐶𝑉,𝐻 − 𝜇0 ®𝐻 ·

(
𝜕 ®𝑀
𝜕𝑇

)
𝑉,𝐻

]
𝐷𝑇

𝐷𝑡
+ 𝜇0𝑇

(
𝜕 ®𝑀
𝜕𝑇

)
𝑉,𝐻

· 𝐷
®𝐻

𝐷𝑡
= 𝐾𝑡∇2𝑇, (4)

𝜌 = 𝜌0 [1 + 𝛼 (𝑇0 − 𝑇)] . (5)

The aforementioned equations are formulated in a Cartesian coordinate system (𝑥, 𝑦, 𝑧), where the origin is located at the bottom
layer, and the 𝑧-axis is considered vertically upward. In these equations, 𝑃 denotes pressure, 𝑇 is the temperature, and 𝜇 is
the field-dependent viscosity. Other parameters include 𝐷

𝐷𝑡
= ( 𝜕 ®𝑞

𝜕𝑡
+ ®𝑞 · ∇), ®𝑀, 𝐶𝑉,𝐻 , 𝜌, 𝐾𝑡 , represents the material derivative,

magnetization, specific heat at constant volume and magnetic field, density, and thermal conductivity of the fluid, respectively.
Additionally, 𝜌0 represents the density at reference temperature 𝑇0 and 𝜇0 represents the magnetic permeability of free space.

Furthermore, ferromagnetic fluids satisfy the Maxwell’s equations. The displacement current is negligible since we are looking at
a fluid that is electrically non-conducting. Thus Maxwell’s equations are simplified to

∇ · ®𝐹 = 0, ∇ × ®𝐻 = 0, (6)

where

®𝐹 = 𝜇0 ( ®𝐻 + ®𝑀). (7)

Magnetization, which is parallel to the magnetic field, is influenced by both temperature and intensity of the magnetic field as

®𝑀 =
®𝐻
𝐻
𝑀 (𝐻,𝑇). (8)

Since we are considering, 𝑀0 to denote the magnetization at a magnetic field 𝐻0 and temperature 𝑇0. Additionally, let 𝐾𝑝 represent
the pyromagnetic coefficient, defined as 𝐾𝑝 = −

(
𝜕𝑀
𝜕𝑇

)
𝐻0 ,𝑇0

, and 𝜒 denote the magnetic susceptibility, defined as 𝜒 =

(
𝜕𝑀
𝜕𝐻

)
𝐻0 ,𝑇0

,
where 𝐻0 is the uniform magnetic field of the layer when placed in an external magnetic field. The linearized magnetic equation of
the state may therefore be expressed as follows:

𝑀 − 𝑀0 = 𝜒 (𝐻 − 𝐻0) − 𝐾𝑝 (𝑇 − 𝑇0) . (9)

By considering the basic state components of density, velocity, temperature, pressure, magnetization, and magnetic field as 𝜌𝑖 (𝑧),
®𝑞𝑖 , 𝑇𝑖 (𝑧), 𝑃𝑖 , ®𝑀𝑖 (𝑧) and ®𝐻𝑖 (𝑧) respectively, the quiescent state solution is obtained as

®𝑞 = ®𝑞𝑖 = 0, 𝜌 = 𝜌𝑖 (𝑧), 𝑃 = 𝑃𝑖 (𝑧),

𝑇 = 𝑇𝑖 (𝑧) = −𝛽𝑧 + 𝑇0, ®𝐻𝑖 =
(
𝐻0 −

𝐾𝑝𝛽𝑧

1 + 𝜒

)
𝑘̂ ,

®𝑀𝑖 =
(
𝑀0 −

𝐾𝑝𝛽𝑧

1 + 𝜒

)
𝑘̂ , ®𝐻𝑖 + ®𝑀𝑖 = 𝐻0 + 𝑀0, 𝛽 =

𝑇0 − 𝑇1
𝑑

,

where the subscript ‘𝑖 ’ denotes the initial basic or unperturbed state, and 𝛽 represents the temperature gradient in the vertical
direction.
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To explore the instability of the equilibrium system, minor disturbances are introduced to the initial state solution, and we denote
the perturbed quantities as follows:

®𝑞 = ®𝑞𝑖 + ®𝑞′, 𝜌 = 𝜌𝑖 (𝑧) + 𝜌′, 𝑃 = 𝑃𝑖 (𝑧) + 𝑃′, 𝑇 = 𝑇𝑖 (𝑧) + 𝜃, ®𝐻 = ®𝐻𝑖 (𝑧) + ®𝐻′, ®𝑀 = ®𝑀𝑖 (𝑧) + ®𝑀 ′, (10)

where prime (′) denotes the perturbations [ ®𝑞′ = (𝑢′, 𝑣′, 𝑤′), ®𝐻′ = (𝐻𝑥 ′, 𝐻𝑦 ′, 𝐻𝑧 ′), and ®𝑀 ′ = (𝑀𝑥
′, 𝑀𝑦

′, 𝑀𝑧
′) ] and thus all the

prime terms represent the small perturbations around basic state solution.

Now, following the conventional procedures of linear stability [Chandrasekhar (1981), Finlayson (1970)], by substituting the
perturbed quantities (10) into equations (1),(3),(4), and ∇ · 𝜇0 ( ®𝐻 + ®𝑀) = 0, we derive the linearized perturbation equations:

𝜕𝑢′

𝜕𝑥
+ 𝜕𝑣

′

𝜕𝑦
+ 𝜕𝑤

′

𝜕𝑧
= 0, (11)

𝜌0
𝜕𝑢′

𝜕𝑡
+ 𝜕𝑃

′

𝜕𝑥
− 𝜇0 (𝑀0 + 𝐻0)

𝜕𝐻′
𝑥

𝜕𝑧
=

(
1 + 𝜆2

𝜕

𝜕𝑡

)
𝜇1 [1 + 𝛿𝜇0 (𝑀0 + 𝐻0)] ∇2𝑢′, (12)

𝜌0
𝜕𝑣′

𝜕𝑡
+ 𝜕𝑃

′

𝜕𝑦
− 𝜇0 (𝑀0 + 𝐻0)

𝜕𝐻′
𝑦

𝜕𝑧
=

(
1 + 𝜆2

𝜕

𝜕𝑡

)
𝜇1 [1 + 𝛿𝜇0 (𝑀0 + 𝐻0)] ∇2𝑣′, (13)

