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On the Multiplicative Logarithmic Strain Space Formulation

K. Heiduschke

A new constitutive approach to finite-deformation formulations of elasto-plasticity (with isotropic thermal expan-
sion) is presented, which is well-suited to a broad range of metals used for industrial applications. The constitutive
equations are formulated within the logarithmic strain space. The coupling of elasticity, plasticity and thermal ex-
pansion is based on a multiplicative approach of commutative-symmetric stretch tensor products with symmetrizing
rotation tensors in the middle of two symmetric stretch tensors. It is essential for finite-deformation formulations to
refer to an appropriate reference configuratiep in order to model material orthotropy correctly (and not to mix

up material / physical anisotropy with deformation-induced / geometrical anisotropy). Furthermore, it is essential
to define proper stretch and strain tensors which are geometrical interpretable, i.e. which only depend on a current
x and a reference:, configuration (and not on the geometrical deformation path between these configurations).
Therefore, all stretch and strain tensors are defined with respect to the same reference configyratientotal
stretches and strains as well as the partial ones: the elastic, plastic and thermal stretches and strains. And these
reference configurations should be the appropriate ones, where—in the case of fiber-reinforced (metal) bodies—the
fibers are placed orthogonal to each other or where Walter Noll's symmetry group considerations characterize the
physical nature of materials with their most specificity as: orthotropic, transversal isotropic or fully isotropic.

1 Preliminaries, Notation and Functions of Symmetric Tensors

Finite-deformation models of simple materials are based on the tensor field of the deformation gradient

u v=RUR"
F = ox/ox = 9zi/ox, B;@E; = F;; B;oE; = R., [FLE = \/F.R 1)
C b=R.C.RT

which is given by the partial derivative of the current position vegtarith respect to the reference position vector

X, where® denotes the dyadic product and a "dot” the single contraction in tensor products. The deformation
gradientF is a positive definite, second-order tensor (with nine internal degrees of freedom, given e.g. by its nine
tensor components;; with respect to al;QE; base). From the polar decomposition theorem, the deformation
gradient (1) may multiplicatively be split into a (proper orthonoriRalt=R*) material rotation tensor (with three
internal degrees of freedom)

R=F.(FF) 2 = (FF") ? F= VEFTF T =F T VFTF =R
VF-LF-T  FTF-1

and positive definite, symmetric right

U=VC=VFLF =U;; E;QE; = Ul = U;; E;QE,; = U;; E;QE; ©)
or left
v=vb=+VF.FT =T (4)

stretch tensors (with six internal degrees of freedom), whére=—! andF~7 denote the transpose, the inverse
and the transposed inverse of a second-order tdhs@spectively. The symmetric right (3) and left (4) stretch
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tensors are given by the square roots of the symmetric right

C=FF=0*=C" (5)
and left
b=F.F =v2=b7 )

Cauchy-Green deformation tensors (Cauchy, 1827; Green, 1839). The left Cauchy-Green deformation tensor (6) is
denoted with a smallg” instead of a capitalB” and the left stretch tensor (4) with a small"instead of a capital

"V" in order to writeEulerian tensordike x, b or v (which are altered under superposed rigid body motiwrit)

small lettersand Lagrangean tensortke X, U or C (which are invariant under superposed rigid body motions)

with capital letters

Functions of symmetric tensors, like the square roots in equations (1)—(4), are most simply expressed in their
spectral representation

f(C) = f(éa Ea®Ea) = f(Ca) Ea®Ea (7)

and the function is just defined on the tensor’s principal values (which are scalars). All principal quantities are
marked with a "hat”, and the summation convention is applied even to multiple repeated indices. The six internal
degrees of freedom of a symmetric tensor can be viewed as: three principal values and three principal directions
(represented by the orientation of the orthonormal principal base vectors). The mRtfaralard rotation of a
Lagrangean tensor (function) is therefore given by the corresponding Eulerian tensor (function)

_ Ty — T = ° F ; !
f(b) = FRCRY) = RF(O)RT = f(Ca) RE,BE.RT

€q €q

8)

where the Lagrangean principal base vecidysare just materiaR-forward rotated to the Eulerian ones
&, =RE, =E,R". 9)

The (functions of) corresponding Lagrangean (7) and Eulerian (8) tensors have the same principal values. Only
the orientation of their principal axes is given by the mateRidbrward (9) orR”-backward rotation

E,=RTe&, =&,.R (10)
of their principal base vectors.

