
TECHNISCHE MECHANIK
an open access journal

journal homepage: www.ovgu.de/techmech

Tech. Mech., Vol. 45, Is. 1, (2025), 1–23

Received: 20.11.2024
Accepted: 04.03.2025

Available online: 05.03.2025

The impact of AI on engineering design procedures for dynamical systems
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Abstract: Artificial intelligence (AI) is driving transformative changes across numerous fields, revolutionizing conventional
processes and creating new opportunities for innovation. The development of mechatronic systems is undergoing a similar
transformation. Over the past decade, modeling, simulation, and optimization techniques have become integral to the design
process, paving the way for the adoption of AI-based methods. In this paper, we examine the potential for integrating AI into the
engineering design process, using the V-model from the VDI guideline 2206, considered the state-of-the-art in product design, as a
foundation. We identify and classify AI methods based on their suitability for specific stages within the engineering product design
workflow. Furthermore, we present a series of application examples where AI-assisted design has been successfully implemented
by the authors. These examples, drawn from research projects within the German Research Foundation (DFG) Priority Program
SPP 2353: Daring More Intelligence - Design Assistants in Mechanics and Dynamics, showcase a diverse range of applications
across mechanics and mechatronics, including areas such as acoustics and robotics.
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1 Introduction

Structural changes, shorter development cycles and increasingly interdisciplinary challenges require novel approaches to product
design. Future system design in engineering has to be multidisciplinary, not only in order to meet future customer requirements,
new regulations, and social responsibilities, but also to optimally benefit from the technical possibilities of new system types with
integrated Artificial Intelligence (AI) components [1]. As AI methods originate from mathematical algorithms, initially, they are
not tailored to certain disciplines, but follow general principles which make them applicable to the individual disciplines as well as
on integration level of the design process.
Future system design will only be achieved by (partially) automating the design process: (1) numerical optimization strategies
take over the search for the best compromise solutions, (2) analysis methods from different disciplines are integrated for system
evaluation, and (3) AI-enhanced algorithms are applied to system dynamics evaluation and control, as well as to design decisions
[2].
The design of novel technological systems is one of the most demanding creative achievements in engineering. Currently, assistance
by numerical tools is limited primarily to system analysis. Hence, the typical development process is realized in an interactive
nature: firstly, time-consuming parameter studies are carried out, then, simulation results are manually and subjectively evaluated,
leading to iterative changes to the current design based on expert knowledge. The result is then often declared ”optimal”, which
seems questionable in multiple regards: (i) in general, the evaluation is based on subjective criteria rather than on objective,
mathematically described criteria; (ii) the human inability to recognize correlations in higher-dimensional design spaces as well
as time constraints in the industrial development process prevent the achievement of an optimum; (iii) the expertise of a design
engineer is usually limited to one or only a few sub-disciplines.
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An AI-assisted design process provides the opportunity to overcome these shortcomings [3, 4]. Moreover, it allows the consideration
of various design criteria already in early design phases, which used to be considered at a later stage only. This might, at the same
time, contribute to better design outcomes and to shorter development times.
Future system design methodologies thus have to orchestrate the interplay between experiments, model-based simulations, and
AI methods as is illustrated in Fig. 1. Classically, technical design was based heavily on experiments [5]. Numerical simulation
techniques for physics-based models can reduce the number of experiments, extend beyond existing prototypes, or test designs in
extreme situations, which are challenging to reproduce in physical experiments. On the other hand, the model-based results must
be validated by real experiments [6, 7]. For complex systems, however, there is often a lack of suitable models, or the existing
simulations are so extensive and time-consuming that systematic system analyses become impractical. In addition, determining the
required model parameters is difficult and tedious. Distorting, interfering, and obscured effects in experiments often prevent a
simple interpretation [8–10]. Vast amounts of measurement data request for automated and intelligent data processing, potentially
using data mining approaches.

Fig. 1: In mechatronic design, AI methods link closely to both experiments and simulations.

In tandem with these approaches, the current landscape of product development is witnessing a notable influence from AI
methodologies. Machine learning (ML), a branch of artificial intelligence, is employed to predict and optimize outcomes in
simulated environments [11]. These algorithms can discern complex patterns and relationships within simulation data, enabling
more accurate predictions of product behavior. Additionally, AI-driven simulations facilitate automated parameter optimization,
accelerating the iterative design process. The adaptability of AI enables simulations to learn from evolving data, providing a
dynamic and intelligent framework for virtual testing [12]. Moreover, in high-dimensional parametric spaces, AI methods are
promising alternatives in the field of design-of-experiments [13, 14]. Hence, for system design, not one single way is advantageous
above the others, but a combination of available and best suited methods will enhance the design process.

1.1 Contribution of this paper

While applications of AI emerge everywhere, its potential for assisting the design process of engineering products has not been fully
revealed yet. With the goal of exploring this potential, the contribution of this paper is threefold: first, we analyze the (classical, or
conventional) state-of-the-art design process to identify opportunities for integrating AI methods; second, we explore suitable
AI methods with respect to their application in engineering design and classify them by linking to the respective steps within a
mechatronic product design process; last, we provide a short overview of application examples, in which the authors successfully
embed AI assistance into mechatronic design. These examples stem from research projects within the German Research Foundation
(DFG) Priority Program SPP 2353: Daring More Intelligence - Design Assistants in Mechanics and Dynamics1.

1.2 Outline

The remainder of this paper is structured as follows. We review the classical methodology of mechatronic product design in
Section 2. In the main part of the paper, we derive potential for integrating AI into the design process in Section 3, in which we
discuss synthetic data generation, AI-driven modeling approaches from various disciplines as well as from a holistic point of view,
and AI-assisted methods in system identification, optimization, and control. Then, we present innovative examples for integrating
AI tools in mechatronic applications, see Section 4. Concluding remarks with an outlook to open problems are given in Section 5.

2 State-of-the-art in engineering product design

The VDI (The Association of German Engineers) guidelines 2221 [15] and 2206 [16] were created with the aim of planning and
implementing the design of technical products, in particular mechatronic systems, efficiently and reliably in terms of both time and
costs. They summarize practical experience and scientific approaches. The V-model, see Fig. 2, which originated in software
development [17], represents a widespread approach to design methodology.
The starting point of a design process is the requirements elicitation, which is documented in a specification. While, in former
times, requirements stayed static during the design process, nowadays, the increased system complexity makes it impossible to fix

1https://gepris.dfg.de/gepris/projekt/460725022
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Fig. 2: V-model for mechatronic design according to VDI guideline 2206 [16].

the requirements at an early stage. Instead, flexible adaptation during the design process is implemented as feedback loops, see
Fig. 2.
The left wing of the V represents the early design phases (coarse design). Here, starting with an abstract (solution-independent)
representation of the task, the system concept or system architecture is defined by breaking it down into sub-tasks and assigning
solution structures to the individual functions. Since each sub-function can be realized by many solutions from different physical
domains, this results in a fast-growing solution space whose size increases exponentially with the number of sub-structures. In
addition to the main functions of the solutions, secondary functions and interactions with the other sub-structures must also be
taken into account. The developers’ experience and creativity increase the chances of success. Usual design approaches are based
on combination tables, or on simple analytical models with characteristic parameters [18].
The domain-specific designs (fine design) are shown in the lower section of the V. These are carried out in parallel by specialists
and have a high level of detail. In the case of mechatronic systems, a mechanical (structural) design, an electronic design, and a
software design usually take place. Depending on the system design, other domains may be added, e.g., fluid dynamics, magnetics,
or optics. There are special design approaches and tools for each domain. For example, computer aided design (CAD) tools or
strength analyses using a finite element method (FEM) are used in mechanical design. Simulators such as a simulation program with
integrated circuit emphasis (SPICE) or routing software are available for circuit design [19]. Ergonomic integrated development
environments (IDE), GitHub, and automatic code generation and testing tools help with software development.
The detailed domain designs are combined in the right wing of the V in the system integration. Thanks to the specific knowledge
of all subsystems, the system behavior can be precisely predicted statically and dynamically. Furthermore, controllers can
be parameterized. Analog simulations such as Matlab or Simplora help with this. The system properties are compared with
the specification by means of verification (comparison of the system properties with the specification at different levels of
concretization) and validation (review concerning a predefined intended use or benefit). The design process ends with the
transition of the design data to the production design or further design loops.
The design process is accompanied by modeling and analysis (simulation) on the underside of the V. As indicated in the previous
description, models with different levels of detail and accuracy exist for each phase. A continuous data management is needed to
process results of one step to prepare as input of the next step. This is often realized by simple scripts and databases, and hindered
by proprietary software packages. The models are verified and stored with the specific parameters as a digital twin for the product,
see, e.g., [20–22].
The V-model has been developed by the Association of German Engineers (VDI) [16]. However, similar concepts are also
used in engineering cultures of other countries, e.g., in guidelines of the U.S. Department of Transportation [23]. It has several
further developments and specific adaptations [24], e.g., for micro-electro-mechanical systems (MEMS) [25], or for considering
self-organizing production systems in early phases of interdisciplinary product development [26]. Only recently, a revision of the
V-model in the light of AI methods is proposed, see e.g., [27].

