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On the Multiplicative Logarithmic Strain Space Formulation

K. Heiduschke

A new constitutive approach to finite-deformation formulations of elasto-plasticity (with isotropic thermal expan-
sion) is presented, which is well-suited to a broad range of metals used for industrial applications. The constitutive
equations are formulated within the logarithmic strain space. The coupling of elasticity, plasticity and thermal ex-
pansion is based on a multiplicative approach of commutative-symmetric stretch tensor products with symmetrizing
rotation tensors in the middle of two symmetric stretch tensors. It is essential for finite-deformation formulations to
refer to an appropriate reference configurationκ0 in order to model material orthotropy correctly (and not to mix
up material / physical anisotropy with deformation-induced / geometrical anisotropy). Furthermore, it is essential
to define proper stretch and strain tensors which are geometrical interpretable, i.e. which only depend on a current
κ and a referenceκ0 configuration (and not on the geometrical deformation path between these configurations).
Therefore, all stretch and strain tensors are defined with respect to the same reference configurationκ0, the total
stretches and strains as well as the partial ones: the elastic, plastic and thermal stretches and strains. And these
reference configurations should be the appropriate ones, where—in the case of fiber-reinforced (metal) bodies—the
fibers are placed orthogonal to each other or where Walter Noll’s symmetry group considerations characterize the
physical nature of materials with their most specificity as: orthotropic, transversal isotropic or fully isotropic.

1 Preliminaries, Notation and Functions of Symmetric Tensors

Finite-deformation models of simple materials are based on the tensor field of the deformation gradient

U v = R.U.RT

F = ∂x/∂X = ∂xi/∂Xj Ei⊗Ej = Fij Ei⊗Ej = R.

︷ ︸︸ ︷√
FT.F︸︷︷︸ =

︷ ︸︸ ︷√
F.FT
︸︷︷︸ .R

C b = R.C.RT

(1)

which is given by the partial derivative of the current position vectorx with respect to the reference position vector
X, where⊗ denotes the dyadic product and a ”dot” the single contraction in tensor products. The deformation
gradientF is a positive definite, second-order tensor (with nine internal degrees of freedom, given e.g. by its nine
tensor componentsFij with respect to anEi⊗Ej base). From the polar decomposition theorem, the deformation
gradient (1) may multiplicatively be split into a (proper orthonormalR−1=RT ) material rotation tensor (with three
internal degrees of freedom)

R = F.
(
FT.F

)− 1
2

︸ ︷︷ ︸
=
(
F.FT

)− 1
2

︸ ︷︷ ︸
.F =

√
F.FT .F−T = F−T .

√
FT.F = R−T

√
F−1.F−T

√
F−T .F−1

(2)

and positive definite, symmetric right

U =
√

C =
√

FT.F = Uij Ei⊗Ej = UT = Uij Ej⊗Ei = Uji Ei⊗Ej (3)

or left

v =
√

b =
√

F.FT = vT (4)

stretch tensors (with six internal degrees of freedom), whereFT , F−1 andF−T denote the transpose, the inverse
and the transposed inverse of a second-order tensorF, respectively. The symmetric right (3) and left (4) stretch
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tensors are given by the square roots of the symmetric right

C = FT.F = U2 = CT (5)

and left

b = F.FT = v2 = bT (6)

Cauchy-Green deformation tensors (Cauchy, 1827; Green, 1839). The left Cauchy-Green deformation tensor (6) is
denoted with a small ”b” instead of a capital ”B” and the left stretch tensor (4) with a small ”v” instead of a capital
”V” in order to writeEulerian tensorslike x, b or v (which are altered under superposed rigid body motions)with
small lettersandLagrangean tensorslike X, U or C (which are invariant under superposed rigid body motions)
with capital letters.

Functions of symmetric tensors, like the square roots in equations (1)–(4), are most simply expressed in their
spectral representation

f(C) = f(Ĉa Êa⊗Êa) = f(Ĉa) Êa⊗Êa (7)

and the function is just defined on the tensor’s principal values (which are scalars). All principal quantities are
marked with a ”hat”, and the summation convention is applied even to multiple repeated indices. The six internal
degrees of freedom of a symmetric tensor can be viewed as: three principal values and three principal directions
(represented by the orientation of the orthonormal principal base vectors). The materialR-forward rotation of a
Lagrangean tensor (function) is therefore given by the corresponding Eulerian tensor (function)

f(b) = f(R.C.RT ) = R.f(C).RT = f(Ĉa) R.Êa︸ ︷︷ ︸
⊗Êa.RT

︸ ︷︷ ︸
êa êa

(8)

where the Lagrangean principal base vectorsÊa are just materialR-forward rotated to the Eulerian ones

êa = R.Êa = Êa.RT . (9)

The (functions of) corresponding Lagrangean (7) and Eulerian (8) tensors have the same principal values. Only
the orientation of their principal axes is given by the materialR-forward (9) orRT-backward rotation

Êa = RT.êa = êa.R (10)

of their principal base vectors.

2 Total and Partial Stretch or Strain Tensor Definitions and their Need for Geometrical Interpretability

Exclusively the Cauchy-Green deformation tensorsC and b−1 and similar quadratic types like Green’s strain
(Green, 1839)

2E = 1
2 (C − I) (11)

or Almansi’s strain (Almansi, 1911)

−2e = 1
2 (I − b−1) , (12)

whereI denotes the second-order unit / identity tensor, may be projected onto arbitrary unit vectors

N =
dX

‖dX‖
=

F−1.dx
‖F−1.dx‖

and n =
dx

‖dx‖
=

F.dx
‖F.dx‖

(13)

by applyingdx=F.dX=dX.FT from (1) and its inversedX=F−1.dx=dx.F−T to the squared quotients

(
‖dx‖
‖dX‖

)2

=
dx.dx
dX.dX

=
dX.(FT.F).dX

‖dX‖2
= N.C.N (14)
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and

(
‖dX‖
‖dx‖

)2

=
dX.dX
dx.dx

=
dx.(F−T.F−1).dx

‖dx‖2
= n.b−1.n (15)

of the lengths / (2-)norms‖dx‖ and‖dX‖ where thedx anddX, respectively, denote the infinitesimal continuum
vicinities of the material pointsx andX with respect to the currentκ and referenceκ0 configurations. Strain tensor
projections like (14) and (15) are not valid in general and especially not for stretchU andv or logarithmic strainε
and0e tensor definitions. Most of the general symmetric stretch and strain tensors can be interpreted geometrically
only along their principal directions by taking into account the function definition of their principal values.

The six internal degrees of freedom of a symmetric tensor can be viewed (in its spectral representation) as three
principal values and three principal directions for

• the total stretches

U =
`a

La
Êa⊗Êa =

√
Ĉa Êa⊗Êa and v = R.U.RT =

`a

La
êa⊗êa (16)

• the logarithmic total strains

ε = ln(U) = ln
( `a

La

)
Êa⊗Êa and 0e = R.ε.RT = ln

( `a

La

)
êa⊗êa (17)

as well as for the partial stretches or the logarithmic partial strains

• the elastic stretches

eU =
e`b

Lb

eÊb⊗
eÊb =

√
eĈb

eÊb⊗
eÊb and ev = R.eU.RT =

e`b

Lb

eêb⊗
eêb (18)

• the logarithmic elastic strains

eε = ln(eU) = ln
( e`b

Lb

)
eÊb⊗

eÊb and R.eε.RT = ln
( e`b

Lb

)
eêb⊗

eêb (19)

• the plastic stretches

pU =
p`c

Lc

pÊc⊗
pÊc =

√
pĈc

pÊc⊗
pÊc and pv = R.pU.RT =

p`c

Lc

pêc⊗
pêc (20)

• the logarithmic plastic strains

pε = ln(pU) =
∫ t

0

p.ε dt̄ = ln
(p`c

Lc

)
pÊc⊗

pÊc and R.pε.RT = ln
(p`c

Lc

)
pêc⊗

pêc (21)

• the thermal stretches

ϑU =
ϑ`d

Ld

ϑÊd⊗
ϑÊd = Θ̂d(ϑ) ϑÊd⊗

ϑÊd and ϑv = R.ϑU.RT = Θ̂d(ϑ) ϑêd⊗
ϑêd (22)

• the logarithmic thermal strains

ϑε = ln(ϑU) = ln
(
Θ̂d(ϑ)

)
ϑÊd⊗

ϑÊd and R.ϑε.RT = ln
(
Θ̂d(ϑ)

