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Abstract: Moments of inertia of machine-components or whole machines are essential for numerical simulations, especially
for Mutli-Body-Simulations. Various measuring techniques exists, which can be rougly divided in techniques using oscillations
or accelerations. One possibility to measure indirectly the inertia properties are multifilar pendulums, for example the trifilar
pendulum using a platform and three ropes or filars. A lot of literature dealing with the trifilar pendulums exists. We will give a
brief overview of the literature with emphasis to non-linearities. Furthermore, we will investigate nonlinear effects and compare
them with experimental and numerical results.
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1 Introduction

In the first subsection we will give an overview of possible measurement techniques for inertia properties, in the second subsection
we will give a brief literature overview concerning multifilar pendulums.

1.1 Experimental Investigations of Moments of Inertia

An overview of experimental techniques for measuring the moments of inertia is shown in Fig. 1. The techniques can be subdivided
in experiments using accelerations and experiments using oscillations of the object of investigation. The acceleration experiments
are not appropriate or difficult to apply for a broad range of specimens. As well, not all oscillatory experimental techniques are
easy to apply (for more details s. Genta and Delprete (1994)). Three of the oscillatory investigation methods are frequently used in
industry or research: linear or torsion spring test rigs, servohydraulic devices and multifilar pendulums. Some characteristics of
these three techniques are shown in Table 1, they are exemplary described in Wegener (2012) (oscillation: active), in Klöpper et al.
(2013) (oscillation: passive) or in Gobbi et al. (2011) (multifilar pendulum). To distinguish the three methods, we call the first two
”oscillation”, passive and active, and the third one multifilar pendulum; of course, the multifilar pendulum is as well a passive
oscillation method.
The multifilar pendulum is one of the cost-efficient ways, but for industrial practice it is not very convenient. It may take a long
measurement time and there might be some pitfalls, e.g. neglecting the kinetic translational kinetic energy or bending and/or
torsion stiffness of the filars, choosing unfavourable geometry (short length of the filars), positioning the centre of mass of the
object of investigation not on the centre line of the pendulum, having large translational oscillations of the pendulum. Therefore, the
easy-to-use but expensive techniques enter in the industrial daily routine. One important difference between the first two techniques
(here called oscillation) and the third one is, that method 1 and 2 need to be calibrated, whereas for method 3 the moment of inertia
can be calculated from time, length, mass measurements, and the geometry of the platform with physical principles.
In the remaining part of this article we focus on the trifilar pendulum, and we focus on the calculation of the time period and its
governing equation.

Tab. 1: Qualitative comparison of some experimental techniques

1. Oscillation (passive) 2. Oscillation (active) 3. Multifilar Pendulum
Price moderate very high low
Usability Sufficiently easy Sufficiently easy Not easy
Friction/damping Not documented Not documented can be considered
10 inertia prop. Yes (one measurement) Yes (one measurement) Yes, more measurements
(Non)-linear? linear linear Non-linear possible
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Fig. 1: Overview of measuring techniques of the moments of inertia (cf. Genta and Delprete (1994)).

1.2 Literature

Publications dealing with multifilar pendulums (mainly bifilar pendulums) for determining physical quantities, e.g. the magnetic
field of the earth (cf. Gauß (1838), Kohlrausch (1882)), the moments of inertia of a body or the acceleration of gravity (cf.
Klopsteg (1930)) are published early in the scientific community. There are a lot of publications, and we will not give a complete
overview, but we want to give some hints to famous, important and as well two doubtful publications; those readers, who want to
apply multifilar pendulums for measurement aims should be aware of the latter type of publications.
A famous application of multifilar pendulums is the bifilar magnetometer which was described in Gauß (1838). In his description,
the non-linearity of the period 𝑇 with respect to the amplitude is given on p. 66, where 𝐺 is twice the amplitude of the angle:

𝑇 = 𝑇 ′
(
1 + 1

4
sin2

(
1
4
𝐺

)
+ 1

4
· 9

16
sin4

(
1
4
𝐺

)
+ 1

4
· 9

16
· 25

36
sin6

(
1
4
𝐺

)
+ . . .

)
(1)

Peculiar, Gauß cited the equation, which holds for the mathematical pendulum (Dreizler and Lüdde (2008), p. 167) and this
equation results from a series expansion for the elliptic integral 1 (𝐺 = 2𝜑0, where 𝜑0 is the amplitude of the pendulum oscillation,
𝑇 is the period for large amplitudes 𝜑0, and 𝑇 ′ is the period for infinitesimal small amplitudes, 𝑇 ′ = lim𝜑0→0 𝑇).
The qualitative behaviour of the period-amplitude-dependency 𝑇 = 𝑇 (𝜑0) (thus, the time 𝑇 increases with an increasing amplitude
𝜑0) is correct in Gauß (1838). But the correct physical quantities, i.e. the distance 2𝑅 between (the parallel) filars, the length 𝐿 of
the filars and the radius of gyration 𝑟𝑔 =