3 Potential for integrating AI into the design process

AI methods already showed great success in pattern recognition and separation, text and image generation and other fields. In
industrial product design, these approaches have not been used yet. However, they offer several interesting opportunities to
improve the design process described in Section 2. The system architecture in Fig. 2 is a synthesis process. There are hardly
supporting tools for finding the best configuration of solutions for sub functions. The solution space increases exponentially with
the number of sub functions. Experience and intuition of the human designers, which are mostly experts in only few technical
domains can be only limited to a subspace. For instance, DMG-lib (digital mechanism and gear library), collected more than 3000
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different mechanisms partly from forgotten patents or historic panels [28]. Oftentimes, different domains compete at solutions
for a sub function, e.g., a mechanism with standard drive vs. a combination of smart controlled drives, or a physical sensor
vs. an observer in a feedback loop. AI can help by its huge database to identify suitable combinations of solutions for all sub
functions and from different domains. Also the domain specific design in Fig. 2 is a synthesis process where a huge number of
parameters have to be specified from only a few input parameters. On the one hand, this is an optimization process, often with
a multi-criteria target function. Classical mathematical optimization approaches are limited by huge calculation times and by
handling the different criteria. On the other hand, the models used in domain specific design have to be very accurate. Often they
are nonlinear and contain estimated material parameters. In some cases the physical approach is valid only for a limited range of
the system variables or is even completely unknown. AI approaches can support at this gap with black-box-models, which are
learned from experimental and simulated data. The integration of AI into the design process bears great potential for accelerating
and transforming traditional approaches. The ability of AI to analyze huge data sets, recognize patterns and optimize solutions in
real time makes it a game-changing tool for increasing efficiency and creativity in design.
The following sections examine the current state of AI applications, and highlight the potential for improvements in the design
process. Referring to the V-model in Fig. 2, we currently observed that AI methods are mostly used in the early stage development.
Model-based design, which allows for a reduction of laboratory experiments and minimal prototyping, may stand in conflict
with data hungry AI methods, ref. Fig. 1. Here, synthetic data generation provide options for solutions, cf. Section 3.1. Then,
AI-based or hybrid modeling can be used for domain specific design or implementation problems on different abstraction levels, cf.
Section 3.2 and Section 3.3. In system integration or verification loops, identification, optimization and control techniques, as well
as reinforcement learning methods can be applied, cf. Section 3.4 and Section 3.5.

3.1 Supplementing experimental data by synthetic data

To develop robust prediction tools using machine learning methods, consistent, accurate, and rich datasets are a prerequisite.
The use of ML-based methods in traditional engineering domains has been limited by the lack of datasets, since performing
experiments can be time-consuming and expensive. While experimental data represents all physical effects that are present in
a system, they can also suffer from noise, biases, and inconsistencies. Moreover, limited observability of all relevant system
states can be an issue. Numerical models could overcome some limitations of experiments and provide abundant data to train ML
models, potentially at the risk of introducing a domain shift. Moreover, depending on the complexity of the problem, models,
e.g., FEM models, too can incur high costs due to large computational time. Generative learning-based models could overcome
these limitations by training on the limited data obtained from experiments and simulations and generating realistic synthetic data.
These models have gained a lot of traction in recent years due to their ability to model the actual data distribution and generate
novel data points, rather than model just the decision boundary between classes. These generative models, however, have not been
applied extensively in engineering domains. A few studies exist in literature that have used Generative Adversarial Networks
(GANs) to supplement data in the engineering domain [29–31].

3.2 AI-driven modeling

An overarching theme in supervised machine learning is the approximation of an unknown function from training data. Such a
function takes an input (e.g., measurements from a production process such as temperatures or stresses) and produces an output
(e.g., the statement whether the product is of high quality or not). Given data, the goal of machine learning is to train a model that
is then capable of predicting the function output for previously unseen inputs. The goal of this section is to shed light on the large
number of approaches and techniques that have appeared in recent years in the context of complex systems modeling.

3.2.1 Surrogate modeling and dimensionality reduction

Similar to the above-described example, the modeling of complex systems can be cast as a function approximation problem as well.
A vast number of engineering systems can be described by differential equations, in which the derivatives of the system’s state 𝑥

against time (ordinary differential equations (ODEs)) or against both space and time (partial differential equations (PDEs)) form a
functional relationship with the state itself. Examples for systems described by ODEs are the dynamics of multibody systems,
robot movements, or molecular dynamics. PDEs, on the other hand, model distributed phenomena such as heat flow or continuum
mechanics. In ODEs and PDEs, given an initial condition 𝑥(𝑡0) = 𝑥0, and for PDEs, appropriate boundary conditions, we would
like to predict the system dynamics over some time horizon 𝑡 ∈ [𝑡0, 𝑡𝑒], while potentially considering external inputs 𝑢(𝑡). The
evolution of this state is then determined by the evolution law of a dynamical system, which can be both of continuous-time or
discrete-time nature

¤𝑥(𝑡) = 𝑓 (𝑥(𝑡), 𝑢(𝑡)) or 𝑥(𝑡 + Δ𝑡) = Φ(𝑥(𝑡), 𝑢(𝑡)), 𝑥 ∈ R𝑁 .

In the case of PDEs, where the state 𝑥(𝜉, 𝑡) additionally depends on a spatial coordinate 𝜉, the traditional approach is to discretize
the state in space using, for instance, finite elements, to obtain a large system of coupled ODEs. Also the static case, i.e. solving a
zero-finding problem or a fixed-point problem (corresponding to 𝑓 (𝑥) = 0 or Φ(𝑥) = 𝑥, respectively) is relevant, but might pose
challenges to the numerical method.
There are several situations in which analytical or numerical solution techniques are infeasible: (i) the system dynamics are
unknown, (ii) some parameters in an equation are unknown, or (iii) the system is simply too expensive to simulate. As a remedy,
we can try to learn the system behavior from data, for which one can consider multiple approaches:
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• Learn the right-hand side of 𝑓 of the continuous-time dynamics. The resulting ML approximation can then be included in a
numerical integration scheme (such as a Runge-Kutta method) to predict the system behavior.

• Directly approximate the discrete-time dynamics Φ (i.e., the flow map) such that the model becomes a stand-alone predictor.
• Noting that the solution 𝑥(𝑡) is itself a function, one can approximate 𝑥(𝑡) (or 𝑥(𝜉, 𝑡)) directly, meaning that the time 𝑡 (and

potentially the position 𝜉) are the inputs to the machine learning model, and 𝑥 is the output.
Independent of which approach is chosen, one can distinguish between intrusive and non-intrusive modeling, where intrusive
means that the equations of motion need to be known and play a prominent role in deriving the model (for instance, via a projection
step).

Dimensionality reduction: Prior to addressing the task of learning a predictive model, one may have to address the challenge
of a highly dimensional state-space. While directly predicting the state 𝑥 itself is the most obvious approach in model learning,
there are many situations where its dimension (i.e., the number 𝑁 of degrees of freedom) is prohibitively large. Machine learning
approaches such as [32] may be capable of overcoming this challenge by automatically identifying suitable low-dimensional
structures within the high-dimensional problem. That is, we define a reduced-order state 𝑧 with dimension ℓ ≪ 𝑁 . Assuming
that the system dynamics evolve on a lower-dimensional subspace (i.e., an attractor or invariant manifold) – or at least that the
dominant/relevant dynamics do – a dimensionality reduction can be learned that preserves most of the information. In this area,
popular approaches are (1) the identification of linear subspaces, e.g., via the Proper Orthogonal Decomposition [33] (in statistics
also known as the Principal Component Analysis), (2) the identification of nonlinear subspaces (e.g., via diffusion maps [34]), or
(3) nonlinear coordinate transforms via autoencoders [35–37].

