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Abstract: The hip prosthesis modeling involves complex fluid-structure interaction between lubricant flow and solid deformation,
which is a typical elastohydrodynamic lubrication regime. This study introduces a novel numerical framework for addressing
such challenges through Non-Uniform Rational B-Splines (NURBS)-based isogeometric analysis (IGA). A new form of the
Reynolds equation, derived in the parametric space of curved surfaces rather than spherical coordinates, is introduced to streamline
discretization within the IGA framework and integration with solid mechanics. Additionally, the momentum balance equation is
utilized for calculating solid deformations, providing a more accurate description than the conventional Boussinesq approximation.
Furthermore, a developed mass-conserving cavitation formulation is incorporated to depict the formation and volumetric distribution
of cavitation bubbles in hip prostheses. These equations are discretized utilizing NURBS basis functions and solved simultaneously
via the Newton-Raphson method, enabling efficient strong coupling and rapid convergence. This IGA-based framework also
facilitates future integration of nonlinear solid deformation and frictional contact.
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1 Introduction

The hip joint, one of the largest joints in the human body, plays a crucial role in supporting weight and facilitating dynamic
loading. Structurally, it is a ball and socket synovial joint, constituted by the articulation between the pelvic acetabulum and the
femoral head. Various factors such as aging, diseases (e.g. rheumatoid arthritis), and trauma can lead to hip joint malfunction,
substantially impacting an individual’s daily life. Hip replacement surgery, recognized as one of the most successful and effective
interventions, offers significant pain relief by substituting the damaged hip joint with a prosthesis. Typically, the prosthesis consists
of an acetabular cup and a femoral head (refer to Fig. 1), which serve as functional substitutes for the damaged pelvic acetabulum
and femoral head, respectively.
Statistical results from Evans et al. (2019) indicate that artificial hip joints typically possess a lifespan of 15-20 years. However,
this duration cannot meet the needs of younger patients or those enthusiastic about physical activities. Consequently, enhancing
the design of artificial hip joint systems and extending their lifespan remains a critical research focus. From a tribological
perspective, a key factor affecting the lifespan of artificial hip joints is the friction and wear on their surfaces arising from insufficient
lubrication. To comprehensively analyze the elastohydrodynamic lubrication regime of artificial hip joints and to improve their
design parameters (such as the radial clearance between the femoral head and the acetabular cup, see Walker and Gold (1971)), it is
essential to develop a numerical model that accurately describes the pressure buildup within the fluid film and the consequent
deformation of the solid surfaces.
Most existing numerical models for hip prostheses are developed within the finite difference method (FDM) framework (e.g., Jin
and Dowson (1999), Jagatia and Jin (2001), Wang and Jin (2005), and Askari and Andersen (2019)). They utilize the Reynolds
equation in spherical coordinates to describe the flow of synovial fluid between the acetabular cup and the femoral head. The
gap height distribution between the solid surfaces is estimated using the initial clearance and the eccentricity of the femoral
head. Additionally, these models employ the Boussinesq approximation (refer to Popov (2010) for further details) to calculate the
deformation on contact surfaces. This approach is based on half-space theory, which presupposes an infinitely long surface. As a
result, its accuracy for modeling deformations on spherical surfaces is inherently limited. Furthermore, the coupling between solid
and fluid parts is achieved through the so-called weak coupling. Herein, the discretized Reynolds equation is iteratively solved
to compute the pressure distribution for the current gap height distribution, which is then input into the Boussinesq equation to
calculate surface deformation and a new gap height distribution. This process is repeated until the solutions converge for both
parts, which requires numerous iterations and is highly inefficient.
Notably, cavitation bubbles may appear within the lubricant film when the fluid pressure falls below a certain threshold. These
bubbles can either be introduced externally or result from the release of dissolved gases. The gap in the cavitation region is only
partially filled with lubricant, and the pressure remains constant. However, the aforementioned models from Jin and Dowson
(1999), Jagatia and Jin (2001), Wang and Jin (2005), and Askari and Andersen (2019) do not account for the volume distribution
of bubbles within the lubricant film. Instead, they use the Swift-Stieber boundary condition (enforcing pressure gradient at the
cavitation interface to be zero, refer to Bhushan (2013)) to describe the pressure rupture caused by cavitation bubbles. Meng
et al. (2015) adopt the mass-conserving Jakobsson-Floberg-Olsson (JFO) boundary condition to accurately describe the cavitation
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Fig. 1: Schematic diagram of the hip prosthesis: a three-dimensional illustration of the acetabular cup and the femoral head in the
hip prosthesis (left); the ball-in-socket configuration for the lubrication analysis in this work (right)