)
ϑêd⊗

ϑêd (23)

where the thermal expansion factors

Θ̂d(ϑ) =
ϑ`(d)

L(d)
(24)

are functions of the temperatureϑ and becomêΘ1(ϑ=ϑ0)=Θ̂2(ϑ=ϑ0)=Θ̂3(ϑ=ϑ0)=1 unity at the reference
temperatureϑ0 so that the thermal stretch tensorϑU(ϑ=ϑ0)=I merges to the second-order unit / identity
tensor, the logarithmic thermal strain tensorϑε(ϑ=ϑ0)=0 vanishes andϑ`1=L1, ϑ`2=L2, ϑ`3=L3 hold. The
summation convention is not applied on indices enclosed in brackets, e.g. in equation (24).
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In order to distinguish the labels of second-order partial tensors better from their power functions or transposes, all
labels are written as upper left indices and the contraction in tensor products is denoted with a ”dot”.
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Figure 1. Closed finite-deformation cycle on the example of two triangular, constant strain Finite Elements

Any symmetric (total or partial) strain or stretch tensor must comply to thegeometrical interpretabilitythat its
three principal values only depend on three corresponding current and reference lengths—and not on the history of
their (geometrical) deformation path (Heiduschke, 1995, 1996). A logarithmic plastic strain tensor, for example,
which results from the (translational and rotational materially convected) time integration of the plastic flow rule
p.ε must obey the geometrical interpretability in order to constitute a proper strain tensor definition. In other words:
if the finite-deformation path of a purely plastic material (withU=pU, eU=ϑU=I and thusε=pε, eε=ϑε=0) is a
closed deformation cycle, as e.g. depicted in Figure 1, so that the current and reference plastic configurations are
identical, then the corresponding plastic strain tensor increment (of the closed cycle) must vanish

∮

O

dεij = 0ij . (25)

Exclusively strain or stretch tensor definitions which obey the geometrical interpretability are of a proper type.
The geometrical interpretability is a physical concept of a continuum formulation which might be used to test
Finite Element procedures. Most of the general purpose Finite Element simulation tools, especially those which
model finite deformations with the so-called updated Lagrangean description, fail the closed finite-deformation
cycle test depicted in Figure 1. One can try it out using two triangular, constant strain elements with purely
plastic material behaviour where the plastic strain tensor is summed up from the plastic-flow rule increments. (The
plastic incompressibility constraint is met by the thickness of the elements which adjusts the volume constance of
plasticity.) When these summed-up plastic strain tensors of closed deformation cycles do not vanish:

∮

O
dεij 6=0ij ,

they are not geometrically interpretable, and the results of such simulation tools show a lack of any physical
significance.

3 Relevance of the Reference Configurationκ0 for the Modelling of Orthotropy or (Transversal) Isotropy

The modelling of finite-deformation anisotropy should distinguish material / physical anisotropy from deformation-
induced / geometrical anisotropy. Material anisotropy must be specified by constitutive equations formulated with
respect to a reference configurationκ0 which characterizes the physical nature of the material with the most speci-
ficity as: orthotropic, transversal isotropic or isotropic. Within the deformation histories of (metal) bodies with,
say, fiber reinforcement, these specific reference configurationsκ0 are given when the (metal) fibers are placed
orthogonal to each other. A material only exhibits physically fully anisotropic behaviour if such a specific refer-
ence configurationκ0 does not exists (hypothetically). From Noll’s symmetry group considerations within these
specific reference configurationsκ0, one can determine the physical nature of a material as: isotropic, transversal
isotropic, orthotropic or fully anisotropic (Noll, 1958). For symmetric stressσ=σT and symmetric strain (rate)
tensors@={eε, p.ε}=@T , the components of the corresponding fourth order material tensorsK may be written in
Voigt-Sayir matrix notation (Sayir, 1987) as






@11
@22
@33√

2 ∙ @12√
2 ∙ @13√
2 ∙ @23





=





K1111 K1122 K1133
√

2 ∙ K1112
√

2 ∙ K1113
√

2 ∙ K1123
K1122 K2222 K2233

√
2 ∙ K2212

√
2 ∙ K2213

√
2 ∙ K2223

K1133 K2233 K3333
√

2 ∙ K3312
√

2 ∙ K3313
√

2 ∙ K3323√
2 ∙ K1112

√
2 ∙ K2212

√
2 ∙ K3312 2 ∙ K1212 2 ∙ K1213 2 ∙ K1223√

2 ∙ K1113
√

2 ∙ K2213
√

2 ∙ K3313 2 ∙ K1213 2 ∙ K1313 2 ∙ K1323√
2 ∙ K1123

√
2 ∙ K2223

√
2 ∙ K3323 2 ∙ K1223 2 ∙ K1323 2 ∙ K2323










σ11
σ22
σ33√

2 ∙ σ12√
2 ∙ σ13√
2 ∙ σ23





(26)

where the components of the symmetric tensorsσ, eε andp.ε are quoted as 6×1 pseudo column vectors and where
the components of the fourth-order material tensorsK obey the symmetries

Kijk` = Kij`k = Kjik` = Kk`ij (27)
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and are quoted as 6×6 pseudo matrices.

The Voigt-Sayir matrix quoted components[[K]] of the fourth-order material tensorsK only exhibit their material
specificity (the dots denote zeros) as orthotropic or transversal isotropic






@11
@22
@33√

2 ∙ @12√
2 ∙ @13√
2 ∙ @23





=







K1111 K1122 K1133 ∙ ∙ ∙
K1122 K2222 K2233 ∙ ∙ ∙
K1133 K2233 K3333 ∙ ∙ ∙
∙ ∙ ∙ 2 ∙ K1212 ∙ ∙
∙ ∙ ∙ ∙ 2 ∙ K1313 ∙
∙ ∙ ∙ ∙ ∙ 2 ∙ K2323












σ11
σ22
σ33√

2 ∙ σ12√
2 ∙ σ13√
2 ∙ σ23





(28)

when they are given with respect to their principalMi⊗Mj⊗Mk⊗M` material base and within the specific
reference configurationsκ0 (where the ”fibers” are placed orthogonal).

If unspecific configurations̃κ0 are taken as a reference for the finite-deformation formulations (where the ”fibers”
are not orthogonal), the material / physical and deformation-induced / geometrical anisotropies are mixed up so
that the physical nature of the material is wrongly considered as fully anisotropic. Even the isotropic linearized
elastic compliance tensoreK (with two elasticy parameters) would appear as fully anisotropic (with 21 parameters)
if the reference configuration is shifted by a full-fledged deformation gradientF̃0 from κ0 to κ̃0.

3.1 Full Material / Physical Anisotropy

For full material / physical anisotropy, the principal material directions (represented by the materialMk base
vectors) in the specific reference configurationκ0 are not orthogonal and, therefore, the tensor components may be
specified with respect to arbitrary orthonormalEk base vectors. Due to the symmetries (27) the34=81 coefficients
eKijk` of the fourth-order elastic compliance tensoreK reduce to 21 material parameters / functions which specify
the full anisotropic elasticity.

The plastic incompressibility condition, expressed with the logarithmic plastic strain-rate tensor

p.εkk = 0 =
.
λ pKkkij σij ∀ σij = σji = {σ11, σ22, σ33, σ12, σ13, σ23} , (29)

results in six incompressibility constraints, which reduce the number of independentEi⊗Ej⊗Ek⊗E` coefficients
to 15 material parameters / functionspKijk` which specify full anisotropic, incompressible plasticity.

Full anisotropic thermal expansion, expressed with a (symmetric) logarithmic thermal strain tensorϑε, is given by
6 componentsϑεij(ϑ)=ϑεji(ϑ) with respect to an arbitrary orthonormalEi⊗Ej base.