2 Total and Partial Stretch or Strain Tensor Definitions and their Need for Geometrical Interpretability

Exclusively the Cauchy-Green deformation tensGrandb~—! and similar quadratic types like Green’s strain
(Green, 1839)

E=4(C-1) (11)
or Almansi’s strain (Almansi, 1911)
“R=1(I-b7Y), (12)

wherel denotes the second-order unit / identity tensor, may be projected onto arbitrary unit vectors

dX F~l.dx dx F.dx
N = — and n=——-=—— (13)
[aX]|  [[F~t.dx]| l[dx[|  |[F.dx]|
by applyingdx=F.dX=dX_.FT from (1) and its inversdX=F~!.dx=dx.F~7 to the squared quotients
2
| dx|| dx.dx  dX.(FTF).dX
= = = N. .N 14
<||dX|| dX.dX [dX]2 ¢ (14)
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and

=nbln (15)

1ax||\°  dX.dX  dx.(F-TF1).dx
|ldx|| o odxdx |ldx]|?

of the lengths / (2-)normpdx|| and||dX || where theix anddX, respectively, denote the infinitesimal continuum
vicinities of the material points andX with respect to the curremtand reference, configurations. Strain tensor
projections like (14) and (15) are not valid in general and especially not for stdecitlv or logarithmic straire

and% tensor definitions. Most of the general symmetric stretch and strain tensors can be interpreted geometrically
only along their principal directions by taking into account the function definition of their principal values.

The six internal degrees of freedom of a symmetric tensor can be viewed (in its spectral representation) as three
principal values and three principal directions for

e the total stretches

ga - N N i _ T _ Ea ~ ~
U= L—aEa®Ea =1/C, E,QE, and v=RUR" = I. 8,8, (16)
e the logarithmic total strains
ga - - 0 T Ea ~ ~
e =In(U) = ln(L—) B, ok, and e = R.e.RT = m(f) 8,08, (17)
as well as for the partial stretches or the logarithmic partial strains
e the elastic stretches
ly onn . [~ . . e
‘U= fb ‘E,@°E, = 1/¢C), ‘Epy@°E, and v = R.GU.RT = fb 8,8, (18)
b b
¢ the logarithmic elastic strains
e e egb e e e T egb ea ea
- = In(°V) =1n(—) B, 0B, and R.%.R :1n(—) 6,28, (19)
Ly Ly
e the plastic stretches
P . -~ . . P
Pl — ~Cp D —\/pC. P P —_RP T _ Z¢pa 9P
U I E.QPE. =1/PC.PE.QPE, and A =RPU.R I. é.@ré, (20)
e the logarithmic plastic strains
t . - ch - i T PEC A A
%= In(PU) = | P2df= m(f) PE.@”’B. and  RPRT = ln(L—) re. %8, (21)
0 c c

e the thermal stretches
/19 A ~ ~ A
= # VB0 By = 0409) "Ey@’By;  and % =R.PU.RT = 0,(9) Ye,0%y (22)
d

e the logarithmic thermal strains
Ve = In("U) = In(04(9)) "Es0"Eq and R%eRT =n(04(9)) "6a®" ey (23)
where the thermal expansion factors

A - ﬂg(d)

©a() (24)

- L

are functions of the temperatuf@nd becom®; (=1, ) =0, (=19) =03 (9=1,)=1 unity at the reference
temperature), so that the thermal stretch tenstid (¥=1,)=I merges to the second-order unit / identity
tensor, the logarithmic thermal strain ten8of=1,)=0 vanishes an8l/; =L, %o=L,, %3=L3 hold. The
summation convention is not applied on indices enclosed in brackets, e.g. in equation (24).
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In order to distinguish the labels of second-order partial tensors better from their power functions or transposes, all
labels are written as upper left indices and the contraction in tensor products is denoted with a "dot”.

f 4 RGN 1%

Y
Y
Y

Figure 1. Closed finite-deformation cycle on the example of two triangular, constant strain Finite Elements