√︁
𝐽/𝑀 (𝐽 and 𝑀 are the moment of inertia or the mass, resp., of the rotating part at the

end of the filars) enter not in this equation. Some of the older publications, e.g. Auerbach (1908), states the reverse qualitative
dependency between 𝑇 and 𝜑0, i.e. a decreasing period 𝑇 with increasing amplitude 𝜑0, which is not correct.
In Uhler (1923) the governing equation for a bifilar pendulum is given, and a series expansion for the undamped pendulum using
conservation of energy (i.e. the Hamiltonian) is developed.
Genta and Delprete (1994) gives an overview of measurement techniques with an emphasis to error analysis. They concluded,
that among the oscillatory methods the torsional and the multifilar pendulum are more accurate and an error smaller than 1% is
accessible. In the appendix they give a non-linear equation of motion. In the derivation of this equation, the kinetic energy from
the vertical motion is not considered.
Hou et al. (2009) describes a method to identify ten parameters (six of the tensor of moments of inertia, the mass, and the
coordinates of the centre of mass) by placing the object of investigation in nine different positions and orientations on the oscillation
platform of a trifilar pendulum. The aspect of elongation of the filars are taken into account. They use the simplified, linear
equation for the calculation of the moments of inertia.
In Lyons (2002) the linear theory is favoured for the identification of the moments or inertia. The parasitic, translational oscillation
perpendicular to the axis of rotation is mentioned as one possible reason for inaccurate measurement of the period of time; the
solution, they suggest, is averaging over a large number of oscillation cycles. They give a calculation method using the Hamiltonian
for the non-linear equation, but they do not take into account the translational kinetic energy for the motion in the vertical direction.

1Here, the period 𝑇 = 4
𝜔

∫ 𝑥/2
0

d𝑠′√
1−𝑘2 sin2 𝑠′

is calculated using the series expansion 1√
1−𝑘2 sin2 𝑠′

= 1 + 1
2 𝑘

2 sin2 𝑠′ + 3
8 𝑘

4 sin4 𝑠′ + 5
16 𝑘

6 sin6 𝑠′ + . . . and∫ 𝜋/2
0 sin2𝑛 𝑠′d𝑠′ = 1·3·5· · · (2𝑛−1)

2·4·6· · ·2𝑛
𝜋
2 , 𝜔 =

√︁
𝑔/ℓ is the angular frequency of the linearised equation for the pendulum and 𝑘 = sin(𝜑0/2) with 𝜑0 the amplitude of

the oscillation angle of the pendulum (Dreizler and Lüdde (2008), p. 167).
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1.3 Goal

The goal of this paper is the experimental determination of moments of inertia of rigid bodies. For this purpose, the body is
placed on a platform, which is symmetrically supported by three filars (we use wire ropes). We show the inertia calculation of
this trifilar pendulum based on the period duration of the rotational oscillation. For this procedure, a method for compensating
bending stiffness and elongation is explained and numerically evaluated for the linear and the non-linear approach. A numerical
investigation of the complete equation for the period is given. Some approaches from literature are compared.

2 Experiment

The experimental setup is shown in Fig. 2. A support frame mounted at the top of the laboratory is the carrier of the trifilar
pendulum. There are three load cells mounted to the frame. Each filar (steel wire rope) is clamped at one load cell. The lengths of
the filars are 𝐿 ≈ 11 m; the actual length during a measurement depends on the mass of the object of investigation, and, therefore,
the lengths are measured using a laser distance sensor. The aim of the load cells is, that the centre of mass of the object of
investigation is well-positioned on the centre line (𝑧-axis) of the platform, i.e., all load cells measure the same force in the resting
position. The wire ropes are mounted to the platform by spherical-like joints. This means, that except of friction, neither bending
nor torsion torques are acting on the lower end of the filars. The platform carries the object of investigation.
The moments of inertia 𝐽 with respect to the 𝑧-axis are indirectly measured by measuring the period time of rotational oscillation
(short: period 𝑇𝑒𝑥𝑝) with respect to the 𝑧-axis. This period then is used to calculate 𝐽.
In a preliminary step the period 𝑇𝑝𝑟𝑒 of the unloaded platform is measured; in this measurement, all parts including the wire ropes,
enter into the measurement. From 𝑇𝑝𝑟𝑒 the moment of inertia 𝐽𝑢𝑛 of the unloaded platform is calculated (s. Sect. 3).
Once 𝐽𝑢𝑛 is calculated, the period 𝑇𝑒𝑥𝑝 of the loaded platform is measured, and with 𝑇𝑒𝑥𝑝 the moment of inertia 𝐽𝑙𝑜 of the loaded
platform is calculated. As the moment of inertia is additive, the moment of inertia of the object of investigation is:

𝐽 = 𝐽𝑙𝑜 − 𝐽𝑢𝑛 . (2)

For the calculation of the moment of inertia, the lengths of the filars and the masses of the unloaded platform and of the object of
investigation must be measured, as well.

Support frame: steel

Platform: Metawell (aluminium sandwich)

𝑚 ≈ 2.56 𝑘𝑔, 𝐽𝑧 ≈ 0.18 𝑘𝑔𝑚2

Steel wire ropes

𝐿 ≈ 11 𝑚

𝜇 = 0.0156
𝑘𝑔

𝑚

𝑘 ≈ 7000
𝑁

𝑚

Load cells

𝐹𝑚𝑎𝑥 = 500 𝑁

y

x

z

Joint (spherical)

Laser distance sensor y-axis

Laser distance sensor x-axis

Laser distance sensor

tangential

Object of investigation

(here a tyre)

Fig. 2: Experimental setup of the trifilar pendulum.