𝜌0
𝜕𝑤′

𝜕𝑡
+ 𝜕𝑃

′

𝜕𝑧
− 𝜇0 (𝑀0 + 𝐻0)

𝜕𝐻′
𝑧

𝜕𝑧
+ 𝜇0 (𝐻𝑧 +𝑀𝑧)

𝜕

𝜕𝑧
(𝐻0−

𝐾𝑝𝛽𝑧

1 + 𝜒 ) − 𝜌0𝑔𝛼𝜃 =

(
1 + 𝜆2

𝜕

𝜕𝑡

)
𝜇1 [1 + 𝛿𝜇0 (𝐻0 + 𝑀0)] ∇2𝑤′, (14)

𝜌𝐶
𝜕𝜃

𝜕𝑡
− 𝜇0𝑇0𝐾𝑝

𝜕

𝜕𝑡

(
𝜕𝜙′

𝜕𝑧

)
= 𝐾𝑡∇2𝜃 +

(
𝜌𝑐𝛽 −

𝜇0𝑇0𝐾
2
𝑝𝛽

1 + 𝜒

)
𝑤′, (15)

𝜕

𝜕𝑥
(𝐻𝑥 + 𝑀𝑥) +

𝜕

𝜕𝑦
(𝐻𝑦 + 𝑀𝑦) +

𝜕

𝜕𝑧
(𝐻𝑧 + 𝑀𝑧) = 0, (16)

where 𝜌𝐶 = 𝜌0𝐶𝑉,𝐻 + 𝜇0𝐾𝑝𝐻0 and 𝜙′ is the perturbed magnetic potential.

On applying perturbation to the equations (8) and (9), we obtain:

𝐻′
𝑧 + 𝑀 ′

𝑧 = (1 + 𝜒)𝐻′
𝑧 − 𝐾𝑝𝜃, 𝐻′

𝑗 + 𝑀 ′
𝑗 =

(
1 + 𝑀0

𝐻0

)
𝐻′
𝑗 ( 𝑗 = 1, 2). (17)

The above assumption was made under the restriction that 𝐾𝑝𝛽𝑑 ≪ (1 + 𝜒)𝐻0. This is because the study is confined to practical
conditions where the magnetization caused by temperature changes is far lower than that by an external magnetic field.

Substituting (17) and using ®𝐻′ = ∇𝜙′ in (14)and (16) yields:

𝜌0
𝜕𝑤′

𝜕𝑡
+ 𝜕𝑃

′

𝜕𝑧
− 𝜇0 (𝑀0 + 𝐻0)

𝜕𝐻′
𝑧

𝜕𝑧
+ 𝜇0𝐾𝑝𝛽𝐻

′
𝑧 −

𝜇0𝐾
2
𝑝𝛽𝜃

(1 + 𝜒) − 𝜌0𝑔𝛼𝜃 =

(
1 + 𝜆2

𝜕

𝜕𝑡

)
𝜇1 [1 + 𝛿𝜇0 (𝐻0 + 𝑀0)] ∇2𝑤′, (18)

(1 + 𝜒) 𝜕
2𝜙′

𝜕𝑧2 −
(
1 + 𝑀0

𝐻0

)
∇2

1𝜙
′ − 𝐾𝑝

𝜕𝜃

𝜕𝑧
= 0, (19)

where ∇2
1 =

(
𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑦2

)
.

Now, eliminating 𝑃′ in Eqs. (12),(13),and (18) on using (11), we obtain

𝜌0
𝜕

𝜕𝑡

(
∇2𝑤′

)
− 𝜌0𝛼𝑔∇2

1𝜃 −
𝜇0𝐾

2
𝑝𝛽

1 + 𝜒 ∇2
1𝜃 + 𝜇0𝐾𝑝𝛽

𝜕

𝜕𝑧
(∇2

1𝜙
′) =

(
1 + 𝜆2

𝜕

𝜕𝑡

)
𝜇1 [1 + 𝛿𝜇0 (𝐻0 + 𝑀0)] ∇4𝑤′, (20)

In further analysis, the perturbations 𝑤′, 𝜃, and 𝜙′ are broken down into periodic waves that exist in two dimensions, with attention
paid to disturbances identified by a specific wave number ‘𝑘’. As a result, it is hypothesized that all properties that describe the
perturbation are related to 𝑥, 𝑦, and 𝑡 in a distinct functional manner given as
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(𝑤′, 𝜃, 𝜙′) (𝑥, 𝑦, 𝑧, 𝑡) = [𝑤′′ (𝑧), 𝜃′′ (𝑧), 𝜙′′ (𝑧)] exp
[
𝑖
(
𝑘𝑥𝑥 + 𝑘𝑦𝑦

)
+ 𝜂𝑡

]
, (21)

where 𝑘𝑥 and 𝑘𝑦 represents the wave numbers along the 𝑥 and 𝑦 directions respectively. The resultant wave number is given by

𝑘 =

√︃
𝑘2
𝑥 + 𝑘2

𝑦 and 𝜂 is a constant that, in general, can be complex. Nondimensionalizing the variables in Eqs. (15), (19), and (20)

followed by Eq. (21) and by setting

𝑤∗ =
𝑑

𝜈
𝑤′′, 𝑧∗ =

𝑧

𝑑
, 𝐷 = 𝑑

𝑑

𝑑𝑧
, 𝜈 =

𝜇

𝜌0
, 𝑃𝑟 =

𝜈𝜌𝐶

𝐾𝑡
,

𝜎 =
𝜂𝑑2

𝜈
, 𝑎 = 𝑘𝑑, 𝐹𝑣 =

𝜇2

𝜌0𝑑2 , 𝜃∗ =
𝐾𝑡𝑎𝑅

1
2

𝜌𝐶 𝛽𝜈𝑑
2 𝜃

′′,

𝑅 =
𝑔𝛼𝛽𝑑4𝜌𝐶
𝜈𝐾𝑡

, 𝛿∗ = 𝛿𝜇0𝐻0 (1 + 𝜒), 𝑀1 =
𝜇0𝐾

2
𝑝𝛽

(1 + 𝜒)𝛼𝑔𝜌0
,

𝑀2 =
𝜇0𝑇0𝐾

2
𝑝

(1 + 𝜒)𝜌𝐶
, 𝑀3 =

1 + 𝑀0
𝐻0

(1 + 𝜒) , 𝜙∗ =
(1 + 𝜒)𝐾𝑡𝑎𝑅

1
2 𝜙′′

𝐾𝑝𝜌𝐶 𝛽𝜈𝑑
2 ,

(after removing the asterisks for convenience) we get the following non-dimensional linearized equations:(
𝐷2 − 𝑎2