Any symmetric (total or partial) strain or stretch tensor must comply toggmmetrical interpretabilitythat its

three principal values only depend on three corresponding current and reference lengths—and not on the history of
their (geometrical) deformation path (Heiduschke, 1995, 1996). A logarithmic plastic strain tensor, for example,
which results from the (translational and rotational materially convected) time integration of the plastic flow rule
P¢ must obey the geometrical interpretability in order to constitute a proper strain tensor definition. In other words:

if the finite-deformation path of a purely plastic material (With-PU, cU="U=I and thus=="z, ==":=0) is a

closed deformation cycle, as e.g. depicted in Figure 1, so that the current and reference plastic configurations are
identical, then the corresponding plastic strain tensor increment (of the closed cycle) must vanish

%d&ij‘ = Oij . (25)
o

Exclusively strain or stretch tensor definitions which obey the geometrical interpretability are of a proper type.
The geometrical interpretability is a physical concept of a continuum formulation which might be used to test
Finite Element procedures. Most of the general purpose Finite Element simulation tools, especially those which
model finite deformations with the so-called updated Lagrangean description, fail the closed finite-deformation
cycle test depicted in Figure 1. One can try it out using two triangular, constant strain elements with purely
plastic material behaviour where the plastic strain tensor is summed up from the plastic-flow rule increments. (The
plastic incompressibility constraint is met by the thickness of the elements which adjusts the volume constance of
plasticity.) When these summed-up plastic strain tensors of closed deformation cycles do not §dnisio; ;,

(@]
they are not geometrically interpretable, and the results of such simulation tools show a lack of any physical
significance.

3 Relevance of the Reference Configuratior, for the Modelling of Orthotropy or (Transversal) Isotropy

The modelling of finite-deformation anisotropy should distinguish material / physical anisotropy from deformation-
induced / geometrical anisotropy. Material anisotropy must be specified by constitutive equations formulated with
respect to a reference configuratianwhich characterizes the physical nature of the material with the most speci-
ficity as: orthotropic, transversal isotropic or isotropic. Within the deformation histories of (metal) bodies with,
say, fiber reinforcement, these specific reference configuratiprase given when the (metal) fibers are placed
orthogonal to each other. A material only exhibits physically fully anisotropic behaviour if such a specific refer-
ence configuratiom, does not exists (hypothetically). From Noll’s symmetry group considerations within these
specific reference configuratiorg, one can determine the physical nature of a material as: isotropic, transversal
isotropic, orthotropic or fully anisotropic (Noll, 1958). For symmetric stressr” and symmetric strain (rate)
tensorsa={%, P¢}=@”, the components of the corresponding fourth order material tekGaray be written in
Voigt-Sayir matrix notation (Sayir, 1987) as

@ Ki111 Ki122 K113z  V2:-Ki112 Vv2:-Ki113 V2 K123 o11

@29 Ki122 Ka222 Koa33 V2:-Kaziz  V2:Kaziz V2 Kaoos 022

@33 — K1133 K2233 K3333 V2 Kzziz V2-Kzz1i3 V2 Kazes 733 (26)
V2@ - V2. Ki112  V2-Kaz12 V2 K331z 2 K212 2 K213 2 K223 V201
V2. @3 V2-Ki113  V2-Ka213  V2-K3313 2- K213 2-K1313 2 K1323 V2013
V2 Qg3 V2-Ki123  V2-Kazez V2 K3zzas 2 Ki223 2 Ki1323 2 Ka323 V2023

where the components of the symmetric tensgrg and?: are quoted as%1 pseudo column vectors and where
the components of the fourth-order material tengdsbey the symmetries

Kijke = Kijer = Kjine = Kresj (27)
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and are quoted as pseudo matrices.

The Voigt-Sayir matrix quoted componenfk]] of the fourth-order material tensok&only exhibit their material
specificity (the dots denote zeros) as orthotropic or transversal isotropic

Q1 Ki111 K122 Ki133 . . . o11

Qg2 Ki122 Ka222 Ka233 : . . 022

Q33 _ K133 K233 K3333 : . . 033 (28)
V2. @iz - : : : 2 Ki212 . . V2012
V2@ - 2. Kizis : V2 - 013
V2. @3 : 2 Kas23 V2. 0oa3

when they are given with respect to their principd;, @M ;oM oM, material base and within the specific
reference configurationsg, (where the "fibers” are placed orthogonal).