3 Theory

In this section we will establish the governing equations for the ideal trifilar pendulum, and we will discuss some perturbations of
the ideal case; more perturbations or uncertainties are described in the literature, e.g. in Genta and Delprete (1994).

3.1 Equation of Motion and Period

In Fig. 3 a schematic sketch of the idealized trifilar pendulum is shown. It consists of the platform (which supports the object of
investigation) and the three filars. In grey the system is shown in the not deflected position of rest. In the deflected position the
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filars are red and the platform is yellow. For the derivation of the equations of motion and for the calculation of the period we use
energetic approaches. We describe merely the rotational degree of freedom with respect to the ®𝑒𝑧-axis by the angle 𝜑2.

𝜓

𝑤 

𝐿

𝑅

𝜑 

Ԧ𝑒𝑥

Ԧ𝑒𝑦

Ԧ𝑒𝑧

𝜑

2
 
𝜑

2
 

𝑣 

Fig. 3: Idealized model of the trifilar pendulum.

We obtain the dependency of 𝑤 with respect to 𝜑 from the three right-angled triangles in Fig. 3 and some trigonometric
transformation

𝑤(𝜑) = 𝐿

(
1 −

√︂
1 − 4𝜉2 sin2 𝜑

2

)
(3)

= 𝐿

(
1 −

√︁
1 − 2𝜉2 (1 − cos 𝜑)

)
(4)

where

𝜉 =
𝑅

𝐿
. (5)

For the energies, we have to take into account the rotational and translational kinetic parts, 𝑇𝑟 and 𝑇𝑡 resp., as well as the potential
energy 𝑈:

𝑇𝑟 =
1
2
𝐽 ¤𝜑2 , (6)

𝑇𝑡 =
1
2
𝑀 ¤𝑤2 , (7)

𝑈 = 𝑀𝑔(𝑤 − 𝑤0) . (8)

Here 𝐽 is the moment of inertia of the rotating part, i.e. the platform, the object of investigation and the filars, 𝑀 is the corresponding
mass and 𝑔 is the gravitational acceleration.
The value 𝑤0 corresponds to the amplitude 𝜑0 of the rotational oscillation, which means, that the system has no kinetic energy
in the position 𝑤 = 𝑤0 and 𝜑 = 𝜑0. From the principle of conservation of energy, we obtain, that the Hamiltonian H is zero
(𝑇𝑡𝑜𝑡 = 𝑇𝑟 + 𝑇𝑡 ):

H = 𝑇𝑡𝑜𝑡 +𝑈

=
1
2
𝐽 ¤𝜑2 + 1

2
𝑀 ¤𝑤2 + 𝑀𝑔(𝑤 − 𝑤0)

=
1
2
𝐽 ¤𝜑2 + 1

2
𝑀

(
𝜕𝑤

𝜕𝜑
¤𝜑
)2

+ 𝑀𝑔(𝑤 − 𝑤0)

=
1
2
𝑓 (𝜑) ¤𝜑2 + 𝑀𝑔(𝑤 − 𝑤0) = 0 , (9)

where

𝑓 (𝜑) = 𝐽 + 𝑀

(
𝜕𝑤

𝜕𝜑

)2
(10)

= 𝐽 + 𝑀
𝑅4 sin2 𝜑

𝐿2 (
1 − 2𝜉2 (1 − cos 𝜑)

) (11)

2Uhler (1923) stated, that the angle 𝜓 between the filars and the vertical resting position of the filars yield simpler equations, which is correct; we prefer the
more descriptive angle 𝜑. An alternative variable is the elevation 𝑤.
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Rearranging (9) yields:

¤𝜑 = ±

√︄
2𝑀𝑔(𝑤 − 𝑤0))

𝑓 (𝜑) (12)

Restricting the consideration to a quarter of the oscillation period 𝑇 we obtain from Eq. (9) by separation of the variables (cf.
Awrejcewicz (2012), p. 71, or Uhler (1923)):

∫ 𝜑0

0

√︄
𝑓 (𝜑)

2𝑀𝑔(𝑤 − 𝑤0))
d𝜑 =

∫ 𝑇/4

0
d𝑡 =

𝑇

4
(13)

where 𝜑0 is the amplitude of the oscillation.
The period time 𝑇 with respect to the amplitude 𝜑0 for the undamped pendulum then is:

𝑇 (𝜑0) = 4
∫ 𝜑0

0

√√√√ 𝐽
𝑀
𝐿2 (

1 − 2𝜉2 (1 − cos 𝜑)
)
+ 𝑅4 sin2 𝜑

2𝑔𝐿3 (
1 − 2𝜉2 (1 − cos 𝜑)

) (√︁
1 − 2𝜉2 (1 − cos 𝜑) −

√︁
1 − 2𝜉2 (1 − cos 𝜑0)

) d𝜑 (14)

The integral looks similar to hyperelliptic integrals, which we solve numerically only. For the numeric integration it is important,
that the denominator has a zero at 𝜑 = 𝜑𝑜.
For the determination of the moment of inertia 𝐽, the zero of 𝑇 − 𝑇𝑒𝑥𝑝 is determined: As 𝑇 is strictly monotonic increasing with
increasing 𝐽, the determination of the zero is straightforward.
Additional to Eq. (14) for the period, we derive the equation of motion by applying the formalism of Lagrange. The Lagrangian is:

L =
1
2
𝑓 (𝜑) ¤𝜑2 − 𝑀𝑔(𝑤 − 𝑤0) (15)

Applying the Euler-Lagrange equation to Eq. (15)

d
d𝑡

𝜕L
𝜕 ¤𝜑 − 𝜕L

𝜕𝜑
= 0 (16)

yields the equation of motion:

¥𝜑 𝑓 (𝜑) + 1
2
¤𝜑2 𝜕 𝑓

𝜕𝜑
+ 𝑀𝑔

𝜕𝑤

𝜕𝜑
= 0 . (17)

With

𝜕𝑤

𝜕𝜑
= 𝐿

𝜉2 sin 𝜑√︁
1 − 2𝜉2 (1 − cos 𝜑)

(18)

and (11) we obtain the linearised form of the equation of motion:

𝐽 ¥𝜑 + 𝑀𝑔𝑅2

𝐿
𝜑 = 0 (19)

which results in the period time 𝑇 ′ of the linearised system:

𝑇 ′ =
2𝜋
𝑅

√︄
𝐽𝐿

𝑀𝑔
. (20)

3.2 Torque from filar bending and torsion

Although the filars of a multifilar pendulum are usually very thin, they have an influence on the period 𝑇 , which might be not
negligible. In this subsection we have a closer look to the additional restoring torque resulting from bending of the filars. The filars
could be wire ropes or single wires. The latter one can be treated like a simple slender beam or bar, the mechanical behaviour of
the wire rope is more complicated, but bending is significantly smaller than for comparable slender beams.
The type of the joints between the filars and the platform on the bottom side and the frame on the top side is essential for the
restoring torque:

1. If spherical joints are on both ends of the filars, there are no moments, neither from bending nor from torsion, at the ends of
the filars, which results in no restoring torque.
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2. If one end is clamped and the other end is jointed by a spherical joint, then this filar is equivalent to a clamped beam (without
torsion), where the deflection 𝑣 is (cf. Fig. 3):

𝑣(𝜑) = 2𝑅 sin
𝜑

2
(21)

In the case of a single wire (slender beam: bending stiffness 𝐸𝐼; 𝐸 Young’s modulus, 𝐼 = 𝜋𝑟4/4 second moment of the
circular cross section with radius 𝑟 of the filar), the deflection 𝑣 of one filar results in a restoring force 𝐹rest of (here we use
the maximum deflection of a one-sided clamped Euler Bernoulli beam with bending stiffness 𝐸𝐼 of length 𝐿 loaded by a
force 𝐹 at the free end, which is 𝐹𝐿3/(3𝐸𝐼))

𝐹rest =
3𝐸𝐼2𝑅 sin 𝜑

2
𝐿3 (22)

which yields for 𝑁 filars (𝑁 = 2 for a bifilar and 𝑁 = 3 for a trifilar pendulum) a restoring torque 𝑀rest:

𝑀rest = 𝑁
3𝐸𝐼2𝑅2 sin 𝜑

2
𝐿3 (23)

or linearised for small angles 𝜑:

𝑀rest ≈ 𝑁
3𝐸𝐼𝑅2𝜑

𝐿3 (24)

3. If both sides are clamped, the deformation is S-shaped and due to symmetry we obtain one portion of the restoring torque
from bending

𝐹rest =
3𝐸𝐼𝑅 sin 𝜑

2
(𝐿/2)3 (25)

𝑀rest,b = 𝑁
3𝐸𝐼𝑅2 sin 𝜑

2
(𝐿/2)3 (26)

𝑀rest,b ≈ 𝑁
3𝐸𝐼𝑅2𝜑

2(𝐿/2)3 (27)

Furthermore, an additional portion results from torsion

𝑀rest,t = 𝑁
𝐺𝐼𝑝𝜑

𝐿
(28)

The relation between the two torques are (𝐺 = 𝐸/2(1 + 𝜈), 𝐼𝑝 = 2𝐼):

𝑀𝑟𝑒𝑠𝑡 ,𝑡

𝑀rest,b
=

𝐿2

12𝑅2 (1 + 𝜈)
(29)

For 𝐿 >
√︁

12(1 + 𝜈)𝑅 the restoring torque from torsion is larger than the torque from bending. In our setup, if we would
have such a kind of joint of the filars, we have (𝐿 ≈ 11𝑚 and 𝑅 = 0.33𝑚): 𝐿2/(12𝑅2 (1 + 𝜈)) ≈ 71.

4. If one end is clamped and on the other end is a revolute joint as rotator (swivel), there is no torque from torsion but only
from bending like in case 3.