phenomena, but it is still developed based on FDM and weak coupling. The complementarity problem introduced by the JFO
boundary condition only makes the convergence process more challenging.
Over recent decades, isogeometric analysis (IGA) proposed by Hughes et al. (2005) has been widely applied in fields such as
contact mechanics and fluid dynamics. It can be regarded as a variant of the traditional finite element analysis (FEA), with its
core principle involving the use of NURBS (Non-Uniform Rational B-Splines) for both geometry construction and physical
field solutions. Thanks to the excellent numerical characteristics of NURBS basis functions, such as high smoothness, IGA is
particularly suited for computational mechanics analysis and multiphysics coupling in complex geometric domains.
Our research group (see Müller et al. (2017) and Müller et al. (2018)) focuses on lubricated contact between rough surfaces.
Recently, we (Tong et al. (2022)) developed a cavitation formulation within the IGA framework capable of efficiently solving the
complementarity problem. This paper will introduce the Reynolds equation defined in the parametric space of a curved surface
and combine it with this cavitation formulation to model the lubrication regime in the hip prosthesis. Furthermore, the momentum
balance equation governing solid deformation will also be discretized within the IGA framework. The equations for the solid and
fluid parts will be solved simultaneously, i.e., strong coupling, with convergence achieved in just a few iterations.

2 Numerical Model

The geometric parameters of the investigated hip prosthesis are derived from Meng et al. (2015), with its three-dimensional
construction displayed on the left side of Fig. 1. The acetabular cup has an outer radius of 𝑅𝑜 = 17 mm and an inner radius of
𝑅𝑖 = 14 mm. The radius of the femoral head is chosen as 𝑅 𝑓 = 13.99 mm such that the initial clearance between the contact
surfaces is 𝑐 = 𝑅𝑖 − 𝑅 𝑓 = 10 µm.
Instead of analyzing the complete hip prosthesis structure, this work utilizes a simplified ball-in-socket configuration to facilitate
comparative calculations with Jin and Dowson (1999)’s model based on FDM. Herein, the femoral head is modeled as a rigid
sphere, and the acetabular cup is treated as an elastic body with material properties assigned as 𝐸 = 3.8 GPa and 𝜈 = 0.26. The
external surface of the acetabular cup is fixed, whereas the femoral head oscillates back and forth around the 𝑥-axis with an
amplitude of 𝜔 = 2 rad s−1. Nevertheless, this paper does not consider the transient effects induced by the oscillation of the femoral
head, but only focuses on the instance of maximum angular velocity for simplicity. When an external force is applied to the femoral
head, it undergoes eccentric movement (𝑒𝑥 , 𝑒𝑦 , 𝑒𝑧), generating a pressure distribution within the synovial fluid to counteract the
applied force. The fluid pressure induces deformation of the acetabular cup, altering the film thickness and, consequently, the
pressure distribution itself. This fluid-structure interaction leads to a balanced result between fluid pressure and solid deformation.
As mentioned in Section 1, most existing models on hip prosthesis apply the Reynolds equation in spherical coordinates (𝑅, 𝜃, 𝜙)
to describe the lubricant flow. This approach essentially converts the curved surface in Eulerian coordinates into a (𝜃, 𝜙) plane
through coordinate transformation. The Reynolds equation is then derived on this plane by neglecting the flow in the radial direction
(see Jin and Dowson (1999)). However, integrating this equation into the IGA framework presents challenges due to the definition
of NURBS basis functions within a distinct parametric space (the knot space, refer to Hughes et al. (2005)). A transformation
from spherical to knot coordinates is thus necessary. Moreover, additional coordinate transformations are needed to couple fluid
pressure with solid deformation, significantly increasing computational efforts. Therefore, this section will introduce the Reynolds
equation derived directly in the parametric space of a curved surface to circumvent these cumbersome transformations.
In the following, the acetabular cup’s inner surface and the femoral head’s outer surface will be denoted as Γ2 and Γ1, respectively
(see Fig. 2). Given the minimal clearance between these two surfaces, the fluid flow in the film thickness direction is negligible
according to the assumptions of the Reynolds equation (see Bhushan (2013)). Consequently, the fluid velocity is considered
tangential to the curved surface. Furthermore, Γ2 and Γ1 can be regarded as coincident due to elastic deformations, allowing either
to be selected as the domain Ω 𝑓 to derive the Reynolds equation. In this study, Γ2 is chosen such that Ω 𝑓 = Γ2.
Assuming that Γ2 is represented by the parametric coordinates (𝜉1, 𝜉2), a set of covariant vectors can thus be defined as 𝝉𝛼 := 𝒙2,𝛼
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Fig. 2: Schematic illustration of deriving the Reynolds equation on the curved surface: the surface Γ2 is chosen as the fluid domain
Ω 𝑓 ; the point 𝒙2 on Γ2 is projected to �̄�1 on Γ1, thereby defining the gap height ℎ