If unspecific configurations, are taken as a reference for the finite-deformation formulations (where the "fibers”
are not orthogonal), the material / physical and deformation-induced / geometrical anisotropies are mixed up so
that the physical nature of the material is wrongly considered as fully anisotropic. Even the isotropic linearized
elastic compliance tensét (with two elasticy parameters) would appear as fully anisotropic (with 21 parameters)

if the reference configuration is shifted by a full-fledged deformation gradiiefrom x to 7.

3.1 Full Material / Physical Anisotropy

For full material / physical anisotropy, the principal material directions (represented by the mbfgrinhse
vectors) in the specific reference configuratigrare not orthogonal and, therefore, the tensor components may be
specified with respect to arbitrary orthonorniial base vectors. Due to the symmetries (27)3the81 coefficients
Ki;1e Of the fourth-order elastic compliance tensGrreduce to 21 material parameters / functions which specify
the full anisotropic elasticity.

The plastic incompressibility condition, expressed with the logarithmic plastic strain-rate tensor

Pepr =0 = AP,Cxuij 045 V 045 = 0ji = {011, 022, 033, 012, 013, 023}, (29)

results in six incompressibility constraints, which reduce the number of indepeligell; ® E;, QE, coefficients
to 15 material parameters / functiofis; ;. which specify full anisotropic, incompressible plasticity.

Full anisotropic thermal expansion, expressed with a (Symmetric) logarithmic thermal straintgnisgiven by
6 component$s,; (9)="z;; (1) with respect to an arbitrary orthonornia)E; base.

3.2 Material / Physical Orthotropy

For material / physical orthotropy, the principal material directions (represented by the misfgrizse vectors)

in the specific reference configuratieg are orthogonal. Only if the fourth-order material tensor components are
specified with respect to these orthonormal principal material base védiprdVl; @M, @M,, the Voigt-Sayir
matrix quoted componentEXC]] of the orthotropic elastic compliance tenstor

R e T ST I B
€99 Y2 1 _ Va3 . . . 029
“e33 _ 51151 _E; jz . . . 033

= En Ea22 E33 (30)
V2 ey ) . . Q.ﬁ V2. 01s
\/5'6813 . Qﬁ . \/5.0-13
\/5_ 6523 i . . . . . 2. ﬁ ] \/§ - 093
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and the component)'s[[PIC]] of the orthotropic plastic-flow tensorrK

Penn

[g+h —h —g ] 711
Pegs ~h h+f —f 022
Pégg : — N 033
. = g g 31
\/i'p€12 . . 2% \/5'012 ( )
V2 PE, 2.7 y V2013
\/i'pégg, - 2.5' \/5'0'23

exhibit the physics of orthotropy and reveal the decoupling of normal and shear components—represented by the
24 zeros (denoted as dots) within each material matrix of equations (28), (30) or (31). The 9 orthotropic elastic
compliance parametefs:1, Es2, Ess, V12, 113, Va3, G12, G13, Go3} are defined such that;=v;; holds for the
Poisson’s ratios of orthotropy (Hashin and Rosen, 1964; Hashin, 1979). The 6 orthotropic plastic-flow parameters
{f, g, h, n, m, I} with 3 plastic incompressibility constraints follow directly from the flow rule

rE, =3 affj’ (32)
associated to Hill's orthotropic yield stress function (H11§79)
7 = 6(0ij) = \/Kijee 015 0ke = Vo lK..o = /{o }}T [[K]] {{o}} =
= \/h(Uu — 022)% + g(o11 — 033)% + f(022 — 033)% + 20075 + 2m oty + 2l 03 (33)

n(o%y +031) + m(oiz + 03;) + (033 + 032)

whose mathematical form is in Hill (1979) slightly modified from the original version of Hill (1948). The "double
dots” denote the double contraction in tensor produst8 =tr(A”.B) = A;; B;; where t(-) is the trace operator.

The thermal stretch tensdt for material orthotropy is given by the 3 principal thermal stretch fac{@s(ﬁ),
©2(), ©3(0)} which correspond to the princip® ;) @M, components’z;=In(O1(¥)), %2=In(O2(¥)),
2,=In(O3(v))} of the symmetric logarithmic thermal straiatensor.