3.2 Material / Physical Orthotropy

For material / physical orthotropy, the principal material directions (represented by the materialMk base vectors)
in the specific reference configurationκ0 are orthogonal. Only if the fourth-order material tensor components are
specified with respect to these orthonormal principal material base vectorsMi⊗Mj⊗Mk⊗M`, the Voigt-Sayir
matrix quoted components[[eK]] of the orthotropic elastic compliance tensoreK






eε11

eε22

eε33
√

2 ∙ eε12
√

2 ∙ eε13
√

2 ∙ eε23






=













1
E11

− ν12
E11

− ν13
E11

∙ ∙ ∙

− ν12
E11

1
E22

− ν23
E22

∙ ∙ ∙

− ν13
E11

− ν23
E22

1
E33

∙ ∙ ∙

∙ ∙ ∙ 2 ∙ 1
4 G12

∙ ∙
∙ ∙ ∙ ∙ 2 ∙ 1

4 G13
∙

∙ ∙ ∙ ∙ ∙ 2 ∙ 1
4 G23


















σ11

σ22

σ33
√

2 ∙ σ12
√

2 ∙ σ13
√

2 ∙ σ23






(30)
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and the components
.
λ [[pK]] of the orthotropic plastic-flow tensor

.
λ pK






p.ε11

p.ε22

p.ε33
√

2 ∙ p.ε12
√

2 ∙ p.ε13
√

2 ∙ p.ε23






=
.
λ












g + h −h −g ∙ ∙ ∙

−h h + f −f ∙ ∙ ∙

−g −f f + g ∙ ∙ ∙

∙ ∙ ∙ 2 ∙ n
2 ∙ ∙

∙ ∙ ∙ ∙ 2 ∙ m
2 ∙

∙ ∙ ∙ ∙ ∙ 2 ∙ l
2

















σ11

σ22

σ33
√

2 ∙ σ12
√

2 ∙ σ13
√

2 ∙ σ23






(31)

exhibit the physics of orthotropy and reveal the decoupling of normal and shear components—represented by the
24 zeros (denoted as dots) within each material matrix of equations (28), (30) or (31). The 9 orthotropic elastic
compliance parameters{E11, E22, E33, ν12, ν13, ν23, G12, G13, G23} are defined such thatνij=νji holds for the
Poisson’s ratios of orthotropy (Hashin and Rosen, 1964; Hashin, 1979). The 6 orthotropic plastic-flow parameters
{f , g, h, n, m, l} with 3 plastic incompressibility constraints follow directly from the flow rule

p.εij =
.
λ

∂φ

∂σij
(32)

associated to Hill’s orthotropic yield stress function (Hill,1979)

σ = φ(σij) ≡
√

pKijk` σij σk` =
√

σ..pK..σ =
√

{{σ}}T [[pK]] {{σ}} =

=
√

h(σ11 − σ22)2 + g(σ11 − σ33)2 + f(σ22 − σ33)2 + 2nσ2
12 + 2mσ2

13 + 2l σ2
23︸ ︷︷ ︸

n(σ2
12 + σ2

21) + m(σ2
13 + σ2

31) + l(σ2
23 + σ2

32)

(33)

whose mathematical form is in Hill (1979) slightly modified from the original version of Hill (1948). The ”double
dots” denote the double contraction in tensor products:A..B= tr(AT.B)=Aij Bji where tr(∙) is the trace operator.

The thermal stretch tensorϑU for material orthotropy is given by the 3 principal thermal stretch factors{Θ̂1(ϑ),
Θ̂2(ϑ), Θ̂3(ϑ)} which correspond to the principalM(k)⊗M(k) components{ϑε̂1=ln

(
Θ̂1(ϑ)

)
, ϑε̂2=ln

(
Θ̂2(ϑ)

)
,

ϑε̂3=ln
(
Θ̂3(ϑ)

)
} of the symmetric logarithmic thermal strainϑε tensor.

3.3 Material / Physical Transversal Isotropy

For material / physical transversal isotropy, the principal material directions (represented by the materialMk base
vectors) in the specific reference configurationκ0 are orthogonal. The materialM1 base vector points into the
logitudinal ”fiber” direction and the materialM2, M3 base vectors span the plane of transversal isotropy which
is perpendicular toM1. Only if the fourth-order material tensor components are specified with respect to these
orthonormal principal material base vectorsMi⊗Mj⊗Mk⊗M`, the Voigt-Sayir matrix quoted components[[eK]]
of the transversal isotropic, elastic compliance tensoreK






eε11

eε22

eε33
√

2 ∙ eε12
√

2 ∙ eε13
√

2 ∙ eε23






=













1
E − ν

E − ν
E ∙ ∙ ∙

− ν
E

1
E′ − ν′

E′ ∙ ∙ ∙

− ν
E − ν′

E′
1

E′ ∙ ∙ ∙

∙ ∙ ∙ 2 ∙ 1
4 G ∙ ∙

∙ ∙ ∙ ∙ 2 ∙ 1
4 G ∙

∙ ∙ ∙ ∙ ∙ 2 ∙ 1+ν′

2 E′


















σ11

σ22

σ33
√

2 ∙ σ12
√

2 ∙ σ13
√

2 ∙ σ23






(34)
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and the components
.
λ [[pK]] of the transversal isotropic, plastic-flow tensor

.
λ pK






p.ε11

p.ε22

p.ε33
√

2 ∙ p.ε12
√

2 ∙ p.ε13
√

2 ∙ p.ε23






=
.
λ












2g −g −g ∙ ∙ ∙

−g f + g −f ∙ ∙ ∙

−g −f f + g ∙ ∙ ∙

∙ ∙ ∙ 2 ∙ m
2 ∙ ∙

∙ ∙ ∙ ∙ 2 ∙ m
2 ∙

∙ ∙ ∙ ∙ ∙ 2 ∙ 2f+g
2

















σ11

σ22

σ33
√

2 ∙ σ12
√

2 ∙ σ13
√

2 ∙ σ23






(35)

exhibit the physics of transversal isotropy and reveal the decoupling of normal and shear components. Transversal
isotropy is specified by 5 elastic compliance parameters{E, E′, ν, ν′, G} and by 3 plastic-flow parameters{f , g,
m} with 2 plastic incompressibility constraints.

The thermal stretch tensorϑU for transversal isotropy is given by the 2 principal thermal stretch factors{Θ̂(ϑ),
Θ̂′(ϑ)} which correspond to the principalM(k)⊗M(k) components in the longitudinalϑε̂1=ln

(
Θ̂(ϑ)

)
and the

transversalϑε̂2=ϑε̂3=ln
(
Θ̂′(ϑ)

)
principal directions of the symmetric logarithmic thermal strainϑε tensor.

3.4 Material / Physical Isotropy

For material / physical isotropy, the orthonormal principal materialMk base vector systems must not be distin-
guished from the orthonormal arbitraryEk base vector systems in the specific reference configurationκ0 since
every arbitrary base vectorEk points into a principal materialMk direction. The Voigt-Sayir matrix quoted
fourth-order material tensor components[[eK]] of the isotropic, elastic complianceeK






eε11

eε22

eε33
√

2 ∙ eε12
√

2 ∙ eε13
√

2 ∙ eε23






=












1
E − ν

E − ν
E ∙ ∙ ∙

− ν
E

1
E − ν

E ∙ ∙ ∙

− ν
E − ν

E
1
E ∙ ∙ ∙

∙ ∙ ∙ 2 ∙ 1+ν
2 E ∙ ∙

∙ ∙ ∙ ∙ 2 ∙ 1+ν
2 E ∙

∙ ∙ ∙ ∙ ∙ 2 ∙ 1+ν
2 E

















σ11

σ22

σ33
√

2 ∙ σ12
√

2 ∙ σ13
√

2 ∙ σ23






(36)

and
.
λ [[pK]] of the isotropic, plastic-flow tensor

.
λ pK






p.ε11

p.ε22

p.ε33
√

2 ∙ p.ε12
√

2 ∙ p.ε13
√

2 ∙ p.ε23






=
.
λ












2h −h −h ∙ ∙ ∙

−h 2h −h ∙ ∙ ∙

−h −h 2h ∙ ∙ ∙

∙ ∙ ∙ 2 ∙ 3h
2 ∙ ∙

∙ ∙ ∙ ∙ 2 ∙ 3h
2 ∙

∙ ∙ ∙ ∙ ∙ 2 ∙ 3h
2

















σ11

σ22

σ33
√

2 ∙ σ12
√

2 ∙ σ13
√

2 ∙ σ23






(37)

reveal the decoupling of normal and shear components. Material isotropy is specified by 2 elastic compliance
parameters{E, ν} and by 1 incompressible plastic-flow parameter, the hardening functionh, with 1 plastic in-
compressibility constraint which may be expressed by a plastic Poisson’s ratio of 0.5 for the negative quotient of
transversal over longitudinal logarithmic plastic strain.