for any point 𝒙2 on this curved surface. Herein, the subscript (•),𝛼 denotes the partial derivative operator 𝜕 (•)/𝜕𝜉𝛼. These
tangential vectors can be transformed into a set of contravariant vectors 𝝉𝛼 using the metric tensor 𝑴:

𝝉𝛼 = 𝑀𝛼𝛽𝝉𝛽 , 𝑀𝛼𝛽 = (𝑴)𝛼𝛽 = 𝝉𝛼 · 𝝉𝛽 . (1)

Notably, all Greek letters used in this work follow the Einstein notation. Utilizing these auxiliary vectors, the gradient operator
∇ 𝑓 (•) and the divergence operator ∇ 𝑓 · (•) on the curved surface Ω 𝑓 can be defined as

∇ 𝑓 (•) = (•),𝛼 ⊗ 𝝉𝛼, ∇ 𝑓 · (•) = (•),𝛼 · 𝝉𝛼 . (2)

Given the primary objective of this work is to establish an IGA framework for hip prostheses, the transient flow is not considered
here. Drawing upon the derivations from Temizer and Stupkiewicz (2016), the Reynolds equation on Ω 𝑓 under the steady condition
is expressed as

∇ 𝑓 · ( �̄��̄�ℎ) = 0, (3)

�̄� = 𝒖𝑚 − ℎ2

12𝜂
∇ 𝑓 𝑝. (4)

It consists of two parts, where Equation (3) represents the mass conservation equation. Herein, �̄� and �̄� denote the average density
and average flow velocity across the film thickness, respectively. The definition of �̄� is provided in Equation (4), which is essentially
a simplified momentum conservation equation based on the assumptions of the Reynolds equation. 𝒖𝑚 = (𝒖1 + 𝒖2)/2 signifies the
average velocity of the two surfaces, 𝑝 is the fluid pressure, and 𝜂 is the realistic viscosity of the synovial fluid (𝜂 = 0.0025 Pa · s,
as derived from Meng et al. (2015)).
In Equations (3) and (4), ℎ represents the gap height between the two surfaces, which can be determined with the aid of the Closest
Point Procedure (CPP) from computational contact mechanics (for more details refer to Wriggers (2006)). Specifically, for any
point 𝒙2 on Γ2, its projection point �̄�1 on Γ1 is located such that the distance between these two points is minimized (see Fig. 2):

