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Abstract: Surface electromyography (sEMG) signals are often used to control prosthetics, but accurately interpreting these
stochastic signals remains challenging. Deep learning tools like convolutional neural networks (CNNs) have shown promise for
complex classification problems, yet CNN applications for time series data are limited. This work explores adapting CNNs to
sEMG time series for improved classification, addressing two questions: 1) Can a CNN trained on cross-subject data generalize
without individualization? 2) Can a small individualized dataset sufficiently train an accurate control model? To investigate,
sEMG data is formatted into images using handcrafted features, with pixels representing multichannel time series. A ResNet50
architecture is trained on two datasets: individual and cross-subject. Results show cross-subject models fail to provide accurate
subject-specific control due to high inter-subject variability of sEMG. However, ResNet50 trained on individual data produces
highly accurate offline and near real-time classification. The proposed method is also tested on an external dataset and compared to
similar published methods, demonstrating strong performance. In summary, CNNs show promise for prosthetic control from
sEMG but require individualized training data. The proposed data formatting and ResNet50 architecture can enable precise
control from minimal data, overcoming barriers to clinical implementation. Further research into cross-subject generalizability is
warranted to understand the sources of variability and improve model robustness.

Keywords: Convolutional Neural Network, Feature Engineering, Residual Neural Network, Spatial Feature, Surface Electromyog-
raphy, Time Series Data

1 Introduction

Surface electromyography (sEMG) signals are used to control assistive devices like prostheses, wheelchairs Li et al. (2017); Geng
et al. (2018); Al-Angari et al. (2016), speech interfaces Scheme et al. (2007, 2006), and virtual reality systems Summa et al. (2019).
These signals originate from skeletal muscles and reflect motor neuron activity. However, accurately sensing these small voltage
potentials (-5 to +5 mV) is challenging due to cross-talk from other muscles Côté Allard et al. (2019). Much research has focused
on extracting motion intent from sEMG for prosthesis control through methods like artificial neural networks (ANNs) Cheron et al.
(1996), fuzzy logic Chan et al. (2000), and optimization algorithms Fernandez et al. (1996). Typically, ANNs are trained offline
then utilized for real-time control Moron et al. (2018). An advanced ANN enabled intuitive cursor control using eight sEMG
sensors Olsson et al. (2020a), indicating promise for deep learning in prosthetic devices by addressing issues like latency Olsson
et al. (2020a); Atzori and Müller (2019).

Non-invasive sEMG systems are preferred for prostheses Atzori et al. (2016). However, sEMG signals are stochastic, complicating
motion prediction Xiong et al. (2021). Often inertial sensors complement sEMG features to reduce dependency on additional
sensors Xiong et al. (2021), but this increases costs. Standardized sEMG datasets enable comparison of offline performance, but
replicating real-time hardware is difficult, limiting benchmarking Côté Allard et al. (2019). Acquiring local data can optimize
feature engineering and classification research.

Recently, time series sEMG data has been formatted as images then classified using techniques like convolutional neural
networks (CNNs) Xiong et al. (2021). This branched into either short-term motion predictions or longer full motion forecasts
Xiong et al. (2021). Handcrafted features utilize domain knowledge to construct informative, low-dimensionality images to enable
explainable predictions with reduced computation Xiong et al. (2021).

Time series classification (TSC) is a challenging data mining problem Esling and Agon (2012). A common approach is
nearest neighbor classifiers with distance functions like dynamic time warping Begnall et al. (2017). Feature engineering can
improve TSC outcomes Begnall et al. (2017). The current state-of-the-art is the computationally intensive HIVE-COTE algorithm
utilizing an ensemble of 35 classifiers Lucas et al. (2018).

Deep learning shows promise for tackling complex classification. Convolutional neural networks (CNNs) revolutionized
computer vision Krizhevsky et al. (2012) and are now being applied to natural language processing Bahdanau et al. (2015). For
TSC, CNNs could enable improved feature learning Neamtu et al. (2018), with work exploring CNN solutions using formatted
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sEMG data Tsinganos et al. (2020). An automated CNN topology selection method has also been proposed but requires significant
computing resources Olsson et al. (2020b). We propose a simpler data formatting approach to leverage existing image classification
techniques.