) {
(1 + 𝛿𝑀3) (1 + 𝐹𝑣𝜎)

(
𝐷2 − 𝑎2

)
− 𝜎

}
𝑤 = 𝑎𝑅

1
2 {(1 + 𝑀1) 𝜃 − 𝑀1𝐷𝜙} , (22)

(
𝐷2 − 𝑎2 − 𝑃𝑟𝜎

)
𝜃 = −𝑀2𝜎𝑃𝑟𝐷𝜙 − (1 − 𝑀2) 𝑎𝑅

1
2𝑤, (23)

(
𝐷2 − 𝑎2𝑀3

)
𝜙 = 𝐷𝜃, (24)

in the subsequent analysis, 𝑀2 is neglected due to its very small order [Finlayson (1970)]. Therefore, the Eq. (23) is simplified to:(
𝐷2 − 𝑎2 − 𝑃𝑟𝜎

)
𝜃 = −𝑎𝑅 1

2𝑤, (25)

where 𝐷 = 𝑑 𝑑
𝑑𝑧

is the differential operator, 𝑀1 =
𝜇0𝐾

2
𝑝𝛽

(1+𝜒)𝛼𝑔𝜌0
is the magnetic number that describes the magnetic force-to-buoyant

force ratio owing to temperature fluctuations(𝑀1 > 0), 𝑀2 =
𝜇0𝑇0𝐾

2
𝑝

(1+𝜒)𝜌𝐶 is the magnetic parameter, 𝑀3 =
1+𝑀0

𝐻0
(1+𝜒) is the measure of

non linearity of magnetization(𝑀3 > 0) , 𝑅 represents the Rayleigh number, 𝐾𝑡 is thermal conductivity , 𝜎 is the complex growth
rate, 𝑃𝑟 (¿0) is Prandtl number and 𝐹𝑣 characterizes the viscoelasticity of fluid.
A constant temperature is maintained at the boundaries leading to the result that any temperature fluctuations at these points are
eliminated (or zero). Thus the suitable boundary conditions can be expressed as:

𝑤 = 0 = 𝜃 = 𝐷𝜙 = 𝐷2𝑤 at 𝑧 = 0 and 𝑧 = 1. ( stress free) (26)

𝑤 = 0 = 𝜃 = 𝐷𝑤 = 𝜙 at 𝑧 = 0 and 𝑧 = 1. ( rigid-rigid) (27)

Equations (22), (24), and (25) together with the either of boundary conditions [(26),( 27)], represent an eigenvalue problem for 𝜎.
We aim to derive condition for PES validity and to characterize 𝜎𝑖 when 𝜎𝑟 ≥ 0. A given state of the system is stable, neutral,
or unstable accordingly as the real part of the complex growth rate (𝜎𝑟 ) is negative, zero or positive, respectively. If 𝜎𝑟 ≥ 0
implies 𝜎𝑖 = 0 (or equivalently, 𝜎𝑖 ≠ 0 implies 𝜎𝑟 < 0) for all wave number 𝑎2, then for neutral instability (𝜎𝑟 = 0), we have
𝜎 = 0. This situation in hydrodynamic stability theory is termed as the validity of the Principle of exchange of stabilities (PES),
which means that the instability sets in as stationary convection, otherwise, we shall have overstability at least when instability sets
in as certain modes. Also, an arbitrary oscillatory motion of neutral or growing amplitude is described by 𝜎𝑟 ≥ 0 and 𝜎𝑖 ≠ 0
[Chandrasekhar (1981)].
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3 Mathematical Analysis

In order to examine the validity of PES, the Pellew and Southwell (1940) method will be employed to the problem under
consideration, when the fluid layer confinement is considered stress-free (dynamically free). This technique, alternatively referred
to as the method of conjugate eigenfunctions, is deeply rooted in the theory of quadratic forms and has contributed significantly to
fundamental findings within the field of hydrodynamic stability theory. The outlined procedure is as follows: Eq. (22) is multiplied
throughout with the complex conjugation of 𝑤, denoted by 𝑤∗, followed by integration with respect to variable 𝑧 over its range.
This yields:

∫ 1

0
𝑤∗

(
𝐷2 − 𝑎2

) {
(1 + 𝛿𝑀3) (1 + 𝐹𝑣𝜎)

(
𝐷2 − 𝑎2

)
− 𝜎

}
𝑤𝑑𝑧 = −𝑅 1

2 𝑎𝑀1

∫ 1

0
𝑤∗𝐷𝜙𝑑𝑧 + 𝑅 1

2 𝑎 (1 + 𝑀1)
∫ 1

0
𝑤∗𝜃𝑑𝑧. (28)

By utilizing Eqs. (24) and (25), as well as the boundary conditions outlined in Eq. (26), we can write

−𝑅 1
2 𝑎𝑀1

∫ 1

0
𝑤∗𝐷𝜙𝑑𝑧 = 𝑀1

∫ 1

0
𝐷𝜙

(
𝐷2 − 𝑎2 − 𝑃𝑟𝜎∗

)
𝜃∗𝑑𝑧

= 𝑀1

∫ 1

0
𝐷𝜙𝐷2𝜃∗𝑑𝑧 − 𝑀1

(
𝑎2 + 𝑃𝑟𝜎∗

) ∫ 1

0
𝜃∗𝐷𝜙𝑑𝑧

= 𝑀1

∫ 1

0
𝐷𝜙𝐷2𝜃∗𝑑𝑧 + 𝑀1

(
𝑎2 + 𝑃𝑟𝜎∗

) ∫ 1

0
𝜙𝐷𝜃∗𝑑𝑧

= 𝑀1

∫ 1

0
𝐷𝜙𝐷2𝜃∗𝑑𝑧 + 𝑀1

(
𝑎2 + 𝑃𝑟𝜎∗

) ∫ 1

0
𝜙

(
𝐷2 − 𝑎2𝑀3

)
𝜙∗𝑑𝑧, (29)

and

𝑎𝑅
1
2

∫ 1

0
𝑤∗𝜃𝑑𝑧 = −

∫ 1

0
𝜃

(
𝐷2 − 𝑎2 − 𝑃𝑟𝜎∗

)
𝜃∗𝑑𝑧. (30)