�̄�1 = arg min
𝒙1

∥𝒙2 − 𝒙1∥. (5)

Denoting the outward unit normal vector at point �̄�1 as �̄�1, the gap height at �̄�2 is then formulated as

ℎ = (𝒙2 − �̄�1) · �̄�1. (6)

To develop the IGA formulation for hip prostheses, it is necessary to first derive the weak form of the Reynolds equation on the
curved surface. The detailed derivation process can be referred to Tong et al. (2022) and is thus not provided here. In brief, the
mass conservation Equation (3) needs to be multiplied by an arbitrary test function 𝛿𝑝 and integrated over the entire fluid domain
Ω 𝑓 . After performing integration by parts and considering 𝛿𝑝 = 0 on 𝜕Ω 𝑓 due to the Dirichlet boundary condition (𝑝 = 0 Pa), the
weak form of the Reynolds equation is presented as∫

Ω 𝑓

�̄�ℎ3

12𝜂
∇ 𝑓 𝛿𝑝 · ∇ 𝑓 𝑝 dΩ −

∫
Ω 𝑓

∇ 𝑓 𝛿𝑝 · ( �̄�𝒖𝑚ℎ) = 0. (7)

The void fraction 𝑟 is introduced in this work to incorporate the cavitation phenomenon. It represents the volume fraction of
cavitation bubbles within the fluid film. Assuming the synovial fluid is incompressible with a density of 𝜌0 leads to �̄� = 𝜌0 (1 − 𝑟).
Since the pressure in cavitation regions is constant (generally set to 0 Pa), 𝑝 and 𝑟 satisfy the following complementarity condition:

𝑝 ≥ 0, 𝑟 ≥ 0, 𝑝𝑟 = 0, (8)
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also referred to as JFO boundary condition (see Bhushan (2013)). Tong et al. (2022) employ the augmented Lagrangian method
(AL) to transform this inequality constraint into solving the following weak formulation:∫

Ω 𝑓

𝛿𝑟𝐶𝑟 = 0, (9)

𝐶𝑟 =


− 𝑝, −𝑟 + 𝜖 𝑝 ≤ 0 (cavitated)

− 1
𝜖
𝑟, −𝑟 + 𝜖 𝑝 > 0 (full film)

, (10)

where the AL parameter 𝑟 = −𝑟 + 𝜖 𝑝 is utilized to differentiate between the cavitation region and the full-film region, and 𝜖 is
defined as a positive penalty parameter. It can be chosen arbitrarily since its primary function is to adjust the convergence speed.
The advantage of this AL formulation lies in its C1-continuity, enabling its solution via the Newton-Raphson method.
By substituting �̄� = 𝜌0 (1 − 𝑟) into Equation (7) and considering that 𝑟∇ 𝑓 𝑝 = 0 over the entire fluid domain, the weak formulation
can be derived as∫

Ω 𝑓

ℎ3

12𝜂
∇ 𝑓 𝛿𝑝 · ∇ 𝑓 𝑝 dΩ −

∫
Ω 𝑓

∇ 𝑓 𝛿𝑝 · (𝒖𝑚ℎ) dΩ +
∫
Ω 𝑓

∇ 𝑓 𝛿𝑝 · (𝑟𝒖𝑚ℎ) dΩ = 0. (11)

It is noteworthy that a divergence term ∇ 𝑓 · (𝑟𝒖𝑚ℎ) appears in the original Reynolds equation (3) with the introduction of the new
variable 𝑟, corresponding to the third integral term in the weak formulation (11). Since the modified Reynolds equation lacks a
diffusion term for 𝑟 , it can be considered a convection-dominated equation. Stabilization techniques similar to the upwind scheme,
such as the Streamline upwind Petrov–Galerkin (SUPG) method outlined in Brooks and Hughes (1982), are required to eliminate
non-physical oscillations in the solutions. The stabilized weak formulation of the Reynolds equation can be expressed as∫