Recurrent neural networks (RNNs) are well-suited for time series data modeling given their memory capacities Zeroual
et al. (2020). Long short-term memory (LSTM) networks are a type of RNN that can store and forget information selectively.
Deep residual networks (ResNets) are another effective deep learning architecture, demonstrating advantages for image recognition
Hinton et al. (2012); LeCun et al. (2015) and language processing Bordes et al. (2014); Jean et al. (2014). Benefits of ResNets
include enabling deeper network training, improving performance, reducing overfitting, and easier implementation He et al. (2016).
Their residual connections contribute to widespread ResNet adoption.

In this work, ResNet, as depicted in Fig. 1, a variant of CNN, is adapted to accommodate time series data rather than us-
ing traditional choices such as RNN or LSTM. The motivation for the adaptation of this image classification tool for use in time
series data is given by the prospect of crafting a real-time solution and the potential to incorporate different sets of classification
methods. As the CNN methods gained popularity in the field of computer vision, GPUs such as NVIDIA-based GPUs are
optimized for tasks defined in CNN where LSTM draws less benefit. Using specialized hardware results in shorter training and
testing durations for ResNet versus LSTM for similar problem complexity Weytjens and De Weerdt (2020). In addition, LSTM
networks demand longer signal durations for accurate motion classification Toro-Ossaba et al. (2022).

The proposed method accumulates temporal and spatial sEMG signal components into images using 100ms windows. The
handcrafted features enable explainable predictions with reduced computation. These changes make deep learning suitable for
real-time applications. Optimal parameters for image creation are found through trial-and-error.

Comparing multi-class motion classification performance is difficult due to differences in motion classes, hardware, objec-
tives, signal capture techniques, etc. This work uses a common external database with 40 classes and equal class examples to
compare the proposed method against literature techniques. The 2.5% random prediction accuracy for this database is far lower than
the 25-33% seen in other investigations, enabling rigorous benchmarking. The external database investigation is conducted using
the cross-subject motion generalization and individual subject motion classification with the data generated from ten participants
with a healthy upper limb as detailed in section 6.3.

2 The Hardware Configuration

The MyoMex armband from Thalmic Labs is used for data collection. It contains eight medical-grade stainless steel single
differential sEMG electrodes and a 9-axis inertial measurement unit (IMU) sampling at 200Hz with 8-bit resolution over Bluetooth.
Only the sEMG data is used to align with research objectives. The armband is synchronized for each participant using the Myo
Connect application. MATLAB® initiated and managed sEMG streaming. Identical MyoMex hardware and configurations
sourced internal and external datasets used in this study. Resources for interfacing the armband with MATLAB® are available
from the referenced GitHub repository (https://github.com/mark-toma/MyoMex).

3 The Experiments

Four specific hand motions are considered for dataset generation: fist, cylindrical grasp, spherical grasp, and tip pinch. Data is
recorded without restrictions on shoulder or elbow positions (dynamic) but emphasizing the predefined motions De la Cruz-Sanchez
et al. (2019). Motions are performed using the MyoMex armband sensor shown in Fig. 2. Multi-subject data collected under
University of the Mixteca approval has been used previously De la Cruz-Sanchez et al. (2019). Additional single subject
experiments (section 5.2) had participants repeatedly perform the gestures, constructing training/testing datasets while taking
breaks to prevent fatigue influence. Raw 5-second sEMG data is stored for each gesture. A second experiment quantified near
real-time response and system latency stemming from data acquisition and classification.