Learning the dynamics: To learn a dynamical system from data, we require time series information of the state 𝑋 =

[𝑥0, 𝑥2, . . . , 𝑥𝑀−1] ∈ R𝑁×𝑀 as training data. This data might already have undergone dimensionality reduction techniques.
To learn discrete-time systems, we partition 𝑋 into two data sets 𝑋 ′ = [𝑥0, 𝑥1, . . . , 𝑥𝑀−2] and 𝑋 ′′ = [𝑥1, 𝑥2, . . . , 𝑥𝑀−1], such
that 𝑋 ′′ = Φ(𝑋 ′) in a column-wise fashion. Approximating Φ thus becomes a supervised learning problem. Learning the
right-hand side 𝑓 of a continuous-time ODE additionally requires time derivatives ¤𝑋 , which either need to be collected directly or
approximated via numerical differentiation [38]. Approximating 𝑓 is also possible, such that ¤𝑋 = 𝑓 (𝑋) is again a supervised
learning problem. Denoting the approximators (parameterized by 𝜃, e.g., the trainable weights of the approximator) as Φ𝜃 and 𝑓𝜃 ,
the learning problems can be formalized as

min
𝜃

1
𝑀

𝑀−1∑︁
𝑚=0

∥ ¤𝑥𝑚 − 𝑓𝜃 (𝑥𝑚)∥2
2 or min

𝜃

1
𝑀

𝑀−1∑︁
𝑚=0

∥𝑥𝑚+1 −Φ𝜃 (𝑥𝑚)∥2
2 .

Depending on the specific method, these loss functions can be augmented by additional terms for regularization, sparsification,
or to take into account system knowledge such as the governing equations. For linear models, the minimization can usually be
realized by linear regression (computation of the pseudo inverse), whereas nonlinear models generally require iterative procedures
such as gradient descent.
The following list presents a number of popular examples for learning dynamical system from data.

• Black-box deep learning of Φ using recurrent architectures such as long-short-term memory (LSTM) [39–41], feed-forward
neural networks, or transformers [42]; cf. [43] for a survey.

• Alternatives for learning Φ using the Mori-Zwanzig formalism [44] or regression techniques such as ARIMA (autoregressive
integrated moving average) [45], Reservoir Computing [46, 47], and extreme learning machines [48].

• Black-box deep learning of 𝑓 using neural ordinary differential equations [49].
• Sparse regression techniques [50, 51]: here, the goal is to not only learn a predictor, but to identify the underlying equation

that created the data. The goal is thus also the identification of potentially unknown systems or their parameters.
• Identification of linear systems / dynamic mode decomposition (DMD) / Koopman operator: For control and trajectory

optimization purposes, a particularly useful class of surrogate models can be created by lifting a nonlinear dynamical system
into a higher dimensional state space. In this lifted space, the dynamics can be represented as linear, for example, using
the Koopman operator [52–56]. This (partially) resolves inherent non-convexity of the otherwise nonlinear optimization
problems and can thus aid with the design optimization of dynamical systems. In particular, gradient information becomes
easily accessible, which is crucial in optimization problems with a high-dimensional search space. The lifted dynamics can
be identified from data through an extended dynamic mode decomposition (EDMD), which extends DMD by including
a large library of observables; that is, of lifted states [57]. This concept can be extended to representations that facilitate
control, either in the form of a linear time invariant system [58, 59], as a switched system [60], or as a bilinear representation
with linear autonomous dynamics and a bilinear control input [61, 62].

• Intrusive modeling of PDEs via Galerkin projection [33, 63–65]; this type of surrogate modeling has been extremely
popular already before the machine learning revolution. The underlying approach is, to learn an ℓ-dimensional linear
subspace Ψ = {𝜓1, . . . , 𝜓ℓ } of 𝑋 with the smallest possible projection error, which we obtain by performing a singular value
decomposition (or principle component analysis, which is the same). Inserting a Galerkin ansatz 𝑥(𝑡, 𝜉) ≈ ∑ℓ

𝑗=1 𝑎 𝑗 (𝑡)𝜓 𝑗 (𝜉)
into the weak form of the PDE then yields an ℓ-dimensional ODE for the dynamics of the coefficients 𝑎.

• Physics-informed machine learning [66–68]: The task of physics-informed neural networks (PINNs) is the direct approxima-
tion of the mapping from a given input time 𝑡 (and potentially position 𝜉) to the corresponding system state 𝑥(𝑡) (or 𝑥(𝑡, 𝜉)).
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When approximating this mapping by a neural network, one can easily calculate derivatives of the output 𝑥 with respect to
the inputs 𝑡 (and 𝜉) – simply using numerical differentiation/backpropagation. If we know the differential equation of the
system we would like to predict, then we can simply construct a loss function that encodes the physics.
Consider the heat equation 𝑥𝑡 − 𝜆𝑥 𝜉 𝜉 = 0, for example. In this case, one could train the neural network weights 𝜃 in such a
way that the model output 𝑥 𝜃 , differentiated with respect to the input variable 𝑡, minus 𝜆 times 𝑥 𝜃 differentiated twice with
respect to the input variable 𝜉, is minimized: min𝜃

∑𝑀−1
𝑚=0 ∥𝑥 𝜃𝑡 (𝑡𝑚, 𝜉𝑚) − 𝜆𝑥 𝜃

𝜉 𝜉
(𝑡𝑚, 𝜉𝑚)∥2

2, where the loss is evaluated on 𝑀

collocation points (𝑡𝑚, 𝜉𝑚) distributed in space and time.

Generative modeling: Generative learning-based models, since the advent of Generative Adversarial Networks [69], have
gained a lot of traction in the field of AI. GANs [70, 71] and Diffusion models [72, 73] have demonstrated remarkable progress in
high-resolution image and video generation and large language models (LLMs) have become household names due to the success of
AI-based text-generators such as ChatGPT [74], Gemini [75], and Llama [76] for their ability to generate near humanlike responses.
Generative models such as GANs have tremendous potential for surrogate modeling, especially modeling FE simulations. Since
GANs do not map inputs to outputs and rather learn from the underlying patterns in data, a well-trained GAN can overcome certain
problems pertaining to supervised learning, such as overfitting, accurate interpolation inside the data range, and extrapolation of
results [77]. The very first publications in this area [78–81] explore a data-driven approach in predicting the field variables in a
finite element simulation.

3.2.2 Application domains

To illustrate the application of these techniques, the following section provides a number of examples, motivated by the research
performed in the priority program SPP 2353. We not only highlight the potential for the use of AI-based modeling and optimization
techniques, but also elaborate on application-specific challenges.

Mechanical engineering: Designing mechanical mechanisms is a challenging task, since linkages and other moving structures
are subject to complex physical constraints and often exhibit discrete design choices. Additionally, the relationship between the
motion and the mechanism design can be highly non-linear especially at the boundary between different mechanism classes. As
a consequence, multiple –potentially topologically disconnected– solutions may exist for a given task. Nevertheless, carefully
designed special-purpose machines can potentially be lighter, more energy-efficient, easier to control, and more precise compared
to general-purpose systems. Hence, extensive research has been carried out using analytical formulations or optimization-based
approaches [82–92]. Analytic approaches require profound mechanism knowledge, while optimization relies on sequential
simulations, which have to be performed repeatedly for each new task. In contrast, data-driven methods require an extensive
training stage but afterwards can almost instantaneously and with little calculation effort propose new designs. A review of
different deep learning approaches for a broad range of engineering tasks, including a section on kinematic synthesis, is provided
in [93]. In [94], a data set of 100 million different linkages is presented to foster the development of data-driven methods and
to allow for benchmarking. In [95], a neural network is used to predict the discrete coefficients of a spring-block model for the
design synthesis of planar mechanisms, followed by a gradient-based local optimization for the dimensional synthesis. The method
has been extended to also allow for the synthesis of spatial linkage mechanisms [96]. Different feature extraction methods and
normalization strategies for the representation of paths used to predict four-bar linkage parameters have been investigated in [97].
To cope with the multi-modality of possible solutions, individual deep neural networks can be trained on subspace regions of the
design space [98]. An alternative approach is presented in [99], which proposes the usage of conditional generative adversarial
networks for the synthesis of crank-rocker mechanisms, including kinematic and quasi-static conditions. The conditioning of the
generator can then be used to propose different mechanism designs even, for the same target conditions. Apart from the design
synthesis of mechanisms, AI methods can also be utilized for tasks that have previously been impossible. Natural-language models
can be used to create multibody simulation code [100] or to constitute multibody models from hand-drawings of mechanisms for
rapid prototyping [101]. Finally, [102–104] use autoencoder networks to represent target paths in a compressed lower-dimensional
feature space.