The thermal stretch tensorϑU=Θ̂(ϑ) ∙ I for material isotropy is totally governed by 1 stretch factorΘ̂(ϑ) which
corresponds to the isotropic definition

ϑε = ln
(
Θ̂(ϑ)

)
∙ I (38)

of the symmetric logarithmic thermal strain tensor.
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3.5 Walter Noll’s Symmetry Group Considerations (1958)

One can interpret Walter Noll’s symmetry group considerations (Noll, 1958) with co-ordinaterotations

Kabcd = Qai Qbj︸ ︷︷ ︸
Qck Qd`︸ ︷︷ ︸

Kijk` = Qabij Qcdk` Kijk`

Qabij Qcdk`

(39)

of fourth-order materialtensors

Kabcd

K =
︷ ︸︸ ︷
Qai Qbj︸ ︷︷ ︸

Qck Qd`︸ ︷︷ ︸
Kijk` Ea ⊗ Eb ⊗ Ec ⊗ Ed = Kijk` Mi ⊗ Mj ⊗ Mk ⊗ M`

Qabij Qcdk`

(40)

where the second-order rotation tensorQ=Mk⊗Ek is defined by the orientation of the orthonormal principal
material base vectors

Mk = Q.Ek = Ek.QT = Qik Ei (41)

with respect to the orthonormal arbitraryEk base vectors. TheEi⊗Ej components ofQ are given in matrix
notation by

[Q] =
[

Q11 Q12 Q13
Q21 Q22 Q23
Q31 Q32 Q33

]
(42)

and the co-ordinate rotations (39) of fourth-order material tensors (40) read in Voigt-Sayir matrixnotation

[[K]] = [[Q]] [[K]] [[QT ]] (43)

with the Voigt-Sayir matrix quoted components

[[Q]] =





Q11 Q11 Q12 Q12 Q13 Q13
√

2 Q11 Q12
√

2 Q11 Q13
√

2 Q12 Q13
Q21 Q21 Q22 Q22 Q23 Q23

√
2 Q21 Q22

√
2 Q21 Q23

√
2 Q22 Q23

Q31 Q31 Q32 Q32 Q33 Q33
√

2 Q31 Q32
√

2 Q31 Q33
√

2 Q32 Q33√
2 Q11 Q21

√
2 Q12 Q22

√
2 Q13 Q23 Q11 Q22 + Q12 Q21 Q11 Q23 + Q13 Q21 Q12 Q23 + Q13 Q22√

2 Q11 Q31
√

2 Q12 Q32
√

2 Q13 Q33 Q11 Q32 + Q12 Q31 Q11 Q33 + Q13 Q31 Q12 Q33 + Q13 Q32√
2 Q21 Q31

√
2 Q22 Q32

√
2 Q23 Q33 Q21 Q32 + Q22 Q31 Q21 Q33 + Q23 Q31 Q22 Q33 + Q23 Q32



 (44)

of the fourth-order rotation tensorQ=Qijk` Ei⊗Ej⊗Ek⊗E`=Qik Qj` Ei⊗Ej⊗Ek⊗E` corresponding to (42).
In general, an isotropic material tensorK is invariant against co-ordinate rotations (39)—expressed in Voigt-Sayir
matrix notationas





A −B −B ∙ ∙ ∙
−B A −B ∙ ∙ ∙
−B −B A ∙ ∙ ∙
∙ ∙ ∙ A + B ∙ ∙
∙ ∙ ∙ ∙ A + B ∙
∙ ∙ ∙ ∙ ∙ A + B



 = [[Q]]





A −B −B ∙ ∙ ∙
−B A −B ∙ ∙ ∙
−B −B A ∙ ∙ ∙
∙ ∙ ∙ A + B ∙ ∙
∙ ∙ ∙ ∙ A + B ∙
∙ ∙ ∙ ∙ ∙ A + B



 [[QT ]] (45)

—whereK is composed of a fourth-order unit / identity tensor with the ”A+B” term on the diagonal and the
”−B” term on the normal components of the material matrix within the upper left quadrant in Voigt-Sayir matrix
notation—cf. the isotropic material matrices of (36) and (37).

A transversal isotropic material tensorK is invariant against co-ordinate rotations about an angleϕ along the
longitudinal ”fiber”M1 direction—expressed within a principal material base vector system in Voigt-Sayir matrix
notationas





A −B −B ∙ ∙ ∙
−B D −E ∙ ∙ ∙
−B −E D ∙ ∙ ∙
∙ ∙ ∙ G ∙ ∙
∙ ∙ ∙ ∙ G ∙
∙ ∙ ∙ ∙ ∙ D + E



 = [[1Q ]]





A −B −B ∙ ∙ ∙
−B D −E ∙ ∙ ∙
−B −E D ∙ ∙ ∙
∙ ∙ ∙ G ∙ ∙
∙ ∙ ∙ ∙ G ∙
∙ ∙ ∙ ∙ ∙ D + E



 [[1Q
T
]] (46)

—cf. the transversal isotropic material matrices of (34) and (35)—where theMi⊗Mj⊗Mk⊗M` components of
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the corresponding fourth-order rotation tensor1Q read in Voigt-Sayir notation

[[1Q ]] =





1 ∙ ∙ ∙ ∙ ∙

∙ c2 s2 ∙ ∙ −
√

2 c s

∙ s2 c2 ∙ ∙
√

2 c s
∙ ∙ ∙ c −s ∙
∙ ∙ ∙ s c ∙

∙
√

2 c s −
√

2 c s ∙ ∙ c2 − s2



 (47)

and are associated with theMi⊗Mj components of the second-order rotation tensor1Q in matrix notation

[1Q ] =
[

1 ∙ ∙
∙ c −s
∙ s c

]
=
[

1 ∙ ∙
∙ cos(ϕ) − sin(ϕ)
∙ sin(ϕ) cos(ϕ)

]
(48)

within a principal material base vector system. The abbreviationsc ands in equations (47) and (48) denote the
cos(ϕ) andsin(ϕ) functions, respectively.

An orthotropic material tensorK is just invariant against index shifts—expressed within a principal material base
vector system in Voigt-Sayir matrix notationas





F −C −E ∙ ∙ ∙
−C A −B ∙ ∙ ∙
−E −B D ∙ ∙ ∙
∙ ∙ ∙ H ∙ ∙
∙ ∙ ∙ ∙ I ∙
∙ ∙ ∙ ∙ ∙ G



 = [[oQ ]]





A −B −C ∙ ∙ ∙
−B D −E ∙ ∙ ∙
−C −E F ∙ ∙ ∙
∙ ∙ ∙ G ∙ ∙
∙ ∙ ∙ ∙ H ∙
∙ ∙ ∙ ∙ ∙ I



 [[oQT ]] (49)

—cf. the orthotropic material matrices of (30) and (31)—where the Voigt-Sayir matrix quotedMi⊗Mj⊗Mk⊗M`

components of the corresponding fourth-order rotation tensoroQ read

[[oQ ]] =





∙ ∙ 1 ∙ ∙ ∙
1 ∙ ∙ ∙ ∙ ∙
∙ 1 ∙ ∙ ∙ ∙
∙ ∙ ∙ ∙ 1 ∙
∙ ∙ ∙ ∙ ∙ 1
∙ ∙ ∙ 1 ∙ ∙



 (50)

and are associated with theMi⊗Mj components of the second-order rotation tensoroQ in matrix notation

[oQ ] =
[

∙ ∙ 1
1 ∙ ∙
∙ 1 ∙

]
(51)

which just reduce to the index shift matrices (50) and (51) and may be applied recursively within principal material
base vector systems.

4 Commutative-symmetric Stretch Tensor Products with Symmetrizing Rotation Tensors in the Middle

For finite deformations, the orthotropy within a material description is ”lost” if a total deformation gradientF is
defined as just (a chain of) tensor productseF . . . pF of partial deformation gradients (which are not commutative).
After the application of a first partial deformation gradientpF, the ”orthogonal fibers” in a reference configuration
κ0 are no longer orthogonal since the reference of the follow-up deformation gradients will be finitely shifted by
pF.