4 The Data and the Pre-Process

Two separate data sets are used - one collected in this study, and one from prior work De la Cruz-Sanchez et al. (2019). The time
series sEMG data (”raw data”) undergoes feature extraction and formatting to conform to image classification criteria. Recordings
are trimmed to three seconds by dropping the first and last seconds. The trimmed data is made absolute to remove polarity. It is
then sectioned into sliding windows of twenty samples with a five sample stride. Window and stride sizes are set through trial and
error; optimization is left for future work. The windowed samples are averaged to smooth the data by removing rapid alternations.
Eq. (1) shows the smoothed sEMG data where 𝑤 and 𝑠 are the window size and stride size respectively. 𝑥𝑛,𝑚 is the sampled
sEMG at the 𝑛𝑡ℎ instance for 𝑚𝑡ℎ sensor producing 𝑔 𝑗 ,𝑚 is the 𝑗 𝑡ℎ smoothed sample. The moving averaged sEMG data is further
processed to extract the two key features (details are found in sections 4.1 and 4.2) used in the construction of the feature image
for the hand motion classification investigation. All the pre-processing routines to format the raw data to the feature image with
directions are available at (https://github.com/jamagola/sEMG).
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Fig. 1: CNN architecture is utilized for a given sEMG classification problem (ResNet50) He et al. (2016).
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Fig. 2: Set of four different hand gestures and MyoMex armband.

𝑔 𝑗 ,𝑚 =

𝑤+ 𝑗×𝑠−1∑︁
𝑛= 𝑗×𝑠

|𝑥𝑛,𝑚 |
𝑤

(1)

4.1 Simple moving average (MA)

The smooth sEMG data is sequentially sectioned and averaged using a second sliding window composed of twenty data points with
a stride size of five data points. The resultant smoothed data leads to a dimensional reduction in the number of samples from the
raw data. The reduced-dimension data from all eight sEMG sensors is accumulated and formatted to a 2D array of numerical
values with each row presenting temporal states and each column indicating individual source/sensor (spatial locations). The
resulting matrix is addressed as a feature matrix for the moving average (MA) in this text. Eq. (3) shows the MA feature matrix
composed of elements from 𝑝 steps defined in Eq. (2), where 𝑘 is the index for the second window.

𝑓𝑘,𝑚 =

𝑤+𝑘×𝑠−1∑︁
𝑗=𝑘×𝑠

𝑔 𝑗 ,𝑚

𝑤
(2)

𝑀𝑀𝐴 =


𝑓1,1 . . . 𝑓1,8
...

. . .
...

𝑓𝑝,1 . . . 𝑓𝑝,8

 (3)

A filled contour map composed of spatial and temporal information can be generated using the feature matrix suitable for applying
machine learning techniques. The spatio-temporal feature contains amplitude or response from the space time coordinate. The
response is then presented as a surface plot that includes the contour map for 2D presentation. The filled contour map figures are
exported to images with desired resolution and treated as single data point corresponding to a single hand motion. The generic
process for processing raw sample data into an image-based feature is depicted in Fig. 3 and Fig. 4.

Contour mapping further emphasizes spatiotemporal sEMG patterns. Filled contour maps generalize groups of values, reducing
noise influence so final feature image resolution can be decreased without losing key patterns. This handcrafted image is based on
observations of the raw sEMG data matrix during acquisition. A twenty level filled contour map with normalized color axis is
applied to the feature matrix, essentially quantizing the sEMG features through zero-order hold interpolation of contour levels.
Quantization is followed by color scale normalization. The map is then converted to a 300x300 pixel image for offline and near
real-time classification.

4.2 Spatial Feature (SF)

Consider an irregular polygon with eight vertices. Eight straight lines are drawn from the center of the irregular octagon to the
vertices. Let the length of the lines connecting the vertices to the center be defined by the magnitude of the smooth sEMG data
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Fig. 3: Process sequences for image feature extraction from single time series data (a) Single time series samples acquired (longer
duration than data acquisition step for visualization purpose). (b) Feature extraction from the raw sensor readings is
accommodated in the sliding window. (c) Data after the feature extraction process. (d) Re-arrange of 1D feature data to 2D
grid points (since only one sensor data is considered) followed by feature image construction.