Robotics and Mechatronics: In the design of robotic systems, desirable performance is often characterized by speed and
energetic efficiency. With these goals in mind, the design of robotic systems can be challenging, as the systems’ hardware (i.e., the
morphology) and the associated control (i.e., the motion) are inherently coupled via the mechanical dynamics. Consequently, a
co-design approach must be applied to simultaneously optimize both motion and morphology [105–109]. If a diverse set of tasks
is desired, this approach must trade-off a single mechanical design to optimally support different motions that the robot needs to
perform efficiently. Such multi-task optimizations can lead to high-dimensional, coupled, and complex optimization problems.
Solving these problems has traditionally required significant human intervention and expert knowledge to identify suitable robotic
designs. More recently, AI has become an important element in the design processes for robotic systems. The applications
of machine learning techniques span from genetic algorithms [110–112] to more recent advancements in deep reinforcement
learning [113–115]. To aid with traditional, optimization-based approaches to co-design, AI-based modeling techniques, as
outlined above, could help alleviate the computational burden. Here, models that facilitate the evaluation of sensitivity information
as they are needed in optimization and control are favored.
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Acoustics: Machine learning techniques are gaining momentum in different areas of acoustics. Applications range from
ocean acoustics [116], speech processing [117], environmental acoustic monitoring [118] to musical acoustics [119]. A general
overview for machine learning in acoustics was assembled in 2019 [120]. A review specifically dedicated to machine learning for
vibroacoustics is provided in [121]. In the following, we focus on ML applications related to product design, in particular, we
discuss achievements in the field of room acoustics, metamaterial design and fault detection.
Room acoustics aim to analyze acoustic properties, such as the mean absorption coefficient, reverberation time or speech quality of
a room. In [122], ML techniques are investigated to identify human and mechanical noise sources in noisy office environments. To
this end, Gaussian mixture models and K-means clustering techniques are used to identify the respective sound sources. To analyze
the acoustic characteristics of an existing room, [123] proposed supervised ML to predict the mean absorption coefficients based
on the room impulse response. The work [124] targets direction and arrival estimation in noisy and reverberant environments. A
supervised learning approach is presented for robust direction of arrival estimation based on simulated microphone array inputs.
Acoustic metamaterials are periodically arranged structures, which promise advantageous acoustic properties, e.g., high sound
insulation effects. To predict the sound absorption coefficient, [125] trained a supervised learning model on measurement data
and demonstrated good generalization properties. To tackle the challenge of metamaterial design, [126] proposed conditional
generative adversarial networks to create new metamaterial design proposals. New metamaterials are designed, which follow a
desired transmission behavior in the frequency domain. In [127], Radial Basis Function networks and Quasi-Monte Carlo methods
are used for surrogate based optimization of transmission and dispersion properties of acoustic meta materials.
Non-destructive testing is an important technique for maintaining products during lifetime. The work in [128] investigates
ultrasonic inspection of polyethylene pipes, which are used for gas distribution. ML techniques are used to detect failures, in
particular convolutional neural networks (CNNs) are successfully applied in a four-class classification problem. In the field of
robot-assisted ultrasonic testing, [129] applied ML techniques to improve the image resolution. To this end, a visual geometry
group U-Net processes the ultrasonic images.

Fluid mechanics: System modeling and design in fluid dynamics is a highly challenging task, one of the key challenges being
the complex flow physics governed by the Navier–Stokes equations in various forms (incompressible/compressible, reacting/non-
reacting etc., depending on the specific application). In the regimes that are relevant for applications, the flows are usually turbulent.
This means that we have to deal with complex multi-scale physics in both space and time, and computations quickly exceed modern
computing capacities even on high-performance computers.
Due to this, AI has become an important factor in design processes for systems governed by fluid mechanics. The usage of machine
learning in fluid mechanics [130] can be divided into multiple categories. The equations of motion are well known, but usually
too expensive to solve numerically, which is why one of the key goals is to accelerate simulations. This can be achieved using
surrogate modeling in various forms laid out in Section 3.2.1, cf., e.g., [33, 37, 63, 131–133]. In a similar fashion, turbulence
modeling [134, 135] can be used to allow for coarser mesh resolutions in space, which also facilitates faster simulations without
losing accuracy. The task of super resolution is used as a post-processing step, where convolutional neural networks are used to
increase the level of detail of coarsely resolved flow field data [136, 137].
Beside these acceleration tasks, AI and machine learning can be of great help for system understanding (e.g., in the form of modal
analysis [52, 53, 138]), as well as in the design process itself [139]. Two particularly popular examples are the choice of suitable
sensor placements [140, 141] and the data-driven design of controllers [41, 65, 142–144].

3.3 Hybrid modeling

While AI-driven modeling generates a model based solely on measurements and without system knowledge, hybrid modeling
incorporates existing knowledge. A hybrid model generally involves the combination of multiple submodels from various modeling
methodologies, such as physical, statistical, and machine learning models, allowing the limitations of individual models to be
compensated [145–147]. For instance, the physical model of a system can serve as the foundational framework of the modeling
process, which is then augmented with suitable data-driven components [148].

Phenomenological effects: The precise representation of the dynamic behavior of technical systems using physical modeling
approaches is often challenging, especially when the involved effects can only be captured with considerable effort [146]. This
includes, for instance, tribological effects, which represent the dissipative aspects of dynamic system behavior [149], or the complex
aerodynamic forces acting on a moving vehicle [150]. Detailed modeling approaches typically exhibit high complexity and
application specificity. In situations where physical models are unavailable, impractical to implement, or complex to parameterize,
data-driven models based on measurements can provide a viable alternative. Combining both approaches into hybrid modeling of
dynamic systems contributes to increasing the efficiency of model development. One approach is to compensate for discrepancies
between the model and measurements resulting from incomplete physical modeling by employing a data-driven model [151–153].
The differential equation to be solved can be expressed as

¤𝑥(𝑡) = 𝑓 (𝑥(𝑡), 𝑢(𝑡)) + ℎ (𝑥(𝑡), 𝑢(𝑡)) ,

where 𝑓 represents the physical model and ℎ represents the data-driven model [154–156]. The data-driven component allows for
the integration of phenomena that the physical model alone might miss.
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Model reduction: Large systems consisting of multiple components and submodules pose a challenge. They often have a large
number of degrees of freedom, making them computationally intensive [145]. By replacing entire components with data-driven
models, which often have easily computable structures, the complexity of the system model can be reduced [157]. When employing
data-driven models to replace complex components, it is essential to ensure that the internal dependencies and suitable interfaces
between different parts of the system are maintained. This involves careful integration of data-driven models to ensure they interact
correctly with the remaining physical models. Model reduction not only enhances computational efficiency but also aids in the
design and optimization process. Simplified models allow for quicker iterations and more extensive exploration of the design
space, which is particularly beneficial in multi-objective optimization scenarios. However, it is crucial to validate the reduced
models against high-fidelity simulations or experimental data to ensure their reliability and accuracy. Furthermore, the modular
nature of hybrid modeling supports scalability and flexibility. As new data becomes available or as system requirements change,
individual data-driven components can be updated or replaced without necessitating a complete overhaul of the entire model. This
adaptability is vital for maintaining the model’s relevance and accuracy over time.

Error reduction: Hybrid modeling enhances the accuracy of models by leveraging the strengths of both physical and data-driven
approaches [145, 146, 148]. The physical model provides a grounded understanding of the system’s fundamental behaviors, while
the data-driven component can correct for inaccuracies and fill gaps left by the physical model or by error-prone measurements
[155, 156]. This synergy allows for ongoing error reduction as more data becomes available, continuously refining the model’s
predictive capabilities. However, the generalization capabilities of the data-driven model determine the validity regimes of the
hybrid model overall.

Transparency: Hybrid modeling promotes transparency by maintaining a clear distinction between the physically understood
parts of the model and the data-driven components [158, 159]. This separation allows for better interpretability of the model’s
behavior, making it easier to diagnose issues, understand the contributions of different parts of the model, and communicate
the model’s workings to stakeholders [160]. Moreover, this transparency is crucial for validating and verifying the model. By
clearly distinguishing between the physical and data-driven parts, it becomes easier to trace errors and understand the sources of
inaccuracies. This clarity also facilitates the debugging process, as engineers can pinpoint whether issues arise from the physical
assumptions or the data-driven adjustments. Transparency also enhances the model’s flexibility. When the contributions of
physical and data-driven components are clear, it becomes easier to update or replace parts of the model in response to new data or
changing requirements. This modular approach allows for more straightforward adjustments and scalability, ensuring the model
remains relevant and accurate over time.