Ω 𝑓

ℎ3

12𝜂
∇ 𝑓 𝛿𝑝 · ∇ 𝑓 𝑝 dΩ −

∫
Ω 𝑓

∇ 𝑓 𝛿𝑝 · (𝒖𝑚ℎ) dΩ +
∫
Ω 𝑓

∇ 𝑓 𝛿𝑝 · (𝑟𝒖𝑚ℎ) dΩ

−
∫
Ω 𝑓

(𝛾𝒖𝑚 · ∇ 𝑓 𝛿𝑝) ∇ 𝑓 · (𝑟𝒖𝑚ℎ) dΩ = 0,
(12)

where 𝛾 is a stabilization parameter depending on the flow velocity and element size (for more details see Brooks and Hughes
(1982) and Tong et al. (2022)).
As for the elastic acetabular cup, its deformation can be described by the classical linear momentum balance equation. In this work,
the acetabular cup is assumed to undergo small deformations. The reference configuration and the deformed configuration are thus
considered nearly identical. Denoting the reference configuration of the acetabular cup as Ω2, its deformation is then governed by

∇ · 𝝈 = 0, (13)

where 𝝈 is the Cauchy stress tensor, and ∇ · (•) is the divergence operator in Ω2.
The weak form of Equation (13) can be obtained following the established procedures in conventional FEA (analogous to deriving
the virtual work):∫

Ω2

∇𝛿𝒖 : 𝝈 dΩ −
∫
Γ2

𝛿𝒖 · 𝒕 dΓ = 0. (14)

Herein, 𝛿𝒖 is the test function and satisfies 𝛿𝒖 = 0 on the fixed outer surface of the acetabular cup. In addition, 𝒕 signifies the
traction arising from the fluid-structure interaction on Γ2. Given that the fluid pressure acts perpendicularly on the solid surface, 𝒕
is expressed as

𝒕 = −𝑝𝒏2, (15)

where 𝒏2 denotes the outward unit normal vector on Γ2. Substituting Equation (15) into Equation (14) yields∫
Ω2

∇𝛿𝒖 : 𝝈 dΩ +
∫
Γ2

𝛿𝒖 · 𝑝𝒏2 dΓ = 0. (16)

Ultimately, the weak formulations (9), (12), and (16) collectively describe the fluid-structure interaction within the hip prosthesis.
They can be iteratively solved using the Newton-Raphson method after discretization.

3 NURBS-based Isogeometric Analysis

NURBS is renowned for its capability to exactly describe spherical surfaces and various conic surfaces, making it particularly
suitable for hip prosthesis modeling. The specific settings for constructing the acetabular cup in Fig. 1 using NURBS can be found
in Piegl and Tiller (1995). In essence, this process involves creating a semicircular ring on the 𝑥𝑦-plane and then rotating it around
the 𝑦-axis for half a revolution (or considering it as the trajectory of a semicircle) to obtain the final three-dimensional geometry.
Notably, NURBS requires only 32 control points (similar to the concept of nodes in conventional FEA) to accurately construct
this complex shape (as shown in Fig. 3). The three knot parameters (𝑢, 𝑣, and 𝑤) of this NURBS geometry correspond to the
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Fig. 3: Construction of the acetabular cup using NURBS: a semicircular ring on the 𝑥𝑦-plane can be built using 4 × 2 = 8 control
points, corresponding to 1 element (left); rotating it around the 𝑦-axis yields the acetabular cup with 4 × 2 × 4 = 32 control
points, corresponding to 1 element (right).