Within the approach presented here,all symmetric partial stretch and strain tensors are defined with respect to the
samereference configurationκ0 (of the total stretch and strain tensor definitions) which should be the one with
the ”orthogonal fibers” for material orthotropy or transversal isotropy. The definition of a commutative-symmetric
(partial) stretch tensor product is given by

A.X.B = (A.X.B)T = B.XT.A = A.
√

A−1.B2.A−1.A = B.
√

B−1.A2.B−1.B (52)

with a symmetrizing (proper orthonormalX−1=XT ) rotation tensor

X = X−T =
√

A−1.B2.A−1.A.B−1 = A.B−1.
√

B.A−2.B =

=
√

A.B−2.A.A−1.B = A−1.B.
√

B−1.A2.B−1
(53)

in the middle of two positive definite, symmetric second-order (partial) stretch tensorsA=AT andB=BT which
is determined from the symmetry conditionA.X.B=(A.X.B)T=B.XT.A of the whole product. A tensor product of
symmetric tensors is, in general, not symmetric and has nine internal degrees of freedom, but the three internal
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degrees of freedom of the symmetrizing rotation tensor (53) reduce the internal degrees of freedom of the whole
commutative-symmetric stretch tensor product (52) to six. The left and right multiplication of equation (52) with
A−1 results inX.B.A−1=A−1.B.XT=

√
A−1.B2.A−1 whereXT.X=I is eliminated under the square root, and simi-

larily the left and right multiplication withB−1 results inB−1.A.X=XT.A.B−1=
√

B−1.A2.B−1 whereX.XT=I is
eliminated under the square root. The corresponding left and right back multiplication withA or B results in the
r.h.s. termsA.

√
A−1.B2.A−1.A or B.

√
B−1.A2.B−1.B of equation (52), respectively.

If the principal axes of the symmetric tensorsĀ andB̄ do not coincide, the consecutive tensor products

Ā.B̄ = X̄.
√

B̄.Ā2.B̄ =
√

Ā.B̄2.Ā.X̄ and B̄.Ā = X̄T.
√

Ā.B̄2.Ā =
√

B̄.Ā2.B̄.X̄T (54)

are—in contrast to the tensor product (52)—not commutative and not symmetric:Ā.B̄ 6= B̄.Ā . From the polar
decomposition (1), the consecutive tensor products (54) are expressed on their r.h.s. as products of the symmetric
square root tensors

√
Ā.B̄2.Ā or

√
B̄.Ā2.B̄ and the rotation tensor

X̄ = X̄−T =
√

Ā.B̄2.Ā.Ā−1.B̄−1 = Ā−1.B̄−1.
√

B̄.Ā2.B̄ =

=
(
Ā.B̄2.Ā

)− 1
2

︸ ︷︷ ︸
.Ā.B̄ = Ā.B̄.

(
B̄.Ā2.B̄

)− 1
2

︸ ︷︷ ︸√
Ā−1.B̄−2.Ā−1

√
B̄−1.Ā−2.B̄−1

(55)

or its inversēXT . The symmetric square root tensors

√
Ā.B̄2.Ā = X̄.

√
B̄.Ā2.B̄.X̄T = Ā.B̄.X̄T = X̄.B̄.Ā (56)

and
√

B̄.Ā2.B̄ = X̄T.
√

Ā.B̄2.Ā.X̄ = X̄T.Ā.B̄ = B̄.Ā.X̄ (57)

are theX̄-forward and thēXT-backward rotations of each other. Even if the principal axes of the symmetric tensors
Ā andB̄ do not coincide, the principal values of the symmetric square root tensors (56) and (57) are identical. Only
the orientation of their principal axes differs according to theX̄ rotation tensor (55). Furthermore, the principal
values of the commutative-symmetric stretch tensor product (52) differ, in general, from the principal values of the
symmetric square root tensors (56) and (57).

4.1 Generalized Lagrangean and Eulerian Strain Tensor Definitions

The commutative-symmetric (partial) stretch tensor product (52) is also well defined for power functions of positive
definite, symmetric stretch tensorsAq andBq with real valued exponentsq

Aq.
√

A−q.B2q.A−q.Aq = Bq.
√

B−q.A2q.B−q.Bq 6= Bq.
(
B−q.A2q.B−q

)q/2
.Bq (58)

and it may be applied to the definition of (multiplicatively coupled total and partial) generalized stretch and strain
tensors.

In the following, just the definitions of total Lagrangean and Eulerian strain tensors are listed. The definitions
of the correponding partial Lagrangean and Eulerian strain tensors must be of the same generalized type as the
total ones in order to model the constitutive equations correctly. When, within a thermo-elasto-plastic constitutive
model, one focuses on pure elasticity (with no plasticity and no thermal expansion), the elastic generalized strain
tensor must be equal to the total generalized strain (and the plastic and thermal strains vanish); the same argument
applies for pure plasticity and for pure thermal expansion. Therefore, the total and the partial generalized strain
tensors should always be of the same definition type.

A very general class of Lagrangean strain tensors (Böck and Holzapfel, 2004; Darijani and Naghdabadi, 2010) is
defined by

(q 6=−r)E = 1
q+r

(
C

q
2 − C− r

2
)

= 1
q+r

(
Uq − U−r

)
(59)
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which merges forr→0 to the classical Lagrangean generalized strain tensors (Doyle and Ericksen, 1956; Seth,
1964; Hill, 1968)

qE = lim
r→0

(q 6=−r)E = 1
q

(
C

q
2 − I

)
= 1

q

(
Uq − I

)
. (60)

The classical Lagrangean generalized strain tensors (60) merge forq→0 to the Lagrangean logarithmic strain
tensor (Hencky, 1928)

ε = 0E = lim
q→0

qE = 1
2 ln(C) = ln(U) . (61)

Special cases of classical Lagrangean generalized strains (60) are the engineering strain tensor forq=1

1E =
√

C − I = U − I (62)

and Green’s strain tensor (Green, 1839) forq=2

2E = 1
2

(
C − I

)
= 1

2

(
U2 − I

)
. (63)

The materialR-forward rotations (8) of the tensors (58)–(61) witha=R.A.RT andb=R.B.RT result in the Eulerian
form of the commutative-symmetric stretch (to theq-th power) tensor product

aq.
√

a−q.b2q.a−q.aq = bq.
√

b−q.a2q.b−q.bq (64)

and the Eulerian classes of generalized strain tensors: the very general Eulerian strain tensors

(q 6=−r)e = R.(q 6=−r)E.RT = 1
q+r

(
b

q
2 − b−

r
2
)

= 1
q+r

(
vq − v−r

)
, (65)

the classical Eulerian generalized strain tensors

qe = R.qE.RT = 1
q

(
b

q
2 − I

)
= 1

q

(
vq − I

)
(66)

and the Eulerian logarithmic strain tensor forq→0

0e = R.ε.RT = lim
q→0

qe = 1
2 ln(b) = ln(v) . (67)

A special case of a classical Eulerian generalized strain (66) is Almansi’s strain tensor (Almansi, 1911) forq=−2

−2e = 1
2

(
I − b−1

)
= 1

−2

(
v−2 − I

)
. (68)

4.2 The Multiplicative Elasto-plastic Decomposition of the Deformation Gradient

The common approach to finite elasto-plasticity is the multiplicative decomposition

F = eF̃.pF̃ (69)

of a positive definite deformation gradientF into an elasticeF̃ and plasticpF̃ contribution. In the Finite Element
literature, the multiplicative decomposition (69) is often attributed to Lee and Liu (1967) or Lee (1969) even
if there is work published earlier, e.g. Kröner (1960). In his book, Bertram (2012) lists more than ten other
”original” references to the multiplicative decomposition (69), and Bruhns (2015) further discusses them. The
polar decompositions of the partial (elastic and plastic) deformation gradients

eF̃ = ev.eR̃ = eR̃.eŨ and pF̃ = pũ.pR̃ = pR̃.pU (70)

define, on the one hand, thewell determinedEulerian elasticev and Lagrangean plastic stretchpU tensors and, on
the other,undeterminedelastic and plastic rotation and stretch tensors

eR̃ , pR̃ , eŨ = eR̃
T
.ev.eR̃ and pũ = pR̃.pU.pR̃

T
, (71)
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which are marked with superscript tildes. The indetermination of the tensors (71) originates (Casey and Naghdi,

1980) from the possibility of multiplying+Q̃
T
.+Q̃=I in between the elasto-plastic deformation gradient product

xR X x

F = eF̃.(+Q̃T

︸ ︷︷ ︸
. +Q̃).pF̃
︸ ︷︷ ︸

= (ev.
︷ ︸︸ ︷
eR̃).+Q̃T

︸ ︷︷ ︸
. +Q̃.(pR̃
︸ ︷︷ ︸

.pU) = R. eU.
︷ ︸︸ ︷
RT.xR .pU︸ ︷︷ ︸ = ev.