3.3 Material / Physical Transversal Isotropy

For material / physical transversal isotropy, the principal material directions (represented by the ivBidrase
vectors) in the specific reference configurationare orthogonal. The materidll; base vector points into the
logitudinal "fiber” direction and the materid,, M3 base vectors span the plane of transversal isotropy which
is perpendicular t&M[;. Only if the fourth-order material tensor components are specified with respect to these
orthonormal principal material base vectdf®M,; oMM, the Voigt-Sayir matrix quoted componeritC]]

of the transversal isotropic, elastic compliance terisor
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€99 v 1 _ v 022
E E
e
€33 _v _v 1 . g33
= E E F (34)
V2 e : S : V2-01s
V2 e S . V2013
. . 140/
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and the component)'s[[PIC]] of the transversal isotropic, plastic-flow tensotk

p€11 -

i 2g —qg —g . . . T 011

Pega —g f+g —f ) ) ) 022

Pigs | —f f+ ) } ) 033
=AY g (35)

\/i,p€12 . . . 2% . . \/5'0'12

\/5 . pél?) . . . . 2. % 2.f+g \/§ - 013

V2 Py - ' ' ' 2 V2o

exhibit the physics of transversal isotropy and reveal the decoupling of normal and shear components. Transversal
isotropy is specified by 5 elastic compliance parametérsE’, v, v’, G} and by 3 plastic-flow parametefs, g,
m} with 2 plastic incompressibility constraints.

The thermal stretch tensdiJ for transversal isotropy is given by the 2 principal thermal stretch fa({tél(ﬁ),
©'(¥)} which correspond to the princip&I;)®M;, components in the longitudindf; =In(©(¥)) and the
transversafé,="4;=In(©’(9)) principal directions of the symmetric logarithmic thermal str&itensor.

3.4 Material / Physical Isotropy

For material / physical isotropy, the orthonormal principal matexil base vector systems must not be distin-
guished from the orthonormal arbitraBy, base vector systems in the specific reference configuratjaince
every arbitrary base vectd; points into a principal materiaM;, direction. The Voigt-Sayir matrix quoted
fourth-order material tensor componefit&’]] of the isotropic, elastic complian¢&

fenn r

ok ok 1
-5 B F 722
“e33 _v _v 1 033
= E E E 36
V2 ey . . . 2. %%% V2010 (36)
V2 e 2- 5% : V2013
+v
V2 Cen3 - 2- 3% V2023
and\ [[PK]] of the isotropic, plastic-flow tensorrk
Pén roh —h —h : : CT o1
Pégy —h 2h —h : . . 022
Pézs | —=h —h 2h : : : 733
] =\ 37
V2 Péy . . . 2.37’1 . . V2010 S
V2 Péys . . . . 2.% . V2015
3h
\/§~p(—:‘23 L - . . . . 2.7_ \/5.0_23

reveal the decoupling of normal and shear components. Material isotropy is specified by 2 elastic compliance
parameterd F, v} and by 1 incompressible plastic-flow parameter, the hardening funktierth 1 plastic in-
compressibility constraint which may be expressed by a plastic Poisson’s ratio of 0.5 for the negative quotient of
transversal over longitudinal logarithmic plastic strain.

The thermal stretch tenséU:é(ﬂ) - I for material isotropy is totally governed by 1 stretch facfﬁ{rﬂ) which
corresponds to the isotropic definition

Ve =n(6(0)) -1 (38)

of the symmetric logarithmic thermal strain tensor.
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3.5 Walter Noll's Symmetry Group Considerations (1958)

One can interpret Walter Noll's symmetry group considerations (Noll, 1958) with co-ordintaténs

Kaved = Qai Qvj Qck Qar Kijre = Qavij Ledre Kijre
N—_—— ——

(39)
Qabij  Ledke
of fourth-order materialensors
ICabcd
K =QquQvj Qek Que Kijit Ea @ Ey @ B, @ Eg = Kyjre M; @ M @ My, ® My (40)
N — ——

Qabij  Ledke

where the second-order rotation ten§peM ;. QE,, is defined by the orientation of the orthonormal principal
material base vectors

M = QE; =E;.Q" = Qi+ E; (41)

with respect to the orthonormal arbitraBy, base vectors. Th&;®E; components ofQ are given in matrix
notation by