We discuss the second case (which we have in our experimental setup; 𝑁 = 3) in more detail for the linearised equation of motion.
Due to the additional restoring torque, the equation of motion is:

𝐽 ¥𝜑 + 𝜉2
(
𝐿𝑀𝑔 + 𝑁

3𝐸𝐼
𝐿

)
𝜑 = 0 (30)

The periodic time of the linearised and extended equation is:

𝑇 ′ =
2𝜋
𝑅

√︄
𝐽𝐿

𝑀𝑔

1√︃
1 + 𝑁 3𝐸𝐼

𝐿2𝑀𝑔

(31)

The length 𝐿 of the pendulum depends on the weight 𝑀𝑔 and on the axial stiffness 𝐸𝐴 (𝐴 = 𝜋𝑟2 area of the cross section) of the
filars. This results in an elongation Δ𝐿 of the pendulum (𝐿 = 𝐿0 + Δ𝐿):

Δ𝐿 = 𝐿0
𝑀𝑔

𝑁𝐸𝐴
(32)
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Thus, we have two effects: one from the bending stiffness, which decreases the time period, and one of the axial stiffness, which
increases the time period. A series expansion of the square root in (31) results in:

𝑇 ′ =
2𝜋
𝑅

√︄
𝐽 (𝐿0 + Δ𝐿)

𝑀𝑔

(
1 + 𝑁

3𝐸𝐼
𝐿2𝑀𝑔

)− 1
2

(33)

=
2𝜋
𝑅

√︄
𝐽𝐿0
𝑀𝑔

(
1 + 𝑀𝑔

𝑁𝐸𝐴

) 1
2
(
1 + 𝑁

3𝐸𝐼
𝐿2𝑀𝑔

)− 1
2

(34)

=
2𝜋
𝑅

√︄
𝐽𝐿0
𝑀𝑔

(
1 + 1

2
𝑀𝑔

𝑁𝐸𝐴
− 1

8

(
𝑀𝑔

𝑁𝐸𝐴

)2
+ . . .

) (
1 − 1

2
𝑁

3𝐸𝐼
𝐿2𝑀𝑔

+ 3
8

(
𝑁

3𝐸𝐼
𝐿2𝑀𝑔

)2
+ . . .

)
(35)

=
2𝜋
𝑅

√︄
𝐽𝐿0
𝑀𝑔

©«
1 + 1

2
𝑀𝑔

𝑁𝐸𝐴
− 1

2
𝑁

3𝐸𝐼
𝐿2𝑀𝑔︸                     ︷︷                     ︸

=𝑒1

+ . . .
ª®®®®®¬

(36)

The first order term 𝑒1 is (𝐼 = 𝜋𝑟4/4, 𝐴 = 𝜋𝑟2, setting 𝐿 = 𝐿0 + Δ𝐿 and series expansion yield higher order terms with Δ𝐿):

𝑒1 =
𝑀𝑔

2𝑁𝐸𝜋𝑟2

(
1 −

3
(
𝑁𝐸𝜋𝑟3)2

(2𝐿0𝑀𝑔)2

)
(37)

(38)

For fixed length 𝐿 and Young’s modulus 𝐸 of the filars, the two nonlinear effects compensate each other in the first order for a
specific radius 𝑟 of the filars, which depends on the mass 𝑀 (platform and object of investigation); this radius 𝑟𝑜𝑝𝑡 is given by:

𝑟𝑜𝑝𝑡 =
3

√︄
2𝐿𝑀𝑔
√

3𝑁𝐸𝜋
(39)

The error 𝑒1 is (numerically nearly) zero, if the radius 𝑟 is chosen individually following Eq. (39) for each mass (cf. Fig. 4 a). This
is inconvenient or impossible for everyday laboratory work. Therefore, we choose a radius from Eq. (39) for a mass in the centre of
our interval, i.e. 𝑀 ≈ 22.9 kg, and obtain the first order error for this fixed radius (for each of the length 𝐿), which is shown in Fig.
4 b). The first order error remain small, especially for 𝐿 = 10 m. Thus, this compensation works very well for a long pendulum.
But if we look to the normal stresses in the filars, Fig. 4 c), we see quite large stresses, for 𝐿 = 10 m up to 119 MPa and for 𝐿 = 1
m up to 556 MPa. Choosing appropriate steel, both values do not exceed the elastic stress limit. But during the placement of
the object of investigation on the platform, especially for large masses, the risk of a shock on the platform can result in plastic
deformation of one or more filars, which results in different lengths of the filars and the necessity to replace them. A crack of one
filar results in hazard situation, where the object of investigation drops down and may injure the experimenter.
Therefore, we did not implement the compensation of bending and elongation in our experimental setup and the analysis of the
experiments. Instead of this, we use wire ropes with very small bending stiffness and large elastic stresses and tensile strength.
Because the wire ropes show large elongation, we measure the length of the filars for each object of investigation individually by a
laser measurement device.
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Fig. 4: Idealized model of the trifilar pendulum.