︷ ︸︸ ︷
R.X.RT .pv︸ ︷︷ ︸ .R

e ˜̃F p ˜̃F e ˜̃R p ˜̃R U v

(72)

such thate ˜̃F=eF̃.+Q̃T , p ˜̃F=+Q̃.pF̃, e ˜̃R=eR̃.+Q̃T andp ˜̃R=+Q̃.pR̃, where+Q̃ is an undetermined rotation tensor.
Introducingev.eR̃ and pR̃.pU from (70) into the multiplicative decomposition (69) results in a product of well
defined tensors (exclusively without tildes) since the+Q̃ indetermination ofeR̃ andpR̃ cancels out for the rotation
tensor

xR = eR̃.pR̃ = eR̃. (+Q̃T.+Q̃)
︸ ︷︷ ︸

.pR̃ = eR̃.(+Q̃T

︸ ︷︷ ︸
. +Q̃).pR̃
︸ ︷︷ ︸

= e ˜̃R.p ˜̃R

I e ˜̃R p ˜̃R
(73)

in the middle of the Eulerian elasticev and Lagrangean plasticpU stretch tensors (Sayir, 1987; Casey, 2016). Writ-
ing eithereU=RT.ev.R as the materialRT-back rotation ofev or pv=R.pU.RT as the materialR-forward rotation
(8) of pU reveals on the one hand the symmetrizing rotation tensor

X = X−T = RT.xR =
√

eU−1.pU2.eU−1.eU−1.pU = eU.pU−1.
√

pU.eU−2.pU =

=
√

eU.pU−2.eU.eU.pU−1 = eU−1.pU.
√

pU−1.eU2.pU−1
(74)

with the corresponding commutative-symmetric elasto-plastic stretch tensor product

U = UT = eU.X.pU = pU.XT.eU = eU.
√

eU−1.pU2.eU−1.eU = pU.
√

pU−1.eU2.pU−1.pU (75)

in Lagrangean form or on the other the symmetrizing rotation tensor

x = x−T = R.X.RT = xR.RT =
√

ev−1.pv2.ev−1.ev−1.pv = ev.pv−1.
√

pv.ev−2.pv =

=
√

ev.pv−2.ev.ev.pv−1 = ev−1.pv.
√

pv−1.ev2.pv−1
(76)

with the corresponding commutative-symmetric elasto-plastic stretch tensor product

v = vT = ev.x.pv = pv.xT.ev = ev.
√

ev−1.pv2.ev−1.ev = pv.
√

pv−1.ev2.pv−1.pv (77)

in Eulerian form, cf. (52) and (53).

5 The Chaining of (Partial) Stretch Tensors and Commutative-symmetric Stretch Tensor Products

Within chained commutative-symmetric stretch tensor products, the parentheses (round brackets) mark specific
products of positive definite, symmetric (partial) stretch tensorsA=AT , B=BT andC=CT with their corresponding
symmetrizing rotation tensorsX=X−T andY=Y−T (in the middle), e.g.

(A.X.B).Y.C = (B.XT.A).Y.C = C.YT.(B.XT.A) = C.YT.(A.X.B) . (78)

The associative law for chained commutative-symmetric stretch tensor products

(A.X.B).Y.C 6= A.X.[B.Y.C] (79)

is misleading since the (proper orthonormal) rotation tensorsX=X−T andY=Y−T only symmetrize the products
of (A.X.B)=(A.X.B)T =(B.XT.A) and( ∙ ).Y.C=C.YT.( ∙ ) on the l.h.s. of inequality (79). When the principal axes
of the symmetric tensorsA, B andC do not coincide, the rotation tensorsX andY will not symmetrize the products
of A.X.[ ∙ ] 6=[ ∙ ]T.XT.A and[B.Y.C] 6=[B.Y.C]T =[C.YT.B] on the r.h.s. of inequality (79) where the asymmetry of
the tensor product is indicated with the square brackets.
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Table 1: Thermo-elasto-plastic commutative-symmetric stretch tensor product sets ofeU, pU, ϑU andU

total right stretch tensor U ”product set” elastic right stretch tensoreU

eU.e(pϑ)Y.
(

pU.pϑX.ϑU︸ ︷︷ ︸
)

= e(pϑ)U ”e(pϑ)”

√

U.
(

ϑU
−1

.
√

ϑU.pU−2.ϑU.ϑU
−1

︸ ︷︷ ︸
)2

.U

pϑU pU−1.
√

pU.ϑU−2.pU.pU−1

pU.p(ϑe)Y.
(

ϑU.ϑeX.eU︸ ︷︷ ︸
)

= p(ϑe)U ”p(ϑe)”
√√

U.pU−2.U.ϑU
−2

.
√

U.pU−2.U
ϑeU

ϑU.ϑ(ep)Y.
(

eU.epX.pU︸ ︷︷ ︸
)

= ϑ(ep)U ”ϑ(ep)”

√√
U.ϑU

−2
.U.pU−2.

√
U.ϑU

−2
.U

epU

epU.ϑU.t/ϑYT = t/ϑY.ϑU.epU = ” t/ϑ”
√

U.
(
U.ϑU

2
.U
)− 1

2 .U
︸ ︷︷ ︸

.pU−2. U.
(
U.ϑU

2
.U
)− 1

2 .U
︸ ︷︷ ︸

=
√

epU.ϑU
2
.epU = t/ϑU ϑU

−1
.
√

ϑU.U2.ϑU.ϑU
−1 ϑU

−1
.
√

ϑU.U2.ϑU.ϑU
−1

When the principal axes of the symmetric partial stretch tensorsϑU, eU andpU differ, there are three different sets
of chained thermo-elasto-plastic commutative-symmetric stretch tensor products ”e(pϑ)”, ” p(ϑe)” and ”ϑ(ep)”
which are compiled in Table 1. The column on the left of Table 1 shows the total right stretch tensorU for each
product set and the column on the right the corresponding elastic right stretch tensoreU. The fourth product set
” t/ϑ” of Table 1 arises from

eU.epX.pU︸ ︷︷ ︸ = U.t/ϑY.ϑU
−1

︸ ︷︷ ︸ = ϑU
−1

.t/ϑYT.U = ϑU
−1

.
√

ϑU.U2.ϑU.ϑU
−1

= U.
(
U.ϑU

2
.U
)− 1

2 .U .
epU t/ϑU

(80)

5.1 The Unique Thermo-elasto-plastic Decomposition of Stretch Tensors for Isotropic Thermal Expansion

A good portion of materials and especially metals exhibit isotropic thermal expansion behaviour, such that the
thermal stretch may be specified as an isotropic / spherical tensor

ϑU = ϑv = Θ(ϑ) ∙ I =
ϑ`

L
∙ I (81)

with a scalar thermal expansion factorΘ(ϑ)=
ϑ`
L multiplied by the second-order unit / identity tensorI. This factor

Θ(ϑ) is a function of the current temperatureϑ, and becomesΘ(ϑ0)=1 unity at the reference temperatureϑ0

(which impliesϑ`=L). For isotropic thermal expansion (81), the differences between the four thermo-elasto-plastic
commutative-symmetric stretch tensor products of Table 1 vanish, and they merge into one unique commutative-
symmetric stretch tensor product in which the total right stretch tensor is given by

epU

U = Θ(ϑ) ∙

︷ ︸︸ ︷
pU.
√

pU−1.eU2.pU−1.pU︸ ︷︷ ︸ = e(pϑ)U = p(ϑe)U = ϑ(ep)U = t/ϑU ,

eU.
√

eU−1.pU2.eU−1.eU

(82)

the total left stretch tensor by

v = Θ(ϑ) ∙ pv.
√

pv−1.ev2.pv−1.pv = Θ(ϑ) ∙ ev.
√

ev−1.pv2.ev−1.ev , (83)

the elastic right and left stretch tensors by

eU =

√
U.pU−2.U

Θ(ϑ)
=

3
√

|F|
Θ(ϑ)

∙
√

U∗.pU−2.U∗ and ev =

√
v.pv−2.v

Θ(ϑ)
=

3
√

|F|
Θ(ϑ)

∙
√

v∗.pv−2.v∗ (84)
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and the corresponding unique multiplicative polar decomposition by

U ev.
√

ev−1.pv2.ev−1.ev

F = R.

︷ ︸︸ ︷
pU.
√

pU−1.eU2.pU−1.pU︸ ︷︷ ︸ ∙Θ(ϑ) = Θ(ϑ) ∙
︷ ︸︸ ︷
pv.