Substituting Eqs. (29) and (30) in Eq. (28), we obtain

∫ 1

0
𝑤∗

(
𝐷2 − 𝑎2

) {
(1 + 𝛿𝑀3) (1 + 𝐹𝑣𝜎)

(
𝐷2 − 𝑎2

)
− 𝜎

}
𝑤𝑑𝑧 =𝑀1

∫ 1

0
𝐷𝜙𝐷2𝜃∗𝑑𝑧 − (1 + 𝑀1)

∫ 1

0
𝜃

(
𝐷2 − 𝑎2 − 𝑃𝑟𝜎∗

)
𝜃∗𝑑𝑧

+ 𝑀1

(
𝑎2 + 𝑃𝑟𝜎∗

) ∫ 1

0
𝜙

(
𝐷2 − 𝑎2𝑀3

)
𝜙∗𝑑𝑧. (31)

Integrating by parts the terms of Eq. (31) along with utilizing the boundary conditions (26) and the identity∫ 1

0
𝜁∗𝐷2𝑛𝜁𝑑𝑧 = (−1)𝑛

∫ 1

0
|𝐷𝑛𝜁 |2 𝑑𝑧,

where 𝜁 = 𝑤(𝑛 = 1, 2) or 𝜁 = 𝜃 (𝑛 = 1), we can express Eq. (31) in the following form:

(1 + 𝛿𝑀3) (1 + 𝐹𝑣𝜎)
∫ 1

0

(��𝐷2𝑤
��2 + 𝑎4 |𝑤 |2 + 2𝑎2 |𝐷𝑤 |2

)
d𝑧 = − 𝜎

∫ 1

0

(
|𝐷𝑤 |2 + 𝑎2 |𝑤 |2

)
𝑑𝑧

− 𝑀1

∫ 1

0
𝐷2𝜙𝐷𝜃∗𝑑𝑧

+ (1 + 𝑀1)
∫ 1

0

(
|𝐷𝜃 |2 + 𝑎2 |𝜃 |2 + 𝑃𝑟𝜎∗ |𝜃 |2

)
𝑑𝑧

− 𝑀1

(
𝑎2 + 𝑃𝑟𝜎∗

) ∫ 1

0

(
|𝐷𝜙|2 + 𝑎2𝑀3 |𝜙|2

)
𝑑𝑧. (32)

By taking the complex conjugate of equation (24) and multiplying it with 𝜙, the resulting equation can be integrated for variable 𝑧
over its range. This yields: ∫ 1

0

(
|𝐷𝜙|2 + 𝑎2𝑀3 |𝜙|2

)
𝑑𝑧 = −

∫ 1

0
𝜙𝐷𝜃∗𝑑𝑧.

From the above equation, it is clear that
∫ 1

0 𝜙𝐷𝜃∗𝑑𝑧 necessitates to be a real value. Now multiplying Eq. (24) by D𝜃∗ and integrating

with respect to 𝑧 over its vertical range, we obtain∫ 1

0
𝐷2𝜙𝐷𝜃∗𝑑𝑧 − 𝑎2𝑀3

∫ 1

0
𝜙𝐷𝜃∗𝑑𝑧 =

∫ 1

0
|𝐷𝜃 |2𝑑𝑧.
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As the right-hand side of the equation is real and
∫ 1

0 𝜙𝐷𝜃∗𝑑𝑧 is a real quantity, it follows that
∫ 1

0 𝐷2𝜙𝐷𝜃∗𝑑𝑧 in the aforementioned
equation is also a real value.
In the following mathematical derivation, we equate the imaginary parts of Eq. (32) and utilize the property that

∫ 1
0 𝐷2𝜙𝐷𝜃∗𝑑𝑧 is

a real number, we get:

𝜎i (1 + 𝛿𝑀3) 𝐹𝑣
∫ 1

0

(
|𝐷2𝑤 |2 + 𝑎4 |𝑤 |2 + 2𝑎2 |𝐷𝑤 |2

)
d𝑧 + 𝜎i

∫ 1

0
|𝐷𝑤 |2𝑑𝑧 + 𝑎2𝜎i

∫ 1

0
|𝑤 |2𝑑𝑧

− 𝜎i𝑀1𝑃𝑟

∫ 1

0

(
|𝐷𝜙|2 + 𝑎2𝑀3 |𝜙 |2

)
𝑑𝑧 + 𝜎i (1 + 𝑀1) 𝑃𝑟

∫ 1

0
|𝜃 |2𝑑𝑧 = 0. (33)

This clearly indicates that 𝜎𝑖 may or may not be equal to zero since, if 𝜎𝑖 is taken common throughout, the remaining terms in the
product may balance to yield a result equal to zero.
Now we derive a sufficient condition for the validity of the PES in the present case.

Theorem 3.1. If (𝑤, 𝜃, 𝜙, 𝜎), with 𝑅 > 0 and 𝜎𝑟 ≥ 0, is a solution of Eqs. (22), (24), (25) together with boundary conditions (26)
and 𝑅𝑀1𝑃𝑟/𝜋4 [1 + (1 + 𝛿𝑀3)𝐹𝑣𝜋2] ≤ 1 then 𝜎i = 0. In particular, PES is valid if 𝑅𝑀1𝑃𝑟/𝜋4 [1 + (1 + 𝛿𝑀3)𝐹𝑣𝜋2] ≤ 1.

Proof. Suppose that 𝜎𝑖 ≠ 0. Simplification of Eq. (33), on dividing both sides by 𝜎𝑖 , leads to the following equation

(1 + 𝛿𝑀3) 𝐹𝑣
∫ 1

0

(
|𝐷2𝑤 |2 + 𝑎4 |𝑤 |2 + 2𝑎2 |𝐷𝑤 |2

)
d𝑧 +

∫ 1

0
|𝐷𝑤 |2𝑑𝑧 + 𝑎2

∫ 1

0
|𝑤 |2𝑑𝑧 =𝑀1𝑃𝑟

∫ 1

0

(
|𝐷𝜙|2 + 𝑎2𝑀3 |𝜙|2

)
𝑑𝑧

− (1 + 𝑀1) 𝑃𝑟
∫ 1

0
|𝜃 |2𝑑𝑧. (34)

Multiplication of Eq. (24) with 𝜙∗ (the complex conjugate of 𝜙 ) followed by integration by parts of resulting expression along with
utilizing boundary conditions (26), results in∫ 1