3.4 AI-assisted identification, optimization and control

In an industrial context, design is typically based on expertise and driven by a trial & error procedure. Small changes of one or few
design parameters are analyzed with often time-consuming commercial off-the-shelf (CoTS) software or multi-disciplinary analysis
processes in order to gain some knowledge about improving and worsening design changes. In rare cases, like shape optimization
w.r.t. to stress or flow criteria, this may be supported by gradient information obtained from numerical differentiation or adjoint
methods. In high-dimensional design spaces with general multi-modal design objectives and constraints, however, numerical
differentiation is rather time-consuming and manual search will rarely lead to a truly optimal design. Substitution by numerical
multi-criterion optimization is, therefore, the better solution. Especially population-based algorithms, such as multi-criterion
genetic algorithms or particle swarm optimization are able to obtain optimal tradeoffs even in case of multi-modal objective
functions and heterogeneous design spaces, see, e.g., [161, 162].
Since in industrial practice, design intention is mostly intuitive and only rarely formalized, one of the first steps is to find
mathematical functions for the objectives and constraints. Secondly, design parametrization is mostly analysis-oriented and
thereby often less qualified for optimization. In contrast to human designers, numerical optimization can only account for design
restrictions formally included in the optimization problem. In shape optimization, e.g., a re-parametrization as splines (piecewise
polynomial curves) may help to account for smoothness of curves and surfaces with few parameters only. In order to resolve the
conflict between the requirement of tens of thousands of design evaluations for genetic algorithms and the high computational
effort for analysis, surrogates may substitute direct design evaluation during optimization [163–165]. Machine learning models
such as multi-layer perceptrons, regression trees or radial basis function networks can often be adaptively improved using a
comparatively small number of expensive simulations of the original system [41, 166]. After multi-criterion optimization has
found an Edgeworth-Pareto-set of multiple optimal tradeoffs, the designer may assess these designs with respect to physics and
apply priority measures to select a specific one for realization.
Optimization is also the usual strategy for parameter identification. Machine learning, however, can be an alternative since it can
find correlations between data in any direction. Thus, a data set of function values or time-series may be generated by classical
analysis of a random set of parameters to be identified. By reversing the input-output order, machine learning may then learn a
multi-layer perceptron relating parameter values to any provided function value or trajectory. In the latter case, convolutional
networks are recommended to account for the high correlation between neighboring time points. Such a procedure may also be
applied to control problems requiring inverse kinematics and dynamics models. In tracking problems, the obtained surrogates may
then be used as feedforward controllers and accomplished by rather simple traditional feedback control.
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3.5 Reinforcement learning as an optimization method

Due to the advancements made to reinforcement learning (RL), it is gaining popularity in various domains, such as engineering
[167–169], robotics [170, 171], economics [172], data management and planning-control [173] along with computer science
problems [174, 175]. In RL, agents operate in an environment (or a working domain) and take specific actions to change the state of
the environment. The agents receive feedback in terms of a reward signal from the environment and then learn through sampling to
take better actions to maximize their cumulative reward [176]. The RL agents can learn continuously and improve as they interact
with the environment. Therefore, RL can be used in parameter exploration, optimization, function approximation, automation, and
control problems. It has been shown that RL agents can learn to perform as well as or better than humans in various gaming
environments with the introduction of the base deep Q-network (DQN) agent [174]. Furthermore, multiple user-friendly libraries
exist with these RL agents, which can be directly implemented to understand and solve complex problems like multiobjective
inverse optimization.
In inverse optimization problems, parameters are optimized to fulfill precise objectives while considering various physical and
non-physical constraints, traversing through parameter space, and exploring the feasible parameters. Evolutionary algorithms (EA)
are conventionally used to solve the optimization problem. Still, they have a fundamental drawback in terms of the stochastic
character of action and its effect, which can cause delay. In some large-scale problems, EA cannot be applied without a large
population size or a number of iterations [177]. Therefore, deep reinforcement learning (DRL) methods are explored [177].
Complex optimization problems can be modeled as a model-free environment, and the optimizing policy can be evaluated and
adjusted. The agent can sample from the custom optimization environment and explore the parameter space. The reward can be
used to guide the agent in fulfilling the objectives while exploring. Therefore, these DRL methods are increasingly used with EA
methods in various optimization problems [178–180].

4 Examples of the integration of AI into the design process

In this section, we present illustrative examples from the SPP 23531 initiative that demonstrate the innovative use of AI in the
design development of new systems. These examples show how AI technologies are integrated into the design process to improve
efficiency, creativity, and the overall design outcome.
Each example begins with a brief problem statement to provide the context. We then address four key questions to illustrate the
role and impact of AI in the design process:

1. What prior knowledge or experience can be drawn upon to inform the design process?
2. What models exist and are used to improve the design outcome?
3. What limits exist in the design process to date and what potential does the use of AI methods harbor?
4. What data has been collected and processed for the design process?

Finally, we give an outlook on the expected results and offer insights into the expected progress and benefits of integrating AI into
the design process. With these examples, we aim to illustrate the transformative potential of AI in developing innovative design
solutions and overcoming traditional challenges.

4.1 AI based design assistance system for soft robotics – optimizing complex systems based on the smallest
design entity (Project of K.M. de Payrebrune)

The main goal of this project is to develop customized soft robots that are designed to perform specific tasks. The robots have a
modular design, whereby the dimensions of each module can be individually adapted. To achieve an optimal design of a soft
robot consisting of several modules, we use machine learning algorithms to improve model extensions, to increase the prediction
accuracy of robot performance, and to determine the optimal design based on the knowledge of one module, as outlined in Fig. 3.

Fig. 3: AI-design assistance for soft robots with task-optimized components.

1. Prior knowledge/experiences: The development and design of soft robots is usually based on the creativity of the researcher
and the research questions that are to be investigated. The improvement in performance is usually achieved through trial &
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error. In particular, the complex interaction between the chosen structure and applied loads makes it difficult to predict the
continuous deformation of the robot. In addition, the design of the robot must be adapted to the manufacturing possibilities.
As the robots are usually made of silicone and controlled with compressed air, additional restrictions exist here.

2. Model: Various model approaches exist for the calculation of soft, slender structures with continuous deformation. Among
the beam models that reduce the three-dimensional structure of the robot to a material line in space, there are continuum
mechanics-based approaches with constant curvature per robot section [181], Cosserat beam approaches with variable
curvature [182] and tendon driven kinematics [183]. In parallel, finite element formulations of varying complexity (shells
[184], isogeometric shells [185], three-dimensional description [186]) are used. First model-free approaches use data-driven
machine learning and deep learning algorithms to find a relation between input and output [187]. Particular challenges lie in
the dynamic description, as well as in their control, as the robots react sensitively to external disturbances and loads.

3. Limits and boundaries: In our project, we aim to enhance the prediction and design of complex soft robot structures by
leveraging machine learning algorithms, especially by hybrid models incorporating data-based sub-models. Firstly, we seek
to expand the beam model by incorporating influences such as nonlinearities in material behavior and friction between the
silicone body and other components of the soft robot module. These factors are challenging to integrate into the existing
physical model or have not been addressed adequately at all. To achieve the model adaptation, simulation results will be
compared with measurements of soft robot deformations, and model parameters will be iteratively adapted. Secondly, based
on 3D finite element simulations and solutions derived from beam formulations, we aim to establish a relationship between
design variables and deformations for various pressure actuations and loads. This will enable predictions of performance for
further design modifications, facilitating a more precise adaptation of the soft robot design to specific tasks.

4. Data: In order to read out the deformation of real soft robot modules for variable pressurization, photos are taken with a
stereo camera system and evaluated with a modified iterative close-point algorithm for marker-free 3D shape reconstruction
[187, 188] from the group of Sattel and Flaßkamp [189]. The backbone curves obtained can then be used with simulation
results to adjust the model parameters.

We expect to develop a design assistant tool that helps to find an optimal design solution of a soft robot for a specific task. The
design assistant tool will combine results from machine learning approaches and experiences of the user such that additional
aspects, as the ability to manufacture the robot, can be included in the design process. Based on the numerical analyses, a faster
and more reliable design of a new soft robot system will be achieved.

4.2 AI-design assistant for stereotactic neurosurgery with concentric-tube continuum robots (Project of
T. Sattel and K. Flaßkamp)

The aim of this project is to develop patient-specific tools for stereotactic neurosurgery. The tools are on the one hand hardware
tools, i.e., surgical tools here named as curved cannulae, configured as nested NiTi-tubes, and second software tools, i.e., methods
and algorithms to plan the optimal surgery, which keeps brain damage to a minimum, see Fig. 4. We combine first-principle
models with data-based modeling approaches and solve the coupled design-planning problem by combinations of gradient-based
optimization, evolutionary algorithms, and learning methods. Design parameters for the cannulae are the geometrical data of the
tubes and their pre-curvature. Design objectives are minimal path length, target point accuracy, distance to critical regions, etc.
Restrictions are e.g. maximal curvature or geometric limitations. The design output are a bunch of cannulae configurations and
assigned control parameters for steering them via translation and rotation of their proximal ends safely to the target point in the
brain.

Multi-objective optimization
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Fig. 4: AI-design assistance for stereotactic neurosurgery with curved cannulae.

1. Prior knowledge/experiences: It is state-of-the-art to perform minimally invasive deep-brain stimulation or biopsies by
stereotactic neurosurgery with a single straight cannulae, [190]. Curved cannulas offer more flexibility in reaching the
target with potentially less risk. Concentric-Tube Continuum Robots (CTCR) are the underlying technological base for the
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application of curved cannulae in minimally invasive surgical procedures, [191]. But curved cannulae need sophisticated
planning and assistance tools, not available yet. Physicians’ experience is needed for annotation of MRT data to define the
constraints (i.e. vessels and sensitive brain areas) for the surgery path to be planned within the brain, to identify possible
entry points on the skull and to mark the target points.