√
pv−1.ev2.pv−1.pv

︸ ︷︷ ︸
.R .

eU.
√

eU−1.pU2.eU−1.eU v

(85)

Theunimodular stretch tensors(marked with a ”star”)

U∗ =
U

3
√

|U|
=

U
3
√

|F|
and v∗ =

v
3
√

|v|
=

v
3
√

|F|
(86)

within the equations of (84) aremeasures of pure finite distortion(Flory, 1961) since determinants of unimodular
tensors are unity|U∗|=|v∗|=1 by definition. For plastic incompressibility, all plastic stretch tensorspU andpv are
unimodular|pU|=|pv|=1 and thus not marked with a ”star” within this work. Applying the Lagrangean unimodular
stretch tensorsU∗ (86), eU∗ andpU, themultiplicative decoupling of finite dilatation and finite distortionmay be
written as

eU∗.
√

(eU∗)−1.pU2.(eU∗)−1.eU∗

U = 3
√

|F| ∙ U∗ = 3
√

|eU| ∙ Θ(ϑ)
︸ ︷︷ ︸

∙

︷ ︸︸ ︷
pU.

√
pU−1.(eU∗)2.pU−1.pU

︸ ︷︷ ︸
3
√

|F| U∗

(87)

with the finite dilatation factor

3
√

|F| = 3
√

|eU| ∙ Θ(ϑ) (88)

of the isotropic dilatation tensor (which does not depend on the isovolumetric tensorpU) and with the unimodular
total stretch tensor equal to the unimodular commutative-symmetric elasto-plastic stretch tensor product

U∗ = pU.

√
pU−1.(eU∗)2.pU−1.pU = eU∗.

√
(eU∗)−1.pU2.(eU∗)−1.eU∗ = pU.XT.eU∗ = eU∗.X.pU (89)

(which does not depend on the volumetric factorΘ(ϑ) of finite dilatation).

5.2 Logarithmic (Hencky) Strain Tensors

The logarithm ofc ∙ A, a symmetric tensorA multiplied by a scalarc, is given by

ln(c ∙ A) = ln(c ∙ Âk) Êk⊗Êk = ln(c) ∙ Êk⊗Êk︸ ︷︷ ︸
+ ln(Âk) Êk⊗Êk = ln(c) ∙ I + ln(A)

I
(90)

the sum of the isotropic tensorln(c) ∙ I plus theln(A) tensor. For the logarithmic (Hencky) strain tensor definitions
(61) and (67), the multiplicative decoupling of finite dilatation and finite distortion (87) becomes thusadditive

eU∗.
√

(eU∗)−1.pU2.(eU∗)−1.eU∗

ε = ln(U) =
ln(|F|)

3︸ ︷︷ ︸
∙I + ln(U∗)

︸ ︷︷ ︸
=

ln(|eU|)
3︸ ︷︷ ︸

∙I + ln
(
Θ(ϑ)

)
∙ I

︸ ︷︷ ︸
+ ln(

︷ ︸︸ ︷
pU.

√
pU−1.(eU∗)2.pU−1.pU)

︸ ︷︷ ︸
.

εkk

3 ε′
eεkk

3
ϑε ln(U∗)

(91)

The isotropic thermal expansion (81) is given by the logarithmic thermal strain

ϑε =
ϑεkk

3
∙ I = ln(ϑU) = ln

(
Θ(ϑ)

)
∙ I (92)
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which is an isotropic / spherical tensor. The finite dilatation is governed by the isotropic / spherical part of the
logarithmic strain tensor

ε′′ =
ln(|F|)

3︸ ︷︷ ︸
∙I = ln

(
3
√

|eU| ∙ Θ(ϑ)
)
∙ I =

( ln(|eU|)
3︸ ︷︷ ︸

+ ln
(
Θ(ϑ)

)

︸ ︷︷ ︸

)
∙ I

εkk

3

eεkk

3

ϑεkk

3

(93)

which trace obeys

εkk = ln
(
|F|
)

= eεkk + ϑεkk = ln
(
|eU| ∙ Θ3(ϑ)

)
= ln(|eU|) + 3 ∙ ln

(
Θ(ϑ)

)
. (94)

The isovolumetric finite distortion is governed by the deviatoric part of the logarithmic strain tensor

ε′ = ln
(
U∗
)

= ln
(
pU.

√
pU−1.(eU∗)2.pU−1.pU

)
= ln

(
eU∗.

√
(eU∗)−1.pU2.(eU∗)−1.eU∗

)
. (95)

For the numerical modelling of constitutive equations, the elastic strain tensor is required as a function of total,
plastic and thermal strains in order to formulate stress-strain (tensor) relations properly. Solving the equations
(93)–(95) for the logarithmic elastic strain tensor results in its trace given by

eεkk = ln
(
|eU|

)
= εkk − ϑεkk = ln

( |F|
Θ3(ϑ)

)
= ln(|F|) − 3 ∙ ln

(
Θ(ϑ)

)
(96)

and its deviator given by

eε′ = ln(eU∗) = 1
2 ln(U∗.pU−2.U∗) . (97)

5.3 Time Derivatives of Deformation Tensors for Finite Elasto-plasticity with Thermal Expansion Isotropy

The material time derivative of a symmetric second-order Lagrangean tensorU=Ûk Êk⊗Êk is most simply ex-
pressed in its spectral representation as

.
U =

.
Ûk Êk ⊗ Êk =

.̂
Uk Êk ⊗ Êk + Ûk

.̂
Ek ⊗ Êk + Ûk Êk ⊗

.̂
Ek =

.̂
Uk Êk ⊗ Êk + Λ.U − U.Λ (98)

the time derivatives
.̂
Uk of its principal valuesÛk (the matrix elements on the diagonal within a principal co-

ordinate system) and the time derivatives
.̂
Ek=Λ.Êk=−Êk.Λ of its rotating Lagrangean principal base vectorsÊk

(the matrix off-diagonal elements within a principal co-ordinate system) where the second-order tensorΛ=−ΛT

of the principal base vectors’ rotation velocities is antisymmetric. Therefore, the components ofΛ obey

Λ̂ij = −Λ̂ji = −εijk λ̂k and λ̂i = − 1
2εijk Λ̂jk = 1

2εijk Λ̂kj (99)

and the matrix components of
.
U (98) within a principal co-ordinate system read

[
.
U] =









.̂
U1 λ̂3

(
Û1 − Û2

)
λ̂2

(
Û3 − Û1

)

λ̂3

(
Û1 − Û2

) .̂
U2 λ̂1

(
Û2 − Û3

)

λ̂2

(
Û3 − Û1

)
λ̂1

(
Û2 − Û3

) .̂
U3









(100)

In an analogous manner, the logarithmic strain-rate tensor is given by the material time derivative

.
ε =

.
ln(U) =

.
ln(Ûk) Êk ⊗ Êk + Λ. ln(U) − ln(U).Λ =

.̂
Uk

Ûk

Êk ⊗ Êk + Λ.ε − ε.Λ (101)

of the logarithmic strainε which may, due to the additive decoupling of isotropic finite dilatation and isovolumetric
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finite distortion (91), be split into its spherical part: primarily the trace of the logarithmic strain-rate tensor

.
εkk =

.
ln(|F|) =

|F|.
|F|

=

.̂
Uk

Ûk

=

.̂
U1

Û1

+

.̂
U2

Û2

+

.̂
U3

Û3

(102)

and into its deviatoric part: the material time derivative of the logarithm of the unimodular stretch tensor

.
ε′ =

.
ln(U∗) =

.
ln(Û∗

k ) Êk ⊗ Êk + Λ. ln(U∗) − ln(U∗).Λ =

.̂
U∗

k

Û∗
k

Êk ⊗ Êk + Λ.ε′ − ε′.Λ (103)

where theÛ∗
k = Ûk

3
√

Û1 Û2 Û3

denote the principal values of the unimodular stretch tensorU∗ (86). The isotropic /

spherical part of the logarithmic elastic strain-rate tensor

.
eε =

.
ln(eU) =

.
eÛi

eÛi

eÊi ⊗
eÊi + eΛ. ln(eU) − ln(eU).eΛ =

.
eÛi

eÛi

eÊi ⊗
eÊi + eΛ.eε − eε.eΛ (104)

is given by its trace

.
eεii =

.
ln(|eU|) =

|eU|
.

|eU|
=

.
eÛi

eÛi

=

.
eÛ1

eÛ1

+

.
eÛ2

eÛ2

+

.
eÛ3

eÛ3

(105)

and its isovolumetric part by the logarithmic elastic strain-rate deviator

.
eε′ =

.
ln(eU∗) =

.
eÛ∗

i
eÛ∗

i

eÊi ⊗ eÊi + eΛ. ln(eU∗)
︸ ︷︷ ︸

− ln(eU∗)
︸ ︷︷ ︸

.eΛ .