Fig. 4: Process steps for feature matrix to fill contour conversion. (a) Feature matrix derived from sEMG data acquisition. (b)
Feature matrix plot as surface. (c) Contour plot generation from the surface plot. (d) Filled contour plot.
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found in Eq. (1). Here, each of the eight lines corresponds to one of the eight sEMG probes. As a result, each of the interior angles
of the octagon produced is a function of three sEMG sensors readings including the probes placed corresponding to each of the
vertices and the two neighbors such that the interior angle 𝜃 𝑗 ,𝑚 = 𝑓 (𝑔 𝑗 ,𝑚−1, 𝑔 𝑗 ,𝑚, 𝑔 𝑗 ,𝑚+1). The interior angles of the octagon are
depicted in Fig. 5. A 2D array is constructed by placing the interior angle information along with the varying time instances in a
similar manner as described in the MA feature section (4.1) except for the columns which correspond now to the vertices instead of
the sensors. The array or feature matrix is defined in Eq. (5) addressed as Spatial Feature (SF) in the paper and elements in the
feature matrix are defined in Eq. (4). Each of the matrix elements is the variance of the interior angle calculated from the 𝑔 𝑗 ,𝑚.
The composed array is processed by the color mapping scheme and image construction steps described in the section 4.1. The
process flow from data acquisition to image construction is shown in Fig. 6.

𝜙𝑘,𝑚 =

𝑤+𝑘×𝑠−1∑︁
𝑗=𝑘×𝑠

(𝜃 𝑗 ,𝑚 − 𝜃𝑘,𝑚)2

𝑤 − 1
(4)

𝑀𝑆𝐹 =


𝜙1,1 . . . 𝜙1,8
...

. . .
...

𝜙𝑝,1 . . . 𝜙𝑝,8

 (5)

Fig. 5: Geometric visualization of spatial feature.

Fig. 6: The process sequence of extracted features to fill contour plot-based image features.

5 Image Classification

A key concept is converting time series data into images showing parallel temporal and spatial activity using 3-second measurements
with 100ms windows, without inertial data. In a typical 2D convolutional neural network (CNN), labeled images are filtered by
tunable 2D arrays called convolution operations defined by stride size and padding. Outputs are subsampled by pooling operations
like mean pooling. Paired filtering and pooling layers with appropriate sizing compose a convolution layer. Layers are sequenced
then flattened into a vector fed into a fully connected network. Training minimizes error via algorithms like stochastic gradient
descent. Activations, batch normalization etc. can be inserted. Residual networks route copies of intermediate outputs to later
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Fig. 7: Key processes involved in CNN-based classification.

layers, preserving signals. Fig. 7 depicts the key processes involved in CNN-based classification.

ResNet50 He et al. (2016) is used here (Fig. 1). No pre-trained transfer learning is used to avoid negative transfer Wang et al.
(2019). Instead, MATLAB®’s toolbox trained ResNet50 from scratch with predefined architecture but untrained weights. The
process flow (Fig. 8) shows the data acquisition to classification steps. Two routes stem from the described pre-processing features.

ResNet50 is trained on 300x300 pixel images embedding pre-defined motion information. The training epoch is 1000 with a batch
size of 8. Total training iterations ranged from 800-9000 depending on dataset size. Additional hyperparameters like a 0.001
learning rate and 80/20 train/test split are manually set without optimization. Validation data is separated 5:1 from training with
balanced classes. Training applied MATLAB®’s k-fold cross validation depending on data size. Two primary investigations are
conducted: (1) cross-subject investigation (CSI) and (2) single-subject investigation (SSI).

5.1 Cross Subject Investigation or CSI

Two sEMG data sets are used. The first is from 12 subjects aged 25-55 of both genders, collected at the authors’ lab with local
approval. The second is sourced from a databank in De la Cruz-Sanchez et al. (2019) for cross-subject investigation (CSI).
This contained 900 time series vectors from 225 participants performing four predefined motions once each, using identical
hardware/configurations. Sourced data underwent smoothing per the pre-processing procedure, then MA and SF feature extraction
and image construction separately. Data augmentation mitigated the lack of multiple trials per motion for individual participants.
The extracted images are used to separately train and test ResNet50 networks based on the MA and SF features. The Cross Subject
Investigation outcomes are discussed in detail in section 6.1.

5.2 Single Subject Investigation or SSI

Raw offline sEMG data is collected per section 3. ResNet50 models are trained on SF and MA image features separately for each of
the 12 single subject investigation (SSI) participants, so 24 networks total without data augmentation. Each SSI subject performed
each of the four motions 20 times, generating 80 images. 20% are randomly selected for testing, distributed equally across classes.
So 64 training images per subject-network (16 per class) are used. A near real-time experiment then had subjects randomly perform
the gestures sequentially. The classification pipeline included data recording, feature extraction, image formatting, and inference by
the corresponding trained network to predict motion class. Process delays are measured from data acquisition start to prediction
end.