The equation for the time period Eq. (14) can be extended; from Eq. 21, 𝑣(𝜑) = 2𝑅 sin 𝜑

2 , we obtain

d𝑣
d𝜑

= 𝑅 cos
𝜑

2
(40)
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which yield the potential energy 𝑈 𝑓 𝑖𝑙 of he filars by integration of Eq. (22)

𝑈 𝑓 𝑖𝑙 (𝜑) = 𝑁
6𝐸𝐼𝑅2

𝐿3

∫ 𝜑

0
sin

𝜑′

2
cos

𝜑′

2
d𝜑′ (41)

= 𝑁
6𝐸𝐼𝑅2

𝐿3 sin2 𝜑

2
(42)

= 𝑁
3𝐸𝐼𝑅2

𝐿3 (1 − cos 𝜑) (43)

This enters into Eq. (9) (n.b: to ensure H = 0, 𝑈 𝑓 𝑖𝑙 (𝜑0) has to be subtracted) and yield the period 𝑇 :

𝑇 (𝜑0) = 4
∫ 𝜑0

0

√√√√ 𝐽𝐿2 (
1 − 2𝜉2 (1 − cos 𝜑)

)
+ 𝑀𝑅4 sin2 𝜑

2𝐿
(
1 − 2𝜉2 (1 − cos 𝜑)

) (
𝑀𝑔𝐿2

(√︁
1 − 2𝜉2 (1 − cos 𝜑) −

√︁
1 − 2𝜉2 (1 − cos 𝜑0)

)
+ 3𝑁𝐸𝐼𝜉2 (cos 𝜑 − cos 𝜑0)

) d𝜑

(44)

4 Solutions

There are neither for the integral (14) nor for the equation of motion (17) closed-form solutions. For the integral it is not possible
to extract 𝐽 in front of the integral, because in the nominator 𝐽 occurs in the first summand only. Therefore, only numerical
integration can be applied for the whole integral. As well, there are no closed-form solutions of the ordinary differential equation
(ODE) (17) because of the square roots and the trigonometric functions.

1. The equation 𝑇 − 𝑇𝑒𝑥𝑝 is solved iteratively. First, for approximately 30 oscillations, the mean value for 𝑇𝑒𝑥𝑝 is determined
from the experiment, e.g. using the zeros of the laser for the tangential movement. With this value 𝑇𝑒𝑥𝑝 an initial solution 𝐽0
is calculated with the solution of the linear Eq. (20). As the period 𝑇 increases with increasing amplitude 𝜑0 (cf. Uhler
(1923)), for 𝑇 (𝜑0) (calculated with 𝐽0 and the value 𝜑0 from the experiment) holds 𝑇 (𝜑0) < 𝑇𝑒𝑥𝑝. This means, that 𝐽0 is
a lower bound for the 𝐽, and increasing 𝐽0 in steps, e.g. with Δ𝐽 = 𝐽0/100 until 𝑇 (𝜑0) > 𝑇𝑒𝑥𝑝 gives a start interval for a
bisection method.

2. Alternatively to the numerical integration of step 1, a series expansion of Uhler (1923), which is described in the appendix,
can be used. This approach does not yield an analytical solution.

3. The third method is the simple application of a numerical algorithm for solving the ordinary differential Eq. (17).

Although we decided to use steel wire ropes, for the sake of completeness we compare different results with respect to the nonlinear
behaviour with and without the bending stiffness of the 𝜑0-dependency of 𝑇 . Furthermore, we compare methods 1., 2., and 3.
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Fig. 5: Comparison of different calculations of the period 𝑇 ; a) 𝜉 = 0.33, b) 𝜉 = 0.033.

In Fig. 5 the function 𝑇 (𝜑0) is shown for different approaches. All curves without literature citations (curve 1 to 4) show the
results of the numerical integration of Eq. (44). The parameters are: 𝐽 = 1.8 kg m2, 𝑀 = 28 kg, 𝑅 = 0.33 m, 𝐿 = 1 m for a),
𝐿 = 10 m for b), 𝐸 = 210 GPa, 𝑟 = 𝑟𝑜𝑝𝑡 from Eq. (39), 𝑁 = 3, 𝑔 = 9.81 m/s2.

• Curve 1 (num. int.:w.o. bending, w.o. elong.): the numerical integration of Eq. (44) without the influence of bending and
without the consideration of the elongation, i.e. 𝐸𝐼 = 0, 𝐿 = 𝐿0.

• Curve 2 (num. int.; w.o. bend., w.o. elong., w.o. mass): without the influence of bending, without the consideration of the
elongation, without the influence of the translational kinetic energy of the mass 𝑀, i.e. 𝐸𝐼 = 0, 𝐿 = 𝐿0, and without the
term 𝑀𝑅4 sin2 𝜑 in Eq. (44).
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• Curve 3 (num. int.; comp.: bend. and elong.): the influence of the bending moments as well as the elongation is considered,
the radius of the filars is calculated from Eq. (39), i.e. 𝐸𝐼 ≠ 0, 𝐿 = 𝐿0 + Δ𝐿

• Curve 4: (num. int.; with bend., w.o. elong.): with the influence of bending and without the consideration of the elongation,
i.e. 𝐸𝐼 ≠ 0, 𝐿 = 𝐿0.

• Curve 5 (num. int.; w.o. bending, with elong.): without the influence of bending and with the consideration of the elongation,
i.e. 𝐸𝐼 = 0, 𝐿 = 𝐿0 + Δ𝐿.