eε′ eε′
(106)

For plastic incompressibility, the logarithmic plastic strain-rate tensor is deviatoric by definition

.
pε =

.
ln(pU) =

.
pÛj

pÛj

pÊj ⊗ pÊj + pΛ. ln(pU)
︸ ︷︷ ︸

− ln(pU)
︸ ︷︷ ︸

.pΛ =
.

pε′

pε pε

(107)

since its trace, i.e. its isotropic / spherical part, vanishes

.
pεjj =

.
ln(|pU|) =

|pU|
.

|pU|
=

.
pÛj

pÛj

=

.
pÛ1

pÛ1

+

.
pÛ2

pÛ2

+

.
pÛ3

pÛ3

= 0 . (108)

And for isotropic thermal expansion (92), the logarithmic thermal strain-rate tensor

.
ϑε =

.
ln(ϑU) =

.
ln
(
Θ(ϑ)

)
∙ I =

dΘ(ϑ)
dϑ

.
ϑ ∙ I (109)

is purely isotropic / spherical so that the logarithmic thermal strain-rate deviator
.

ϑε′=0 vanishes.

The material time derivative of the unimodular commutative-symmetric elasto-plastic stretch tensor product (89)
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follows from the product rule and with (74) as

.
U∗ =

.̂
U∗

k Êk ⊗ Êk + Λ.U∗ − U∗.Λ =
.

pU.XT.eU∗ = p
.
U.XT.eU∗ + pU.

.
X

T

.eU∗ + pU.XT.
.

eU∗ =

=

.
pU.
√

pU−1.(eU∗)2.pU−1.pU = p
.
U.
√

pU−1.(eU∗)2.pU−1.pU +

+

.
pU.
√

pU−1.(eU∗)2.pU−1.pU + pU.
√

pU−1.(eU∗)2.pU−1.p
.
U =

=
.

eU∗.X.pU =
.

eU∗.X.pU + eU∗.
.
X.pU + eU∗.X.p

.
U =

=

.
eU∗.

√
(eU∗)−1.pU2.(eU∗)−1.eU∗ =

.
eU∗.

√
(eU∗)−1.pU2.(eU∗)−1.eU∗ +

+ eU∗.

.√
(eU∗)−1.pU2.(eU∗)−1.eU∗ + eU∗.

√
(eU∗)−1.pU2.(eU∗)−1.

.
eU∗ =

=
.

eU∗.ef∗(eU, pU)T + ef∗(eU, pU).
.

eU∗ + p
.
U.pf∗(eU, pU)T + pf∗(eU, pU).p

.
U

(110)

two sums of unimodular elastic
.

eU∗ or plasticp
.
U stretch tensor rates symmetrically multiplied by corresponding

unimodular elasticef∗(eU,p U) or plasticpf∗(eU,p U) tensor functions of the partial stretch tensorseU andpU .

In an analogous manner, the logarithmic strain-rate deviator is given as

.
ε′ =

.̂
U∗

k

Û∗
k

Êk ⊗ Êk + Λ. ln(U∗) − ln(U∗).Λ =

=

.
eÛ∗

i

eÛ∗
i

eÊi ⊗
eÊi + eΛ. ln(eU∗) − ln(eU∗).eΛ

︸ ︷︷ ︸

+

.
pÛj

pÛj

pÊj ⊗
pÊj + pΛ. ln(pU) − ln(pU).pΛ

︸ ︷︷ ︸.
eε′.ef(eε, pε)T + ef(eε, pε).

.
eε′ p.ε.pf(eε, pε)T + pf(eε, pε).p

.
ε

(111)

two sums of elastice
.
ε
′

or plasticp.ε logarithmic strain-rate deviators symmetrically multiplied by corresponding
elasticef(eε, pε) or plasticpf(eε, pε) tensor functions of the logarithmic partial strain tensorseε andpε .

The elasticeÊi⊗eÊi and plasticpÊj⊗pÊj principal bases of the elastic and plastic (logarithmic) strain tensors
differ in general such that all the principal values and the principal base rotation velocities of total and partial strain
tensors are interdependent and coupled. The (material) time derivatives of (Lagrangean) commutative-symmetric
strain tensor products with symmetrizing rotation tensors (in the middle) result from (109), (111) and the product
rule in summands of partial (logarithmic) strain-rate tensors

.
ε =

.
ε``

3 ∙ I +
.
ε′ =

=
( e.ε``

3 + dΘ(ϑ)
dϑ

.
ϑ
)
∙ I +

.
eε′.ef(eε, pε)T + ef(eε, pε).

.
eε′ + p.ε.pf(eε, pε)T + pf(eε, pε).p

.
ε

(112)

and, therefore, provide a link to the additive decomposition of totalD and partial{eD, pD, ϑD} rate of deformation
tensors—as implied by the first fundamental law of thermodynamics: the total stress power

1
ρT..D = Tkk

ρ
D``

3 + 1
ρT..D′ = Tkk

ρ

( eD``

3 + dΘ(ϑ)
dϑ

.
ϑ
)

+ 1
ρ

(
eT..eD′ + pT..pD

)
=

= 1
ρ0

σ..
.
ε = σkk

ρ0

.
ε``

3 + 1
ρ0

σ..
.
ε′ = σkk

ρ0

( e.ε``

3 + dΘ(ϑ)
dϑ

.
ϑ
)
+

+ 1
ρ0

(
ef(eε, pε)T

.σ + σ.ef(eε, pε)
︸ ︷︷ ︸

)
..
.

eε′ + 1
ρ0

(
pf(eε, pε)T

.σ + σ.pf(eε, pε)
︸ ︷︷ ︸

)
..p
.
ε ,

eσ pσ

(113)

basically the double scalar productT..D=TijDij of the symmetric second-order tensorsT (Cauchy stress) andD
(rate of deformation), is given by the sum of the partial (elastic, plastic, thermal, . . . ) stress power terms, whereρ
andρ0 denote the mass densities in the currentκ and the referenceκ0 configurations,σ the symmetric second-order
tensor of the stress (Hoger, 1987) which is work-conjugate to the logarithmic strainε (rate

.
ε), where the deviators

of second-order tensors(∙) are denoted with a prime mark(∙)′ and where the traces of the strain ratesD``=
.
ε`` are

identical and where the traces of stresses obey1
ρTkk= 1

ρ0
σkk for the total as well as for the partial (elastic, plastic,

thermal, . . . ) tensors.
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6 Conclusion

In summary, for the constitutive modelling of finite deformations, total and partial strain tensors must be

• of the same generalized type(q 6=−r)E (59)—as outlined in Subsection 4.1—since
for pure elasticity, the elastic and the total generalized strains are identical:eE=(q 6=−r)E ;
for pure plasticity, the plastic and the total generalized strains are identical:pE=(q 6=−r)E ;
and for pure thermal expansion, the thermal and the total generalized strains are identical:ϑE=(q 6=−r)E

• geometrical interpretable (and independent on the geometrical deformation path):∮

O
d@ij=0ij for @={E, eE, pE, ϑE}—as outlined at the bottom of Section 2

• defined with respect to thesamereference configurationκ0 (the one with the orthogonal fibers)—as outlined
at the beginning of Section 3

In conjunction with the commutative-symmetric stretch tensor product, the suggestions presented herein provide
a new constitutive approach to the formulation of elasto-plasticity with isotropic thermal expansion under finite
deformations where the Cauchy-Green elastic deformation tensors are given by

eC =
1

Θ2(ϑ)
∙ U.pC−1.U and eb =

1
Θ2(ϑ)

∙ F.pC−1.FT (114)

and the Lagrangean logarithmic elastic strain tensor by

eε = ln(eU) = 1
2 ln(eC) = 1

2 ln(U.pC−1.U) − ln
(
Θ(ϑ)

)
∙ I (115)

with pC−1=pU−2 denoting the inverse of the Lagrangean Cauchy-Green plastic deformation tensor. On the one
hand, the presented constitutive equations are suitable for a wide range of metals used for industrial applications
where the elastic strain tensor is an order of magnitude smaller than the second-order unit / identity tensoreε�I
and, on the other, they are also applicable for the mechanical modelling of e.g. (human) tissue where the elastic
tensor of logarithmic straineε may become large.
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