2. Model: Detailed mechanical models for nested cannulae configurations have been developed in previous works, e.g. [192, 193].
Parameter identification is needed based on experimental data. Some material and geometrical effects (non-concentricity of
tubes; nonlinearities, in general; elasticities, hysteresis) are not included or only partially included, thus the model accuracy
is not fully satisfactory.
Defining typical cost functions such as ”shortest path to target” and modeling constraints given by the brain topology
in a numerically processible way, e.g., by ellipsoids, we can solve the planning problem by optimal control methods,
e.g. [194, 195]. Parametrized cannuale models add a few more parameters to the optimization problem for finding
simultaneously an optimal path with an optimal cannula configuration.

3. Limits and boundaries: The model accuracy shall be improved by hybrid models including data-based submodels. We have
used iterative learning control to improve tool-tip accuracy between photogrammetric data and model-based simulations.
Since production of tubes is costly and time-consuming, real data of different cannulae configurations is rare. This raises
a need for artificial data of possible cannulae design which can be evaluated regarding their performance in surgery
planning. Optimal path planning with classical gradient-based methods is computationally too demanding, in particular in
multi-objective problems. In fact, the aim is to learn optimal solutions of parametrized problems.

4. Data: Nested-tube cannulae configurations have been tested in a concentric tube continuum robot in a photogrammetry
system, [190]. Simulation data can be generated by Cosserat beam models. Artificial data has been generated by GANs in
collaboration with M. Stoffel et al., [29].

We expect to develop AI-assisted planning tools for patient-individual stereotactic neurosurgery, including design optimization and
path planning for nested NiTi-cannula configurations.

4.3 AI-design assistant for simplifying optimization of complex technical systems (Project of P. Eberhard
and D. Bestle)

The project aims at reducing the required expert knowledge about an underlying system to be designed by using numerical
optimization strategies instead of performing expert-based design improvements.

1. Prior knowledge/experiences: In industrial applications, usually technical systems are still designed by trial & error. Typical
arguments against using numerical optimization strategies are high computational analysis times, that classical optimization
algorithms propose rather impractical designs, or missing gradients required by efficient optimization algorithms when
integrating CoTS software for analysis.

2. Model: Design assistants integrating modern optimization concepts for multicriterion optimization may offer an Edgeworth-
Pareto-set of several optimal tradeoffs where the design engineer may choose from while releasing him from tedious search.
Genetic algorithms may find these tradeoffs even in case of multimodal objective functions where the requirement of tens
of thousands of design evaluations is avoided by using surrogates derived from few original design analyses by machine
learning. Hidden constraints resulting in failed analyses may be represented by classification trees or neural classification
networks to predict infeasible designs and thereby avoiding unnecessary analyses.

3. Limits and boundaries: Both surrogate training and optimization with evolutionary algorithms suffer from the curse of
dimensionality. Statistic sensitivity analysis like e.g., computation of Sobol indices may provide information, which allows
reducing the design space dimension to the most influential parameters. Also here surrogates may provide an artificial big
data set required for computing these indices.

4. Data: The data as basis for surrogate training may be obtained from simulation or analysis of models derived from first
principles of physics or mechanics like multibody system formalisms. By using an adaptive concept, where approximate
surrogates are first trained with small data sets obtained from design of experiment strategies like Latin hypercube sampling
and then refined only in promising design regions proposed by the optimization algorithm, may cut down the number of
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Fig. 5: The automatic design of a multibody system for a user-defined path.
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original design evaluations dramatically and thus makes automated design feasible even for complex systems.

The project will develop above concepts along the final goal to design controlled flexible multibody systems in order to show their
applicability. An example is shown in Fig. 5.

4.4 Data-driven machine learning enhanced optimization of vehicle crashworthiness design (Project of M.
Stoffel)

The main goal of the project is to develop a design optimization framework based on Reinforcement Learning (RL) with the ability
to supplement with synthetic data from generative learning models. The complete framework, as shown in Fig. 6, has been applied
to vehicle crashworthiness design here but can be extended to any design optimization task. Generative modeling is utilized to
generate synthetic data to supplement the numerical data to make the machine-learning models more robust.
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Fig. 6: Design assistant framework for optimization of crashworthiness.

1. Prior knowledge/experiences: Vehicle design requires complex systems engineering, where a large number of attributes
must be systematically considered. Most of the current commercial optimization tools offer various methods for mathematical
surrogates. These are also known as meta-models and regression models and are used in response surface methods to
reduce the computational effort required for the design optimization process. The second widely used approach to saving
computational time is employing physical surrogates, simplified or reduced computational models realized from sub-structure
modeling, reducing the model to rigid bodies, rough-fine meshing, or making equivalent multi-body models.

2. Model: Several classical approaches based on evolutionary algorithms and heuristic methods exist for the optimization of
vehicle crashworthiness design [196]. These models, however, are time-consuming, adequately accurate, and do not work
for multiparameter and multiobjective optimization tasks. Expert input is paramount for using these methods to set up the
design of experiments (DOE) and choose the best possible result. A RL-based framework is proposed, that can handle
multiobjective and multiparameter optimization tasks with relative ease and eliminate the requirement of an expert input in
the optimization process.

3. Limits and boundaries: Training generative learning-based models is challenging due to the indirect nature of their training,
and they are susceptible to hyperparameters. Since non-linear regression with generative models is a novel approach,
customized loss functions must be used in addition to the likelihood principle. These functions cannot be generalized.

4. Data: Impact simulations for passive safety components of vehicles have been performed using Abaqus and LS-Dyna. Since
these simulations consume a lot of computational time and effort, a crashbox is used as an example model to demonstrate the
optimization method. These datasets have been further enriched with synthetic data from generative models and used to
train the RL model.

The project develops an overall framework for design optimization and presents multiple design assistants, such as the generative
model, FE surrogate, and RL model, which can be independently utilized.
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4.5 Hybrid modeling for data-enhanced multiobjective optimization of multibody systems (Project of W.
Sextro and S. Peitz)

The main goal of this project is to develop a highly flexible and adaptive data-enhanced framework for the multi-criteria design of
complex multibody systems, see Fig. 7. In the design of new systems, various (usually conflicting) goals and different parameters
can be adjusted to meet these goals. For optimization, simulations must be carried out frequently, which can be computationally
intensive and time-consuming, especially for complex multibody systems. During the design process, it is important to maintain
the transparency of the system and correctly map dependencies between sub-models.

Fig. 7: Approach to assist the multi-criteria design of complex multibody systems using adaptive hybrid models.

1. Prior knowledge/experience: During the design of new dynamical systems, a typical approach involves iteratively defining
requirements, creating conceptual designs, developing detailed models incorporating both physical and mathematical aspects,
and refining the design through iterative analysis and simulation to meet performance goals and constraints. Finally, the
design is validated through testing to ensure compliance with requirements and reliable operation.

2. Model: A physical model is constructed based on first principles. Initially, a topology is defined, which is then supplemented
with force elements. These elements can be very complex and nonlinear, making precise modeling and parameterization
challenging, if not impossible. For the most accurate modeling, the integration of flexible bodies may also be necessary,
though this comes with high computational costs. Parameters of the physical model can be identified through measurements
of individual components or the entire system. Design variables are defined within the physical model and are adjusted to
fulfill the defined objective function. Subsequently, multi-objective optimization is performed using the established model.

3. Limits and boundaries: Challenges in modeling often arise from the need to simplify complex real-world systems, leading
to potential inaccuracies. Incomplete or uncertain data may hinder accurate model creation, and errors in assumptions
or equations can compromise reliability. Managing the complexity of intricate systems presents difficulties in analysis,
simulation, and implementation. The absence of precise modeling approaches, unaccounted for or unknown phenomena, and
the complexity of parameter identification, particularly for sub-systems that remain unchanged, are significant challenges. In
terms of optimization, the resulting model may be prohibitively expensive to evaluate, or it may be hard to obtain gradient
information.

4. Data: Simulation data generated by a physical model in multibody dynamics simulation software (Adams) serve as the
foundation for understanding the system’s behavior. Additionally, measurements of sub-systems/components are used for
parameterizing individual components, enhancing model accuracy. Measurements on the entire system are essential for
validating overall system performance, ensuring that simulated behavior aligns with real-world observations.

The development of a highly flexible and adaptive data-enhanced framework is expected to significantly improve the efficiency and
accuracy of the multi-criteria design of complex multibody systems [166]. By effectively combining physical and data-driven
models to hybrid models (cf. Section 3.3), the framework aims to reduce computational costs, maintain system transparency, and
ensure accurate representation of dynamic behaviors, ultimately leading to optimized design outcomes [152, 154, 160].