• Curve 6 Approximation from Previati (2021): Neither bending nor elongation is considered, i.e. 𝐸𝐼 = 0, 𝐿 = 𝐿0.
• Curve 7 Approximation from Uhler (1923): Neither bending nor elongation is considered, i.e. 𝐸𝐼 = 0, 𝐿 = 𝐿0.
• Data points 8: Numerical solutions of the ODE (without bending and without elongation). As the ODE (17) is not given in a

simple, explicit form, we use an solver for implicit ODE. Important is, that a high precision and a maximum stepsize is
prescribed for the algorithm.

a) For the short length 𝐿 = 1 m of the filars, the solution of Eq. (44) a) and for five amplitudes the periods of the solution of (17)
are shown in Fig. 5. It is obvious, that the numerical integration of Eq. (44), curve 1, compared to the the series expansion
of Uhler (1923), curve 7, are identical within the coat line. The compensation of the bending stiffness by considering the
elongation is visible in curve 3: this curve fits as well very good to curve 1, which shows, that the compensation is not only
valid for the linearised but for the nonlinear equation, too. In order to demonstrate the influence of the bending stiffness and
the elongation, these two effects are separated and visualized with the curve 4 (bending, no elongation) and 5 (no bending,
elongation). It is feasible, that the bending stiffness results in smaller values for 𝑇 , whereas the elongation results in larger
one.
It is notable, that skipping the translational kinetic energy in the vertical direction in the derivation of Eq. (44) results in
significant deviations of the periods, cf. curve 2, especially for large amplitudes. The same holds for the approximation of
Previati (2021). These deviations increase with an decreasing radius of gyration

√︁
𝐽/𝑀 .

The solutions from the numerical integration of the ODE (17) are very close to the numerical solution of Eq. (44) and the
series expansion of Uhler (1923).
The influence of the amplitude on the period between 𝜑0 = 0𝑜 and 𝜑0 = 20𝑜 is approximately 1.1 %.

b) For the large length 𝐿 = 10 m all solutions despite the approximation of Previati (2021) have very small deviations to each
other.
For this long filars, the influence of bending and elongation is very small, there are nearly no differences between curve 4
and 5.
Notable is the qualitative not appropriate behaviour of the approximation of Previati (2021): the period decreases with
increasing amplitude.
The influence of the amplitude on the period between 𝜑0 = 0𝑜 and 𝜑0 = 20𝑜 is approximately 0.7 %.

From this investigation we conclude:

1. If possible, one should prefer long filars in order to reduce the influence of bending, elongation and amplitude.
2. The calculation of the period using the numeric integration of the integral Eq. (44) is the preferable method. If there are no

significant bending or torsion stiffness, which has to be considered, the series expansion of Uhler (1923) can be applied, too.
3. Solving the ODE (17) should be used very carefully, because, resulting from numerics, the calculated periods can fluctuate

significantly. Therefore, the step size should be limited. Of course, in the case of relevant damped system, this is the
only way to solve the system and to obtain a period, but the computer resources are significantly higher (depending on the
precision) than method 2.

4. The approximation of Previati (2021) should not be used.

5 Experimental Results

In this section we will compare some results from the measurements to the numerical integration of Eq. (44) with 𝐸𝐼 = 0 and the
measured length 𝐿. The parameters are:

a) 𝐽 = 1.7952 kg m2, 𝑀 = 27.759 kg, 𝑅 = 0.33 m, 𝐿 = 10.94 m, 𝑔 = 9.81 m/s2 (cf. Fig. 6 a) )
b) 𝐽 = 1.8024 kg m2, 𝑀 = 28.1040 kg, 𝑅 = 0.33 m, 𝐿 = 10.94 m, 𝑔 = 9.81 m/s2 (cf. Fig. 6 b) )

The parameters result from the measurement of the moment of inertia and the mass of the platform. The (artificial) object of
investigation consists (s. Fig. 6) of two steel cylinders (mass each approx. 12 kg), two aluminium ITEM-profiles mounted on the
cylinders and a Metawell-plate3 between the profiles (height 150 mm in Fig. 6 a) and 300 mm in b)). The objects of investigation
are geometrically measured and their weights were measured, too. Then the cylinders are symmetrically placed on the platform
and the moment of inertia is calculated using the geometry and the masses. The overall moment of inertia and the total mass is a
result of an addition.

3The plates of different heights damp the oscillations.
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a) b)
Fig. 6: Reference object of investigation: a) 150mm height of the damping plate; b) 300 m height of he damping plate