0

(
|𝐷𝜙|2 + 𝑎2𝑀3 |𝜙|2

)
𝑑𝑧 =

∫ 1

0
𝜃𝐷𝜙∗𝑑𝑧

≤
����∫ 1

0
𝜃𝐷𝜙∗𝑑𝑧

����
≤

∫ 1

0
|𝜃𝐷𝜙∗ | 𝑑𝑧

≤
∫ 1

0
|𝜃 | |𝐷𝜙|𝑑𝑧

≤
(∫ 1

0
|𝜃 |2𝑑𝑧

) 1
2
(∫ 1

0
|𝐷𝜙|2𝑑𝑧

) 1
2

.(employing the Schwartz inequality) (35)

Thus we obtain ∫ 1

0
|𝐷𝜙|2𝑑𝑧 ≤

(∫ 1

0
|𝐷𝜙|2𝑑𝑧

) 1
2
(∫ 1

0
|𝜃 |2𝑑𝑧

) 1
2

,

implying(∫ 1

0
|𝐷𝜙|2𝑑𝑧

) 1
2

≤
(∫ 1

0
|𝜃 |2𝑑𝑧

) 1
2

.

Inequality (35), on using
(∫ 1

0 |𝐷𝜙|2𝑑𝑧
) 1

2 ≤
(∫ 1

0 |𝜃 |2𝑑𝑧
) 1

2 , get modified to

∫ 1

0

(
|𝐷𝜙|2 + 𝑎2𝑀3 |𝜙|2

)
𝑑𝑧 ≤

∫ 1

0
|𝜃 |2𝑑𝑧. (36)

Since 𝑤 and 𝜃 fulfill the conditions of ” 𝑤(0) = 0 = 𝑤(1) and 𝜃 (0) = 0 = 𝜃 (1)”, it can be inferred from the Rayleigh-Ritz inequality
[Schultz (1973)] that:∫ 1

0
|𝐷𝑤 |2𝑑𝑧 ≥ 𝜋2

∫ 1

0
|𝑤 |2𝑑𝑧, (37)

and
7
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∫ 1

0
|𝐷𝜃 |2𝑑𝑧 ≥ 𝜋2

∫ 1

0
|𝜃 |2𝑑𝑧. (38)

Also, ∫ 1

0

(
|𝐷𝑤 |2

)
𝑑𝑧 =

����−∫ 1

0
𝑤∗𝐷2𝑤𝑑𝑧

���� ≤ ����∫ 1

0
𝑤∗𝐷2𝑤𝑑𝑧

���� ≤ [∫ 1

0
|𝑤 |2𝑑𝑧

] 1
2
[∫ 1

0

��𝐷2𝑤
��2 𝑑𝑧] 1

2

,

which on utilizing Eq. (37), yields∫ 1

0
|𝐷2𝑤 |2𝑑𝑧 ≥ 𝜋2

∫ 1

0
|𝐷𝑤 |2𝑑𝑧. (39)

Now on multiplying Eq. (25) with the complex conjugate of 𝜃 (i.e., 𝜃∗) and subsequently integrating the resulting equation
through several iterations via the method of integration by parts, while also incorporating the specified boundary conditions on 𝜃
(specifically, 𝜃 (0) = 0 = 𝜃 (1)), the real part of the obtained equation results to:∫ 1

0

(
|𝐷𝜃 |2 + 𝑎2 |𝜃 |2 + 𝑃𝑟𝜎𝑟 |𝜃 |2

)
𝑑𝑧 = Real part of 𝑅

1
2 𝑎

∫ 1

0
𝜃∗𝑤𝑑𝑧

≤ 𝑅
1
2 𝑎

����∫ 1

0
𝜃∗𝑤𝑑𝑧

����
≤ 𝑅

1
2 𝑎

∫ 1

0
|𝜃∗𝑤 | 𝑑𝑧

≤ 𝑅
1
2 𝑎

∫ 1

0
|𝜃∗ | |𝑤 |𝑑𝑧

≤ 𝑅
1
2 𝑎

∫ 1

0
|𝜃 | |𝑤 |𝑑𝑧

≤ 𝑅
1
2 𝑎

(∫ 1

0
|𝜃 |2𝑑𝑧

) 1
2
(∫ 1

0
|𝑤 |2𝑑𝑧

) 1
2

. (using Schwarz inequality)

Upon combining this inequality with (38) along with utilizing 𝜎𝑟 ≥ 0, we get:

𝜋2
∫ 1

0
|𝜃 |2𝑑𝑧 ≤ 𝑅

1
2 𝑎

(∫ 1

0
|𝜃 |2𝑑𝑧

) 1
2
(∫ 1

0
|𝑤 |2𝑑𝑧

) 1
2

,

which implies that(∫ 1

0
|𝜃 |2𝑑𝑧

) 1
2

≤ 𝑅
1
2 𝑎

𝜋2

(∫ 1

0
|𝑤 |2𝑑𝑧

) 1
2

,

and thus∫ 1

0

(
|𝐷𝜃 |2 + 𝑎2 |𝜃 |2 + 𝑃𝑟𝜎𝑟 |𝜃 |2

)
𝑑𝑧 ≤ 𝑅𝑎2

𝜋2

∫ 1

0
|𝑤 |2𝑑𝑧,

which upon using inequality (37), gives∫ 1

0
|𝜃 |2𝑑𝑧 ≤ 𝑅

𝜋4

∫ 1

0
|𝐷𝑤 |2𝑑𝑧. (40)

Using inequalities(36), (39), and (40) in Eq. (34), we obtain

(1 + 𝛿𝑀3) 𝐹𝑣𝜋2
∫ 1

0
|𝐷𝑤 |2 𝑑𝑧 +

∫ 1

0
|𝐷𝑤 |2𝑑𝑧 + 𝐼12 ≤ 𝑅𝑀1𝑃𝑟

𝜋4

∫ 1

0
|𝐷𝑤 |2𝑑𝑧 − (1 + 𝑀1) 𝑃𝑟

∫ 1

0
|𝜃 |2𝑑𝑧,

where

𝐼1
2 = (1 + 𝛿𝑀3)𝐹𝑣𝑎2

∫ 1

0

[
𝑎2 |𝑤 |2 + 2|𝐷𝑤 |2

]
𝑑𝑧 + 𝑎2

∫ 1

0
|𝑤 |2𝑑𝑧,

is clearly a positive definite.
which gives,( [

1 + (1 + 𝛿𝑀3)𝐹𝑣𝜋2] − 𝑅𝑀1𝑃𝑟

𝜋4

) ∫ 1

0
|𝐷𝑤 |2𝑑𝑧 + 𝐼12 + (1 + 𝑀1) 𝑃𝑟

∫ 1

0
|𝜃 |2𝑑𝑧 ≤ 0.