longitudinal, latitudinal and radial directions of the acetabular cup, respectively. Moreover, since the elements of NURBS geometry
are directly defined in its knot parameter space, the corresponding mesh is automatically generated upon the completion of the
geometric construction (for instance, the initial geometry possesses 1 element as shown in Fig. 3), eliminating the need for an
additional meshing process as in FEA.
Certainly, the NURBS mesh in Fig. 3 cannot be directly used for computing complex physical fields. Thanks to the k-refinement
technique in NURBS, it is possible to elevate the mesh’s polynomial order to any desired one or to enhance the element resolution
without altering the NURBS geometry. For instance, Fig. 4 demonstrates the refinement of the initial mesh from merely one
element to 4000 elements (corresponding to 6877 control points). Given that this work defines the fluid domain directly on the
inner surface of the acetabular cup, it comprises thus 400 elements (corresponding to 529 control points).
Within a NURBS mesh, each control point is associated with a NURBS basis function, denoted as 𝑅𝐴 (𝐴 = 1, . . . , 𝑛𝑐𝑝)
Consequently, the unknown field variables 𝑝, 𝑟, 𝒖 and their variations derived in the previous section can be interpolated using
these basis functions as

𝑝 =

𝑛𝑐𝑝∑︁
𝐴=1

𝑅𝐴𝑝𝐴, 𝑟 =

𝑛𝑐𝑝∑︁
𝐴=1

𝑅𝐴𝑟𝐴, 𝒖 =

𝑛𝑐𝑝∑︁
𝐴=1

𝑅𝐴𝒖𝐴, (17)

𝛿𝑝 =

𝑛𝑐𝑝∑︁
𝐴=1

𝑅𝐴𝛿𝑝𝐴, 𝛿𝑟 =

𝑛𝑐𝑝∑︁
𝐴=1

𝑅𝐴𝛿𝑟𝐴, 𝛿𝒖 =

𝑛𝑐𝑝∑︁
𝐴=1

𝑅𝐴𝛿𝒖𝐴, (18)

where 𝑝𝐴, 𝑟𝐴, and 𝒖𝐴 represent the pressure, void fraction, and displacement at control point 𝐴, respectively, and 𝑛𝑐𝑝 denotes
the total number of control points. The weak formulations (9), (12), and (16) can be discretized by substituting the interpolated
variables in Equations (17) and (18). The unknown parameters at each control point are then solved using the Newton-Raphson
method. The specific derivation process can be referred to Tong et al. (2022) and is thus not provided here.

4 Results

This section presents results for the scenario shown in Fig. 1, obtained from the IGA-based hip prosthesis model. The eccentricity
of the femoral head (𝑒𝑥 , 𝑒𝑦 , 𝑒𝑧) is set as (0, 0, 0.95𝑐), resulting in a minimal undeformed gap height of 0.05𝑐 = 500 nm.

Fig. 4: Refining the initial NURBS mesh to 20 × 10 × 20 = 4000 elements, corresponding to 23 × 13 × 23 = 6877 control points;
the inner surface of the acetabular cup is chosen as the fluid domain, it possesses 20 × 20 = 400 elements, corresponding to
23 × 23 = 529 control points
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𝑟Void fraction 𝑟Void fraction
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Fig. 5: Results not considering deformation for the eccentricity of (0, 0, 0.95𝑐), obtained from the IGA-based model and the
FDM-based model: pressure distribution 𝑝 (first row) and void fraction 𝑟 (second row)