6 Performance Analysis

The performance corresponding to every investigation considered in this paper is measured based on validation accuracy. The
trained networks are configured using identical hyperparameters across all the investigations and tests that include, loss functions,
activation functions, learning rate, optimization methods (stochastic gradient descent), etc.

6.1 Cross Subject Investigation

Cross-subject or multi-subject investigations (CSI) are tested using three different data configurations. Each of the configurations
contains non-identical sizes of data points. Regardless of the configurations, the dimension of the feature images applied to every
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Fig. 8: Proposed feature engineering and classification routes.
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investigation in this paper remains unchanged. In this section, each CSI outcome is discussed separately in the following.

6.1.1 Configuration A

In this setup, image features are used to train the network offline without any additional data generations and formations. At the
end of training with 1,000 epochs, the MA-based trained network settled with higher validation accuracy for offline classifications
relative to SF. The MA-based model on average converged to 40% accuracy whereas the SF-based model to 36%. In Fig. 11a, the
average validation accuracy curve is shown against the epoch for both features.

6.1.2 Configuration B

Image features are used to train models offline with data augmentation after train/test splitting. Training images are rotated
90°, 180°, and 270° clockwise to generate three additional features per data point. Rotations alter electrode sequence direction
(Fig. 9). 180° rotations mimic muscle activity as if measured from different electrodes, capturing signal characteristics from
diverse locations for cross-subject generalization. 90° and 270° rotations aim to integrate correlations between time and spatial
domains under the same motion label. Investigations used both SF and MA features. MA converged to 35% validation accuracy
after epochs versus 32% for SF (Fig. 11b).

Fig. 9: Single motion images after the data augmentation process, the arrow indicating the sequence of sensor location. (a) No
rotation, (b) 900 clockwise, (c) 1800 clockwise and (d) 2700 clockwise.

6.1.3 Configuration C

Cross-subject feature images contain motion and subject-specific signals, the latter acting as classification noise. An additional
investigation aimed to mitigate participant characteristics and amplify generalizable motion attributes. The first motion class for
each subject is used to embed subject information into other class features. Training/testing predicted only three motion classes,
unlike other investigations. This concatenates one feature image to others from that subject, generating relative feature (RF) images
before train/test splitting to relatively represent motions. Augmentation is also applied (Fig. 10). RF images used both MA and
SF features. Fig. 11c and Fig. 11d shows validation accuracy of RF networks (a) without and (b) with data augmentation (DA).
MA-based networks outperformed SF, achieving 52% and 50% final accuracy without and with DA respectively, versus 48% and
44% for SF.
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Fig. 10: Relative feature image of a single class of motion with data augmentation.

6.2 Single Subject Investigation (+Real-Time)

Trained MA and SF networks are tested on offline data, achieving 90% and 100% mean validation accuracy after maximum epochs
respectively (Fig. 11e). Near real-time testing had subjects randomly perform ten motions with < 5s rest between. Total latency
from acquisition to classification is 3.1s, dominated by the 3s data collection and feature extraction. Inference computation is 0.1s,
hardware-dependent. MA and SF networks achieved 85% and 100% prediction accuracy in near real-time conditions.

6.3 External Database

The proposed MA feature method is applied to an external NinaPro DB5 database Pizzolato et al. (2017) using two adjacent Myo
armbands with a 16 electrode, 22.5 degree configuration sampled at 200Hz Atzori et al. (2014). Ten subjects with 40 classes
(excluding rest) and six trials per motion are used, totaling 2400 datasets with sEMG and IMU. MA features are chosen since IMU
alters the spatial-temporal configuration for SF. The method is first applied to all classes collectively, achieving 80% cross-subject
accuracy (Fig. 12a). Single subject testing then achieved 72.5% accuracy, surpassing the 69.04% best accuracy in Pizzolato et al.
(2017) using mDWT and SVM.