It is clear from above inequality that if 𝑅𝑀1𝑃𝑟/𝜋4 [
1 + (1 + 𝛿𝑀3)𝐹𝑣𝜋2] ≤ 1, we have a contradiction, and we must have 𝜎𝑖 = 0. □
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Thus,
[
𝑅𝑀1𝑃𝑟/𝜋4 (

1 + (1 + 𝛿𝑀3)𝐹𝑣𝜋2) ] ≤ 1 represents a sufficient condition for the PES to be valid in this case.

Special Case: If the viscoelastic characteristic is set to zero, the current Rivlin-Ericksen ferrofluid model simplifies to the clas-
sic ferrofluid model. In this case, the sufficient condition for PES to hold is obtained as

[
𝑅𝑀1𝑃𝑟/𝜋4] ≤ 1 [Prakash (2012), for 𝛿 = 0].

It is noteworthy that if we look at the complement of the sufficient condition for PES to be valid, i.e.,[
𝑅𝑀1𝑃𝑟/𝜋4

(
1 + (1 + 𝛿𝑀3)𝐹𝑣𝜋2

)]
> 1

must hold, we observe the potential existence of oscillatory modes with increasing or neutral amplitudes. Consequently, it becomes
crucial to estimate the limits for the growth rate of these motions.
In the subsequent analysis, we have established the upper bounds of the complex growth rate of oscillatory motions (𝜎𝑖 ≠ 0 ),
whether neutral or unstable (𝜎𝑟 ≥ 0).

Theorem 3.2. If (𝑤, 𝜃, 𝜙, 𝜎), with 𝑅 > 0, 𝜎𝑟 ≥ 0, and 𝜎𝑖 ≠ 0,is a solution of Eqs. (22)–(25) together with boundary conditions
(26) then the condition

|𝜎 |2 < 𝑅𝑀1

𝑃𝑟
[
1 + 2(1 + 𝛿𝑀3)𝐹𝑣𝜋2

]
is necessarily satisfied.

Proof. After multiplying it by respective complex conjugate, integration of Eq. (25) with respect to 𝑧 over its vertical range through
a series of suitable iterations along with utilizing the boundary conditions (26), results in:∫ 1

0

(��𝐷2𝜃
��2 + 2𝑎2 |𝐷𝜃 |2 + 𝑎4 |𝜃 |2

)
𝑑𝑧 + 2𝑃𝑟𝜎𝑟

∫ 1

0

(
|𝐷𝜃 |2 + 𝑎2 |𝜃 |2

)
𝑑𝑧 + 𝑃2

𝑟 |𝜎 |2
∫ 1

0
|𝜃 |2𝑑𝑧 = 𝑅𝑎2

∫ 1

0
|𝑤 |2𝑑𝑧. (41)

Since 𝜎𝑟 ≥ 0, we obtain from Eq. (41), that∫ 1

0
|𝜃 |2𝑑𝑧 ≤ 𝑅𝑎2

𝑃2
𝑟 |𝜎 |2

∫ 1

0
|𝑤 |2𝑑𝑧. (42)

From Eq. (34), we have

(1 + 𝛿𝑀3) 𝐹𝑣
∫ 1

0

(
|𝐷2𝑤 |2 + 𝑎4 |𝑤 |2 + 2𝑎2 |𝐷𝑤 |2

)
d𝑧 +

∫ 1

0

(
|𝐷𝑤 |2 + 𝑎2 |𝑤 |2

)
𝑑𝑧 =𝑀1𝑃𝑟

∫ 1

0

(
|𝐷𝜙|2 + 𝑎2𝑀3 |𝜙 |2

)
𝑑𝑧

− (1 + 𝑀1) 𝑃𝑟
∫ 1

0
|𝜃 |2𝑑𝑧.

Now by employing the inequalities (36) and (42), we can derive the following expression from Eq. (34).

2(1 + 𝛿𝑀3)𝐹𝑣𝑎2
∫ 1

0
|𝐷𝑤 |2𝑑𝑧 + 𝑎2

∫ 1

0
|𝑤 |2𝑑𝑧 + 𝐼22 + (1 + 𝑀1) 𝑃𝑟

∫ 1

0
|𝜃 |2𝑑𝑧 ≤ 𝑅𝑎2𝑀1

𝑃𝑟 |𝜎 |2

∫ 1

0
|𝑤 |2𝑑𝑧,

and on using
∫ 1

0 |𝐷𝑤 |2𝑑𝑧 ≥ 𝜋2
∫ 1

0 |𝑤 |2𝑑𝑧, we get

2(1 + 𝛿𝑀3)𝐹𝑣𝑎2𝜋2
∫ 1

0
|𝑤 |2𝑑𝑧 + 𝑎2

∫ 1

0
|𝑤 |2𝑑𝑧 + 𝐼22 + (1 + 𝑀1) 𝑃𝑟

∫ 1

0
|𝜃 |2𝑑𝑧 ≤ 𝑅𝑎2𝑀1

𝑃𝑟 |𝜎 |2

∫ 1

0
|𝑤 |2𝑑𝑧,

where 𝐼22 = (1 + 𝛿𝑀3)𝐹𝑣
∫ 1

0 [|𝐷2𝑤 |2 + 𝑎4 |𝑤 |2]𝑑𝑧 +
∫ 1

0 |𝐷𝑤 |2𝑑𝑧, is a positive definite.
The above equation can be rearranged as:[

1 + 2(1 + 𝛿𝑀3)𝐹𝑣𝜋2 − 𝑅𝑀1

𝑃𝑟 |𝜎 |2

]
𝑎2

∫ 1

0
|𝑤 |2𝑑𝑧 + 𝐼22 + (1 + 𝑀1) 𝑃𝑟

∫ 1

0
|𝜃 |2𝑑𝑧 ≤ 0. (43)

It follows from inequality (43) that

|𝜎 |2 < 𝑅𝑀1

𝑃𝑟
[
1 + 2(1 + 𝛿𝑀3)𝐹𝑣𝜋2

] .
With this result, the theorem’s proof concluded.