4.6 Reducing noise emissions from and in mechanical structures (Project of S.C. Langer and T. Lüddecke)

The aim of this project is to develop tools and methods for reducing noise emitted from mechanical structures, that might impact a
passenger or bystander. We work on leveraging deep learning methods developed in the area of generative modeling as well as
deep learning based surrogate modeling.

1. Prior knowledge/experiences: The (vibro-)acoustic properties of mechanical structures are often not the primary purpose of
a product. Because of this, acoustic issues, such as unfavorable resonances, are often addressed by comparatively inefficient
and expensive additions only at the final stages of product design. Acoustic design measures also have to work within the
constraints imposed by the primary purpose of a structure (e.g., an airplane must still fly). Often the dynamic response in
specific frequency bands need to be reduced, e.g., to avoid acoustic coupling with resonances of an engine.

2. Model: The modeling of acoustic responses in the context of stationary dynamical systems is often performed in the
13
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frequency domain. This means, not the solution for a specific time point, but rather the steady state solution assuming a
constant or harmonic excitation is computed. In our project, we mainly focus on the prediction of the vibration patterns of
harmonically excited plates and their acoustically-oriented design. Plates are ubiquitous elements in mechanical structures
such as cars, planes or trains. They often transmit sound produced by e.g., a motor from a compartment to a passenger area.
The vibrations of these plates are often simulated via the finite element method based on a geometry and physical parameters
(boundary conditions, material properties, loading) of the plates.

3. Limits and boundaries: While finite element simulations can produce accurate results, a major limitation for designing
mechanical structures is the computational cost associated with such wave-resolving simulations. This is especially true
at high frequencies of interest, as they require finer discretizations. Firstly, deep learning based surrogate models offer
the potential to accelerate simulations by a factor of several orders of magnitude [197]. Thus, candidate designs can be
evaluated faster, independent of the design algorithm. Secondly, neural networks are differentiable, allowing to directly
obtain gradients in the input or design space. This enables cheap and efficient design optimization and inverse design, as
favorable directions in the search space are indicated by the gradients.
Additionally, data-driven generative modeling methods [69, 198, 199] have shown great potential to produce samples
with desired properties. These methods can be used to generate designs that fulfill acoustic constraints as well as other
constraints, such as manufacturability or shape. In the future, a challenge will be incorporating a representation of complex
3D geometries and materials into the neural network.

4. Data: We published a dataset consisting of the vibroacoustic response of 12,000 harmonically excited plates [200]. These
plates have varying beading patterns. Beading patterns are indentations in plates that locally change the stiffness of the plate
and can thus be used to change the vibroacoustic response. This dataset has been used for surrogate modeling and in the
context of using denoising diffusion generative models for designing plates for desired properties [201].

We aim to extend our work on using advanced deep learning tools for surrogate modeling and design optimization in acoustics by
investigating methods to enhance data efficiency for surrogate modeling through active learning.

4.7 AI-design assistant for legged robots and other periodically operating mechanisms (Project of C.D. Remy)

The aim of this project is to develop a systematic design optimization methodology for mechanisms and machines that perform
periodic motions. The design goal for these systems is to minimize an effort-based cost which is evaluated across various periodic
motions. The design framework is based on a numerical co-optimization of motion trajectories and mechanical design parameters.

Fig. 8: Illustration of how mechanical dynamics inherently couple a robotic system’s design (here: rigid or flexible spine) and the
resulting optimal motion (here: a galloping gait). Figure adapted from [107].

1. Prior knowledge/experiences: The primary challenge in such a design optimization lies in the inherent coupling between
a system’s design parameters and its mechanical dynamics. Any change in parameters affects the system’s dynamics,
impacting the optimal motion and the overall performance cost [202]. This coupling is illustrated by the key-frames in Fig. 8,
which show the periodic motions of a quadrupedal robot with two distinct spinal designs [107]. Additionally, designing for a
wide range of periodic motions increases the complexity of an already high-dimensional, highly non-convex optimization
problem, which is labor-intensive to solve in its current form.

2. Model: The mechanical models under investigation include pick-and-place mechanisms and legged robotic systems. These
systems are modeled as hybrid dynamical systems, comprising continuous-time dynamics and discrete-time mappings that
represent interactions with the environment (e.g., foot touchdown). These non-smooth and nonlinear dynamics are the
primary source of non-convexity in the optimization problem, posing a challenge in constructing effective gradient descent
directions.

3. Limits and boundaries: Addressing the inherent coupling between parameter design and dynamics involves formulating
the co-design problem as a bi-level optimization challenge. In this framework, design parameters are initially fixed during
lower-level trajectory optimization involving various periodic motions, and subsequently adjusted in an upper-level step.
When exploring larger task or parameter spaces, numerical continuation techniques can help reduce the computational
burden [203, 204]. The challenge of finding good minimizers can be further addressed by replacing the hybrid dynamics
with learned surrogate models. The difficulty here lies in training surrogate models that accurately represent non-smooth

14



K. M. de Payrebrune et al. Tech. Mech., Vol. 45, Is. 1, (2025), 1–23

dynamics while facilitating valuable gradient information for the design optimization process.
4. Data: The data for the surrogate models are primarily obtained from targeted sampling of the actuation- and state-space. To

partially mitigate the curse of dimensionality in data sampling, we aim to include data from optimization iterations that
result from gradient descent on the original problem.

This project aims to develop a design assistant tool capable of swiftly identifying the optimal parameter set for any given system.
This advancement will lead to more efficient robotic designs capable of operating across a spectrum of periodic motions.

4.8 AI enabled design for dynamics in the small data limit (Project of M. Stender)

Mechanical engineering design often simplifies system dynamics, treating non-stationary external loads as minor deviations
from steady-state. However, real-world systems like aircraft engines and wind turbines experience complex, non-stationary,
multi-physical loads, leading to equally complex responses. Accounting for nonlinear dynamics and critical transitions due to
system parameter variations is crucial in the early design process. This project leverages a resource- and data-efficient Reservoir
Computing framework to predict parameterized dynamics, using a Duffing-type nonlinear oscillator as an example (see Figure 9).

𝑞1 𝑡𝑖 + Δ𝑡

𝑞2 𝑡𝑖 + Δ𝑡

𝑞1 𝑡𝑖
𝑞2 𝑡𝑖

𝐹p(𝑡𝑖)

reservoir layer
(fixed weights)

linear read-out 
layer (trainable)

inference: self-feeding time stepping

discrete flow map with external forcing

sample 1: period-2 cycle

period-1 cycles chaosdesign targetschoice of new system parameters

Design for Dynamics

predictions (out-of-sample): 
unseen parameters drive qualitatively different dynamics

minimal training data 
parameterized dynamics

sample 2: period-2 cycle
period-4 cycles

Fig. 9: Reservoir computing (RC) and design for dynamics: RC allows for learning from a minimal data set (left panel) of forced
nonlinear dynamics. Out-of-sample generalization behavior is obtained that generates predictions of qualitatively unseen
dynamics under varying system parameters 𝑝.

1. Prior knowledge/experience: Prior knowledge in technical design can vary widely. In some cases, well-defined loads
and conditions guide the design process, such as avoiding resonance. In others, unpredictable dynamic loads necessitate
evaluating a broad range of conditions. For the given project, the nonlinear effects dominate the system response. A
challenge arises from qualitative changes in the system dynamics (bifurcations) triggered by minor adjustments to system
parameters. As a result, prior knowledge from similar designs may become irrelevant due to new dynamic behaviors induced
by small variations in parameters [205].

2. Model: The mechanical oscillator studied is governed by a parametrized ordinary differential equation in terms of external
forcing amplitude and frequency, exhibiting rich dynamics across different parameter values. While semi-analytical solutions
are possible, the model represents a broader class of nonlinear dynamical systems requiring optimal parameter selection in
design for required dynamics. Typically, analysis relies on linearization methods like modal analysis [206]. Direct time
integration can simulate nonlinear dynamics but is computationally expensive and limited by model quality and resource
demands. Artificial neural networks are widely used for predicting system dynamics under varying parameters [207, 208],
but their high resource demands are a limitation. This project instead utilizes Reservoir Computing [209], a recurrent
network model. It employs a stateful, unstructured, non-trainable reservoir for input representation, requiring only a linear
output layer trained via regression. The stateful reservoir is ideal for capturing system dynamics, as these are inherently
integrated by design.