The experimental results for the two plates and the corresponding numerical solutions of the integral Eq. (44) are shown Fig. 7
and Fig. 8.
In both figures the solid blue graphs are the result of the numerical calculation of the integral Eq. (44) for the above mentioned
parameters. The green triangles result from the solution of the ODE (17) without and the blue circles with damping (the latter
symbols are skipped in Fig. 8).
The experimental data are marked by purple diamonds. Obviously, the experimental periods are approx. 0.9% to 1.2% higher than
the calculated values. There might be several reasons for the deviations.
The most likely reason is a small deviation in the placement of the cylinders (Mass: ≈ 12 kg, distance from the rotation axis:
≈ 0.25 m): Assuming the nominal distance between a cylinder and the centre of the platform is exact 0.25 m and the deviation is 1
mm, this results in a deviation of the moment of inertia of Δ𝐽 ≈ 0.012 kg m2 for the two cylinders. In Fig. 7 and Fig. 8, diagram a)
the moment of inertia is increased in steps of Δ𝐽 = 0.012 kg m2. The change in the curves can nearly explain the deviations of the
mean experimental results.
The measurement of the actual length of the filars is very difficult. It is likely, that in these measurements, too, errors may occur.
Small increases of 10 mm or 20 mm of the length 𝐿 results as well in a decrease of the deviations.
The damping, which is not considered in Eq. (44), is supposed to be a reason, too. To check this assumption, a linear damping
term was introduced in the ODE (17). If we choose for the damping constant 0.05 Nms/rad (which is much higher than in
the experiments) the periods decrease marginal (s. the blue circles in Fig. 7). Thus, the damping is very unlikely the reason.
Furthermore, the damping for all the experiments are very low: the decay constants are 𝛿 = 0.00021 1/s (no plate), 𝛿 = 0.00033
1/s (plate of height of 150 mm), and 𝛿 = 0.00041 1/s (plate of height of 300 mm).
A fourth reason could be the nonlinear coupling between the rotation of the platform and the small translational movements in
®𝑒𝑥- and ®𝑒𝑦-direction. This possible reason has not yet been investigated. Some experimental modifications have been applied,
to reduce the parasitic oscillations (e.g. mechanical and removable centring, or switchable eddy current damping). The initial
amplitudes of the parasitic translational motions are approx. 0.2 -0.3 mm.
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Fig. 7: Comparison of different calculations (numerical calculation of Eq. (44) and numerical integration of (17) of the period 𝑇 ;
a) small variation of 𝐽, b) small variation of 𝐿 for the dampingplate with 150 mm height (cf. Fig. 6 a))
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Fig. 8: Comparison of different calculations (numerical calculation of Eq. (44) and numerical integration of (17) of the period 𝑇 ;
a) small variation of 𝐽, b) small variation of 𝐿 for the dampingplate with 300 mm height (cf. Fig. 6 b))

6 Conclusion

Different methods for the necessary evaluation of the period measurement of trifilar pendulums are described and compared to each
other. It turns out, that all three solution methods are appropriate for a weakly damped system. The numerical integration and the
series expansion are easier to apply and need less computer time than the numerical solution of the ordinary differential equation.
If bending or torsion stiffness of the filars has to be considered, the series expansion from the literature has to be extended. For a
large length of the filars the influence of bending and torsion stiffness is small. For large damping, only the numerical solution of
the ordinary differential equation is applicable.
The deviations between the different methods except Previati (2021) are very small for small ratios 𝑅/𝐿; for 𝑅/𝐿 = 0.033 the
qualitative behaviour of the method of Previati (2021) is not correct. The experimental results for the periods are approx. 1 %
higher than the calculated ones (which is known e.g. from Genta and Delprete (1994)), the reasons for these deviations are not
clear and needs further investigations.

Appendix

A.1 Series Expansion of Uhler (1923)

Uhler (1923) gives a series expansion of the period 𝑇 for a bifilar pendulum. As he uses a different variable 𝜓 (cf. Fig. 2) for
the description of the pendulum, his series expansion is not applicable to a pendulum with restoring torques from bending (and
torsion). Nevertheless, his series expansion up to the third summand is very close to the numerical solution of the integral. With
𝜉 = 𝑅/𝐿 and 𝜅 =

√︁
𝐽/𝑀/𝐿 the coefficients in the series expansion are:

𝑎0 =
𝜅

𝜉
(A.1)

𝑏1 =
4𝜉4 − 3𝜉2𝜅2 + 𝜅2

2𝜉2𝜅2 (A.2)

𝑏2 =
−16𝜉8 + 24𝜉6𝜅2 − 5𝜉4𝜅4 − 8𝜉4𝜅2 − 10𝜉2𝜅4 + 3𝜅4

8𝜉4𝜅4 (A.3)

𝑏3 =
64𝜉12 − 144𝜉10𝜅2 + 92𝜉8𝜅4 − 7𝜉6𝜅6 + 48𝜉8𝜅2 − 8𝜉6𝜅4 + 7𝜉4𝜅6 − 4𝜉4𝜅4 − 21𝜉2𝜅6 + 5𝜅6

16𝜉6𝜅6 (A.4)

The period is:

𝑇 =
2𝜋
𝑅

√︄
𝐽𝐿

𝑀𝑔

(
1 + 1

2
𝑏1 sin2 𝜑0

2
+ 1 · 3

2 · 4
𝑏2 sin4 𝜑0

2
+ 1 · 3 · 5

2 · 4 · 6
𝑏3 sin6 𝜑0

2
+ . . .

)
(A.5)

A.2 Approximation of Previati (2021)

Previati (2021) gives an approximation of the period 𝑇 taking into account the torsion stiffness of the filars. Unfortunately, he
applies some doubtful approximations of trigonometric functions, and the qualitative behaviour, i.e. increasing period 𝑇 with an
increasing amplitude 𝜑0, is not correct for all parameter combinations. The approximation is (𝑘 is the sum of all torsion stiffnesses
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of the filars):

𝐴 =
𝑀𝑅4

𝐿2 (A.6)

𝐵 =
𝑀𝑔𝑅2

𝐿
(A.7)

𝐶 =
1
6
− 𝑅2

2𝐿2 (A.8)

𝑇 = 2𝜋

√√√√ 𝐽 + 1
2 𝐴𝜑

2
0

𝑘 + 𝐵

(
1 + 3

4𝐶𝜑2
0

) (A.9)
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