□
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An equivalent statement of the above theorem is: for the case of free-free boundaries in the Rivlin-Ericksen ferromagnetic fluid
layer, the complex growth rate of an arbitrary oscillatory motion with growing amplitude lies within a semicircle in the right half
of the𝜎𝑟𝜎𝑖− plane. The semicircle has its center at the origin and the square of its radius is given by 𝑅𝑀1/𝑃𝑟

[
1 + 2(1 + 𝛿𝑀3)𝐹𝑣𝜋2] .

Now we will determine the upper bounds of complex growth rates of oscillatory motions of growing amplitude in Rivlin-Ericksen
ferromagnetic convection, considering the case of rigid-rigid boundaries (27), as follows:

Theorem 3.3. If (𝑤, 𝜃, 𝜙, 𝜎), with 𝑅 > 0, 𝜎𝑟 ≥ 0, and 𝜎𝑖 ≠ 0, is a solution of the Eqs. (22)–(25) along with the boundary
conditions (27) then

|𝜎 |2𝜎2
𝑖 <

(
𝑅𝑀1

𝑃𝑟
[
1 + 2(1 + 𝛿𝑀3)𝐹𝑣𝜋2

] )2

.

Proof. On integrating Eq. (22), after multiplying it by 𝑤∗, with respect to 𝑧, we obtain:

∫ 1

0
𝑤∗

(
𝐷2 − 𝑎2

) {
(1 + 𝛿𝑀3) (1 + 𝐹𝑣𝜎)

(
𝐷2 − 𝑎2

)
− 𝜎

}
𝑤𝑑𝑧 = −𝑅 1

2 𝑎𝑀1

∫ 1

0
𝑤∗𝐷𝜙𝑑𝑧 + 𝑅 1

2 𝑎 (1 + 𝑀1)
∫ 1

0
𝑤∗𝜃𝑑𝑧. (44)

The second term on R.H.S. of above equation on utilizing Eq. (25) and boundary conditions (27) gives

𝑅
1
2 𝑎 (1 + 𝑀1)

∫ 1

0
𝑤∗𝜃𝑑𝑧 = − (1 + 𝑀1)

∫ 1

0
𝜃

(
𝐷2 − 𝑎2 − 𝑃𝑟𝜎∗

)
𝜃∗𝑑𝑧. (45)

Thus on using (45), Eq. (44) modified to:∫ 1

0
𝑤∗

(
𝐷2 − 𝑎2

) {
(1 + 𝛿𝑀3) (1 + 𝐹𝑣𝜎)

(
𝐷2 − 𝑎2

)
− 𝜎

}
𝑤𝑑𝑧 = − (1 + 𝑀1)

∫ 1

0
𝜃

(
𝐷2 − 𝑎2 − 𝑃𝑟𝜎∗

)
𝜃∗𝑑𝑧

− 𝑅1/2𝑎𝑀1

∫ 1

0
𝑤∗𝐷𝜙𝑑𝑧. (46)

By iteratively applying integration by parts to the various terms in Eq. (44) and incorporating the boundary conditions (27), along
with the following identity:

∫ 1

0
𝜁∗𝐷2𝑛𝜁𝑑𝑧 = (−1)𝑛

∫ 1

0
|𝐷𝑛𝜁 |2 𝑑𝑧,

where 𝜁 = 𝑤 with 𝑛 = 1, 2, or 𝜁 = 𝜃 with 𝑛 = 1, we obtain

(1 + 𝛿𝑀3) (1 + 𝐹𝑣𝜎)
∫ 1

0

(
|𝐷2𝑤 |2 + 𝑎4 |𝑤 |2 + 2𝑎2 |𝐷𝑤 |2

)
𝑑𝑧+𝜎

∫ 1

0

(
|𝐷𝑤 |2 + 𝑎2 |𝑤 |2

)
𝑑𝑧

= −𝑅 1
2 a𝑀1

∫ 1

0
𝑤∗𝐷𝜙𝑑𝑧

+ (1 + 𝑀1)
∫ 1

0

(
|𝐷𝜃 |2 + 𝑎2 |𝜃 |2 + 𝑃𝑟𝜎∗ |𝜃 |2

)
𝑑𝑧. (47)

Extracting the imaginary parts on both sides of above Eq. (47) and then dividing the equation thus obtained throughout by 𝜎𝑖 (≠ 0),
yields:

(1 + 𝛿𝑀3)𝐹𝑣
∫ 1

0

(
|𝐷2𝑤 |2 + 𝑎4 |𝑤 |2 + 2𝑎2 |𝐷𝑤 |2

)
𝑑𝑧+

∫ 1

0

(
|𝐷𝑤 |2 + 𝑎2 |𝑤 |2

)
𝑑𝑧

= −𝑅
1/2𝑎𝑀1
𝜎𝑖

Im
[∫ 1

0
𝑤∗𝐷𝜙𝑑𝑧

]
− (1 + 𝑀1) 𝑃𝑟

∫ 1

0
|𝜃 |2𝑑𝑧. (48)

10
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Now

−𝑅
1
2 𝑎𝑀1
𝜎𝑖

Im
[∫ 1

0
𝑤∗𝐷𝜙𝑑𝑧

]
≤

�����−𝑅 1
2 𝑎𝑀1
𝜎𝑖

Im
[∫ 1

0
𝑤∗𝐷𝜙𝑑𝑧

] �����
≤ 𝑅

1
2 𝑎𝑀1

���� 1
𝜎𝑖

∫ 1

0
𝑤∗𝐷𝜙𝑑𝑧

����
≤ 𝑅

1
2 𝑎𝑀1
|𝜎𝑖 |

����∫ 1

0
𝑤∗𝐷𝜙𝑑𝑧

����
≤ 𝑅

1
2 𝑎𝑀1
|𝜎𝑖 |

∫ 1

0
|𝑤∗𝐷𝜙| 𝑑𝑧

≤ 𝑅
1
2 𝑎𝑀1
|𝜎𝑖 |

∫ 1

0
|𝑤 | |𝐷𝜙|𝑑𝑧

≤ 𝑅
1
2 𝑎𝑀1
|𝜎𝑖 |

(∫ 1

0
|𝑤 |2𝑑𝑧

) 1
2
(∫ 1

0
|𝐷𝜙|2𝑑𝑧

) 1
2

.(on using Schwartz inequality) (49)

On combinig inequalities (36) and (42), we have(∫ 1

0
|𝐷𝜙|2𝑑𝑧

) 1
2

≤ 𝑅1/2𝑎

𝑃𝑟 |𝜎 |

(∫ 1

0
|𝑤 |2𝑑𝑧

) 1
2

. (50)