For comparison, calculations will also be conducted using Jin and Dowson (1999)’s FDM-based model. Notably, It employs
the Swift-Stieber cavitation condition and is thus limited to computing pressure distributions without addressing void fraction
distributions. To closely align the computational scenarios of both models, the IGA-based model in this section will use the fully
flooded condition, assuming that the fluid domain’s boundaries are always sufficiently lubricated, thus 𝑟 = 0 on 𝜕Ω 𝑓 .
To evaluate the sensitivity of the IGA model to meshing resolution, this section employs not only the mesh depicted in Fig. 4
(with 20 × 20 elements for the fluid domain) but also refines the mesh for both the inner and outer surfaces of the acetabular
cup, including the fluid domain, to 40 × 40 elements. In the FDM model, the fluid domain is divided into 60 × 60 cells within a
spherical coordinate system.
Fig. 5 displays results that do not consider elastic deformation. The outcomes obtained with both coarse and fine NURBS meshes
in the IGA model are almost identical, indicating that even with a coarse mesh (with 20 × 20 elements for the fluid domain),
a converged solution can be achieved. In contrast, despite utilizing the highest number of elements in the fluid domain, the
pressure distribution derived from the FDM model exhibits noticeable pixelation, lacking the smoothness of the IGA model’s
solution. Moreover, the pressure contours calculated by the FDM model are very similar to those obtained by the IGA model,
albeit slightly lower in magnitude. This discrepancy stems from the different cavitation conditions employed. The IGA model
uses the mass-conserving JFO condition, which reveals a large bubble forming beneath the fluid domain, hence concentrating the
lubricant above the fluid domain. In contrast, the FDM model employs the Swift-Stieber condition, which posits a zero pressure
gradient at the cavitation interface.
The results considering deformations of the acetabular cup are presented in Fig. 6. The IGA model also achieves converged
results using the coarse mesh. The pressure calculated by the FDM model is significantly smaller than that obtained by the IGA
model. This difference arises from the equation used to calculate deformation in these two models. The FDM model employs the
Boussinesq equation, based on half-space theory, which considers deformation on an infinitely long surface and is thus not suitable
for curved surfaces like a sphere. However, the IGA model utilizes the momentum balance equation from continuum mechanics,
enabling a more accurate description of the deformation on curved surfaces.
The impact of the surface deformation on fluid pressure is illustrated in Fig. 7, where the symmetrical longitudinal curve (the red
dashed line in Fig. 3) is selected to observe the pressure distribution. The maximum deformation calculated by the IGA model is
about 250 nm, which is significant compared to the minimal undeformed gap height of 500 nm. Hence, the pressure considering
deformation is considerably lower than that without deformation. Furthermore, Fig. 7 also clearly demonstrates the robustness of
the IGA model. High-quality results can be obtained even with the coarse NURBS mesh, converging in only 8 iterations, whereas
the FDM model requires more than 2000 iterations to converge.

5 Summary and Outlook

This work develops an IGA-based numerical framework for hip prostheses, employing strong coupling to calculate both the fluid
pressure and solid deformation. It also incorporates a developed cavitation formulation to account for the formation and volumetric
distribution of cavitation bubbles. The Reynolds equation describing fluid flow within the framework is derived for arbitrary
surfaces, hence offering excellent extensibility. The results demonstrate that the IGA-based model, even when utilizing a coarse
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𝑝/MPaPressure 𝑝/MPaPressure 𝑝/MPaPressure

𝑟Void fraction 𝑟Void fraction
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Fig. 6: Results considering deformation for the eccentricity of (0, 0, 0.95𝑐), obtained from the IGA-based model and the FDM-based
model: pressure distribution 𝑝 (first row), deformation in the radial direction 𝑢𝑛 (second row) and void fraction 𝑟 (third row)
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Fig. 7: Comparison of the pressure distribution along the symmetrical longitudinal curve (see the red dashed curve in Fig. 3,
represented using the polar angle 𝜃 in spherical coordinates): ”c” for ”coarse NURBS mesh”, ”f” for ”fine NURBS mesh”,
”nd” for ”without deformation” and ”d” for ”with deformation”

NURBS mesh, efficiently delivers high-quality results within a limited number of iterations, underscoring its superior performance
in elastohydrodynamic lubrication modeling. Future work could consider the nonlinear large deformation of solids or even couple
this framework with frictional contact formulations (see Tong et al. (2021)) to further investigate the lubrication mechanisms in hip
prostheses.
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