The database is further reduced to ten motions from Sadhu (2019) and compared to 91% CNN accuracy in that work. Proposed
CSI and SSI methods achieved 95% validation accuracy on this subset, with a higher 10% chance accuracy versus 2.5% for 40
classes. For full 40 class evaluation, subject models used two of six repetitions for testing (67/33 split) while ten subject models
used 80/20 splitting. Results are summarized in Tab. 1. Fig. 12b compares validation accuracy of proposed and external methods.

6.4 Results Summary

Studies often use ≤ 10 subjects with ≥ 6 motion trials Arozi et al. (2020); Javaid et al. (2021). Results show lower cross-subject
prediction accuracy for the proposed methods and network versus ≥ 90% individual subject performance regardless of feature. SF
outperformed MA, including in real-time. Further tests on an external database with IMU showed greater cross-subject accuracy
versus other methods. Single subject external tests are limited to six repetitions per motion versus 60 for cross-subject, impacting
ResNet50 training. Tab. 1 summarizes all investigation results. The ResNet50 network requires 22-25MB memory for four motion
classification from 300x300 images, readily met by many embedded systems.

7 Prospects and Challenges

The hand-engineered features provide model interpretability and reduce computational load, desirable for sEMG systems. Future
work includes optimizing window/stride sizes. A key limitation is the small subject/trial size versus typical deep learning data
scales. Cross-subject classification would benefit from more subjects and motion trials.

The 200Hz MyoMex sampling rate is below EMG signal bandwidth. This undersampling challenges motion classification but
reduces data volume and computation. The techniques presented could transform other time series stochastic data. Merits of
machine learning are tested under hardware constraints common in research Pizzolato et al. (2017).
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(a) (b)

(c) (d)

(e)

Fig. 11: Average performance of MA and SF features in terms of percent validation accuracy for (a) configuration A, (b)
configuration B, (c) configuration C without data augmentation, (d) and with data augmentation, (e) and for single subject
investigation (SSI).
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(a) (b)

Fig. 12: (a) Mean validation accuracy profile on external database Pizzolato et al. (2017). (b) Comparison between methods in
terms of validation accuracy reported in Pizzolato et al. (2017); Sadhu (2019) and proposed.

Tab. 1: A summary of all the investigations performed in this paper (RF: Relative Feature, DA: Data Augmentation, CSI: Cross
Subject Investigation, and SSI: Single Subject Investigation).

Experiment Data Configuration IMU RF DA Feature Test Size Validation accuracy

CSI Default NO NO NO MA 20% 40.00%
motion classes NO NO NO SF 20% 36.00%
(offline learning) NO NO YES MA 20% 35.00%

NO NO YES SF 20% 32.00%

Reduced NO YES NO MA 20% 52.00%
motion classes NO YES NO SF 20% 48.00%
(offline learning) NO YES YES MA 20% 50.00%

NO YES YES SF 20% 44.00%

External datasets
40 Classes YES NO NO MA 33% 80.12%
10 Classes YES NO NO MA 20% 95.00%

SSI Individual Model NO NO NO MA 20% 90%
(offline) NO NO NO SF 20% 100%

Real-Time NO NO NO MA N/A 85.00%
(3s processing latency) NO NO NO SF N/A 100.00%

External datasets
40 Classes YES NO NO MA 33% 72.50%
10 Classes YES NO NO MA 20% 95.00%

8 Conclusion

A key prosthetics research question is incorporating intelligent systems, with ML/DL enabling core functions like motion
classification from sensor arrays. This paper offers a methodology to leverage CNN image classification resources like ResNet for
time series data. Multi-channel time series are treated as integrated time-spatial images through feature design.

Two main questions are addressed: generalizing motions user-independently without IMUs is challenging and likely requires more
data than utilized here. However, user-specific models may outperform cross-subject ones for personalized control given limited
motion data per subject. Hence this paper used in-house facilities for single-subject investigations.

Results suggest subject-specific models predict motions with 90-100% accuracy excluding IMUs using only 64 training images.
This enables less experimentation for prosthesis fitting, patient-specific optimization, offline training, and near real-time embedded
deployment with little computation. Additional tests found 85-100% accuracy under three second latency constraints.

Comparisons on an external database with IMUs indicate superior performance over existing methods, though significant
optimization potential remains.
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