Inequality (49), on using the inequality (50), simplified to

−𝑅
1/2a𝑀1
𝜎𝑖

Im
[∫ 1

0
𝑤∗𝐷𝜙𝑑𝑧

]
≤ 𝑅𝑎2𝑀1
𝑃𝑟 |𝜎 | |𝜎𝑖 |

∫ 1

0
|𝑤 |2𝑑𝑧. (51)

Thus on utilizing inequality (51) in Eq. (48), we ultimately have

(1 + 𝛿𝑀3)𝐹𝑣
∫ 1

0

(��𝐷2𝑤
��2 + 2𝑎2 |𝐷𝑤 |2 + 𝑎4 |𝑤 |2

)
+
∫ 1

0

(
|𝐷𝑤 |2 + 𝑎2 |𝑤 |2

)
𝑑𝑧

+(1 + 𝑀1)𝑃𝑟
∫ 1

0
|𝜃 |2𝑑𝑧 ≤ 𝑎2𝑅𝑀1

𝑃𝑟 |𝜎 | |𝜎𝑖 |

∫ 1

0
|𝑤 |2𝑑𝑧,

which implies that

2(1 + 𝛿𝑀3)𝐹𝑣𝑎2
∫ 1

0
|𝐷𝑤 |2𝑑𝑧 + 𝑎2

∫ 1

0
|𝑤 |2𝑑𝑧 + 𝐼22 + (1 + 𝑀1) 𝑃𝑟

∫ 1

0
|𝜃 |2𝑑𝑧 ≤ 𝑎2𝑅𝑀1

𝑃𝑟 |𝜎 | |𝜎𝑖 |

∫ 1

0
|𝑤 |2𝑑𝑧,

and on using [
∫ 1

0 |𝐷𝑤 |2𝑑𝑧 ≥ 𝜋2
∫ 1

0 |𝑤 |2𝑑𝑧], we get

2(1 + 𝛿𝑀3)𝐹𝑣𝑎2𝜋2
∫ 1

0
|𝑤 |2𝑑𝑧 + 𝑎2

∫ 1

0
|𝑤 |2𝑑𝑧 + 𝐼22 + (1 + 𝑀1) 𝑃𝑟

∫ 1

0
|𝜃 |2𝑑𝑧 ≤ 𝑎2𝑅𝑀1

𝑃𝑟 |𝜎 | |𝜎𝑖 |

∫ 1

0
|𝑤 |2𝑑𝑧,

where 𝐼22 = (1 + 𝛿𝑀3)𝐹𝑣
∫ 1

0 [|𝐷2𝑤 |2 + 𝑎4 |𝑤 |2]𝑑𝑧 +
∫ 1

0 |𝐷𝑤 |2𝑑𝑧, is a positive definite.

The above equation can be rearranged as:[
1 + 2(1 + 𝛿𝑀3)𝐹𝑣𝜋2 − 𝑅𝑀1

𝑃𝑟 |𝜎 | |𝜎𝑖 |

]
𝑎2

∫ 1

0
|𝑤 |2𝑑𝑧 + 𝐼22 + (1 + 𝑀1) 𝑃𝑟

∫ 1

0
|𝜃 |2𝑑𝑧 ≤ 0, (52)

which clearly implies that

|𝜎 |2𝜎2
𝑖 <

(
𝑅𝑀1

𝑃𝑟 [1 + 2(1 + 𝛿𝑀3)𝐹𝑣𝜋2]

)2

or

(
𝜎2
𝑟 + 𝜎2

𝑖

)
𝜎2
𝑖 <

(
𝑅𝑀1

𝑃𝑟 [1 + 2(1 + 𝛿𝑀3)𝐹𝑣𝜋2]

)2
. (53)

□

The theorem can be equivalently restated as: the complex growth rate (𝜎𝑟 , 𝜎𝑖) of any growing amplitude oscillatory motion in
Rivlin-Ericksen ferromagnetic convection, subject to rigid-rigid boundaries, is situated within the region’s right half specified by
Eq. (53).
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4 Conclusive Remarks

Linear stability theory and Normal mode analysis are employed to obtain the upper bounds on the complex growth rate of arbitrary
oscillatory(𝜎𝑖 ≠ 0) movements of rising (𝜎𝑟 > 0) or neutral (𝜎𝑟 = 0) amplitude in a Rivlin-Ericksen ferromagnetic fluid layer with
MFD (magnetic field dependent) viscosity, heated from below, for the case of both free- free and rigid-rigid boundaries. The key
findings of this study are summarized as follows:

1. A sufficient condition for the validity of the Principle of Exchange of Stabilities (PES) for the case of stress-free (dynamically
free) boundaries is obtained using the Pellew and Southwell (1940) method. It is found that the onset of convection occurs
through stationary mode when

[
𝑅𝑀1𝑃𝑟/𝜋4 (

1 + (1 + 𝛿𝑀3)𝜋2𝐹𝑣
) ]

≤ 1.

2. For the case of stress-free boundaries in the Rivlin-Ericksen ferromagnetic fluid layer, the complex growth rate of an
arbitrary oscillatory motion of growing amplitude (𝜎𝑟 ≥ 0) lies within a semicircle in the right half of the 𝜎𝑟𝜎𝑖− plane. The
semicircle has its center at the origin and the square of its radius is given by 𝑅𝑀1/𝑃𝑟

[
1 + 2(1 + 𝛿𝑀3)𝐹𝑣𝜋2] .

3. The complex growth rate (𝜎𝑟 , 𝜎𝑖) of any growing amplitude oscillatory (𝜎𝑖 ≠ 0) motion in Rivlin-Ericksen ferromagnetic
convection, subject to rigid-rigid boundaries, is situated within the right half of region specified as:

(
𝜎2
𝑟 + 𝜎2

𝑖

)
𝜎2
𝑖
<(

𝑅𝑀1/𝑃𝑟 [1 + 2(1 + 𝛿𝑀3)𝐹𝑣𝜋2]
)2.

4. The upper bounds obtained for rigid boundaries are particularly noteworthy, as the precise closed-form solutions can be
difficult to obtain in such cases.

5. The derived inequalities reveal that by deliberately adjusting the fluid’s viscoelasticity, coupled with modulation of MFD
viscosity, one can effectively control the oscillations in thermomagnetic convection.

6. The results obtained herein are universally applicable, as they involve only non-dimensional quantities and are independent
of the wave number.
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