3. Limits and boundaries: Linearized models fail when nonlinearities arise (e.g., contact interfaces, nonlinear material
behavior), and simulation models are constrained by simplifying assumptions. Given the incomplete understanding of
processes like frictional contacts and multi-physical interactions, simulation discrepancies are expected. Data-driven models
face different limitations: as general function approximators, they often lack adherence to physical principles such as
energy conservation. Their generalization depends heavily on the quality and quantity of training data. The proposed
Reservoir Computing framework addresses some of those limitations through its inherently dynamic learning approach.
A preliminary study for the given problem demonstrates that a reservoir computer can generalize to unseen dynamics in
far-out-of-distribution cases [210], making it promising for predicting complex dynamics from limited observations. Current
limitations to forcing parameters will be adressed in future, i.e. to include structural parameters for helping the design.

4. Data: Data in engineering is typically sparse due to the high costs of data acquisition and limited access to systems during
operation. The expense and difficulty of generating large simulation datasets make data-hungry learning methods impractical.
Experimental data from prototypes is also scarce and cannot be generated for every design variation. To address this, we
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have provided a minimal dataset2 for a nonlinear mechanical oscillator, showcasing significant variations in system responses
with small parameter changes. Collected via direct time integration, this dataset is ideal for benchmarking the predictive
performance and data requirements of data-driven models.

The project aims to develop (a) predictive data-driven models with high generalization capabilities for parameterized dynamics,
(b) using minimal data and computational resources, and (c) assisting in the intentional optimization of system dynamics, as
illustrated in Fig. 9. The efficient Reservoir Computing framework is ideal for rapid parametric design studies and load scenarios,
significantly reducing time spent on simulations and experimental testing.

5 Conclusion

In this paper, we discuss the potential of AI-based methods in the design of technological systems and we explore available
methods and application domains. We suggest to aim for AI-assisted development by intertwining model-based simulation and
optimization techniques with machine learning methods throughout the V-model. In fact, the ability of modern AI, in particular,
machine learning methods, to handle large amounts of data, makes AI the ideal third pillar besides experiment-based design and
simulation-based design. Among others, data can be enriched by synthetic data provided by GANs and data-based models provide
attractive alternatives as surrogates or in a hybrid modeling fashion. Available optimization methods range from gradient-based
classical approaches and genetic algorithms to reinforcement learning. For design optimization, parameter identification and also
(optimal) control, we have presented various application examples from the SPP 2353. These range from the specific design of
continuum robots, crash structures and legged robots to the general design for emission reduction, technical and multibody systems.
Both the examples and the AI methods used cover a broad field and can be easily extended to other applications.
This article can serve with best practice examples as a guide for potential, inexperienced as well as experienced users of AI in the
industrial environment and provide contacts to experts.
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[17] Bröhl, A.-P. & Dröschel, W. Das V-Modell. Der Standard für die Softwareentwicklung mit Praxisleitfaden (Oldenbourg

Verlag, München Wien, 1993).
[18] Eigner, M., Gilz, T. & Zafirov, R. Proposal for functional product description as part of a plm solution in interdisciplinary

product development. In DESIGN 2012, 1667—-1676 (Design Society, 2012).
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[37] Pandey, S., Teutsch, P., Mäder, P. & Schumacher, J. Direct data-driven forecast of local turbulent heat flux in Rayleigh–Bénard
convection. Physics of Fluids 34, 045106 (2022).

[38] Van Breugel, F., Kutz, J. N. & Brunton, B. W. Numerical differentiation of noisy data: A unifying multi-objective
optimization framework. IEEE Access 8, 196865–196877 (2020).

[39] Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Computation 9, 1735–1780 (1997).
[40] Vlachas, P. R., Byeon, W., Wan, Z. Y., Sapsis, T. P. & Koumoutsakos, P. Data-driven forecasting of high-dimensional

chaotic systems with long short-Term memory networks. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences 474 (2018).

[41] Bieker, K., Peitz, S., Brunton, S. L., Kutz, J. N. & Dellnitz, M. Deep model predictive flow control with limited sensor data
and online learning. Theoretical and Computational Fluid Dynamics 34, 577–591 (2020).

[42] Geneva, N. & Zabaras, N. Transformers for modeling physical systems. Neural Networks 146, 272–289 (2022).
[43] Lim, B. & Zohren, S. Time-series forecasting with deep learning: a survey. Philosophical Transactions of the Royal Society

A: Mathematical, Physical and Engineering Sciences 379, 20200209 (2021).
[44] Chorin, A. J., Hald, O. H. & Kupferman, R. Optimal prediction and the mori–zwanzig representation of irreversible

processes. Proceedings of the National Academy of Sciences 97, 2968–2973 (2000).
[45] Shumway, R. H. & Stoffer, D. S. ARIMA Models, 75–163 (Springer International Publishing, 2017).
[46] Jaeger, H. & Haas, H. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication.

Science 304, 78–80 (2004).
[47] Pathak, J., Hunt, B., Girvan, M., Lu, Z. & Ott, E. Model-free prediction of large spatiotemporally chaotic systems from data:

A reservoir computing approach. Physical Review Letters 120, 24102 (2018).
[48] Harder, H., Rabault, J., Vinuesa, R., Mortensen, M. & Peitz, S. Solving Partial Differential Equations with Equivariant

Extreme Learning Machines. arXiv:2404.18530 (2024).
[49] Chen, R. T., Rubanova, Y., Bettencourt, J. & Duvenaud, D. K. Neural ordinary differential equations. Advances in Neural

Information Processing Systems 31 (2018).
[50] Brunton, S. L., Proctor, J. L. & Kutz, J. N. Discovering governing equations from data by sparse identification of nonlinear

dynamical systems. Proceedings of the National Academy of Sciences 113, 3932–3937 (2016).
[51] Rudy, S. H., Brunton, S. L., Proctor, J. L. & Kutz, J. N. Data-driven discovery of partial differential equations. Science

Advances 3 (2017).
[52] Schmid, P. J. Dynamic mode decomposition of numerical and experimental data. Journal of Fluid Mechanics 656, 5–28

(2010).
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[201] van Delden, J., Schultz, J., Blech, C., Langer, S. C. & Lüddecke, T. Minimizing structural vibrations via guided diffusion

design optimization. In ICLR 2024 Workshop on AI4DifferentialEquations In Science (2024).
[202] Yesilevskiy, Y., Gan, Z. & David Remy, C. Energy-optimal hopping in parallel and series elastic one-dimensional monopeds.

Journal of Mechanisms and Robotics 10, 031008 (2018).
[203] Raff, M., Rosa, N. & Remy, C. D. Generating families of optimally actuated gaits from a legged system’s energetically

conservative dynamics. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 8866–8872
(IEEE, 2022).

[204] Rosa, N., Katamish, B., Raff, M. & Remy, C. D. An approach for generating families of energetically optimal gaits from
passive dynamic walking gaits. In 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
8551–8557 (IEEE, 2023).

[205] Thompson, J. M. T. & Stewart, H. B. Nonlinear dynamics and chaos (John Wiley & Sons, 2002).
[206] Ewins, D. J. Modal testing: theory, practice and application (John Wiley & Sons, 2009).
[207] Stender, M. et al. Deep learning for brake squeal: Brake noise detection, characterization and prediction. Mechanical

Systems and Signal Processing 149, 107181 (2021).
[208] Stender, M. et al. Up-net: a generic deep learning-based time stepper for parameterized spatio-temporal dynamics.

Computational Mechanics 71, 1227–1249 (2023).
[209] Jaeger, H. Adaptive nonlinear system identification with echo state networks. Advances in neural information processing

systems 15 (2002).
[210] Yadav, M., Chauhan, S., Shrimali, M. D. & Stender, M. Predicting multi-parametric dynamics of externally forced oscillators

using reservoir computing and minimal data. arXiv:2408.14987 (2024).

23


	Introduction
	Contribution of this paper
	Outline

	State-of-the-art in engineering product design
	Potential for integrating AI into the design process
	Supplementing experimental data by synthetic data
	AI-driven modeling
	Surrogate modeling and dimensionality reduction
	Application domains

	Hybrid modeling
	AI-assisted identification, optimization and control
	Reinforcement learning as an optimization method

	Examples of the integration of AI into the design process
	AI based design assistance system for soft robotics – optimizing complex systems based on the smallest design entity (Project of K.M. de Payrebrune)
	AI-design assistant for stereotactic neurosurgery with concentric-tube continuum robots (Project of T. Sattel and K. Flaßkamp)
	AI-design assistant for simplifying optimization of complex technical systems (Project of P. Eberhard and D. Bestle)
	Data-driven machine learning enhanced optimization of vehicle crashworthiness design (Project of M. Stoffel)
	Hybrid modeling for data-enhanced multiobjective optimization of multibody systems (Project of W. Sextro and S. Peitz)
	Reducing noise emissions from and in mechanical structures (Project of S.C. Langer and T. Lüddecke)
	 AI-design assistant for legged robots and other periodically operating mechanisms (Project of C.D. Remy)
	AI enabled design for dynamics in the small data limit (Project of M. Stender)

	Conclusion