Q11 Q12 Qi3
=| @ Q Qa: 42
Q=@ g g (42)
and the co-ordinate rotations (39) of fourth-order material tensors (40) read in Voigt-Sayir nu#iion
T
[IK]] = [[Ql K] [[Q7]] (43)
with the Voigt-Sayir matrix quoted components
Q11 Q11 Q12 Q12 Q13 Q13 V2Q11 Q12 V2Q11 Q13 V2Q12 Q13
Q21 Q21 Q22 Q22 Q23 Q23 V2 Q21 Qa2 V2 Q21 Qa3 V2 Qa2 Qa3
[[QH — Q31 Q31 Q32 Q32 Q33 Q33 V2Q31 Q32 V2Q31 Q33 V2Q32 Q33 (44)
V2Q11 Q21 V2Q12Q22 V2Q13Q23 Q11Q22+Q12Q21 Q11Q23+Q13Q21 Q12Q23 + Q13 Q22

V2Q11 Q31 V2Q12Q32 V2Q13Q33 Q11Q32+Q12Q31 Q11Q33+Q13Q31 Q12Q@33 + Q13 Q32
V2Q21 Q31 V2Q22Q32 V2Q23Q33 Q21 Q32 +Q22Q31 Q21 Q33 +Q23Q31 Q22 Q33 + Q23 Q32

of the fourth-order rotation tens@=9; 1 E;OE; ®E;QE=Q; Q¢ E,QE;E,®E, corresponding to (42).
In general, an isotropic material teng6iis invariant against co-ordinate rotations (39)—expressed in Voigt-Sayir
matrix notationas

A —B —B . . . A —B —B . .
-B A -B . . . -B A -B . . . T
PR s o= Tt as S et 49)
. . . . A4+ B . . . . . A+ B .
. A+ B . . . . . A+ B

—where is composed of a fourth-order unit / identity tensor with th&+’B” term on the diagonal and the
" —B” term on the normal components of the material matrix within the upper left quadrant in Voigt-Sayir matrix
notation—cf. the isotropic material matrices of (36) and (37).

A transversal isotropic material tenskr is invariant against co-ordinate rotations about an aggkdong the
longitudinal "fiber” M, direction—expressed within a principal material base vector system in Voigt-Sayir matrix
notationas

:.B 7-E 7.D G :[[19]] :.B 7>E 7.D G [[1QTH (46)
Y e Y e

—cf. the transversal isotropic material matrices of (34) and (35)—wherd/ifeM ; @M, @M, components of
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the corresponding fourth-order rotation tens@read in Voigt-Sayir notation

2 52 L _Vaes
ron=1: @ .o, Vies (47)
- \/E.cs - -2(‘.3 g ‘“ 2 , 2

and are associated with thd;@M; components of the second-order rotation ted€pin matrix notation

Q] = { 1 . } - [ 1 cos(9)  — sin(e) } (48)

c sin(p) cos(p)

within a principal material base vector system. The abbreviaticarsd s in equations (47) and (48) denote the
cos(y) andsin(p) functions, respectively.

An orthotropic material tensdg is just invariant against index shifts—expressed within a principal material base
vector system in Voigt-Sayir matrix notati@s

::E 7:B 7:D H I :[[OQ]] ::c —:E 7:F G H [[OQT]] (49)

—cf. the orthotropic material matrices of (30) and (31)—where the Voigt-Sayir matrix qddtedVI; @M @M,
components of the corresponding fourth-order rotation tehQmead

eoll=1{:* . . . (50)
and are associated with thd; @M ; components of the second-order rotation terffi€pin matrix notation

LQl=|1 ;] (51)

which just reduce to the index shift matrices (50) and (51) and may be applied recursively within principal material
base vector systems.

4 Commutative-symmetric Stretch Tensor Products with Symmetrizing Rotation Tensors in the Middle

For finite deformations, the orthotropy within a material description is "lost” if a total deformation grdeisnt
defined as just (a chain of) tensor produdis. . PF of partial deformation gradients (which are not commutative).
After the application of a first partial deformation gradiéht the "orthogonal fibers” in a reference configuration

ko are no longer orthogonal since the reference of the follow-up deformation gradients will be finitely shifted by
PF,

Within the approach presented hes#l,symmetric partial stretch and strain tensors are defined with respect to the
samereference configuratior, (of the total stretch and strain tensor definitions) which should be the one with
the "orthogonal fibers” for material orthotropy or transversal isotropy. The definition of a commutative-symmetric
(partial) stretch tensor product is given by

AXB=(AXB)? =BX"A=AVA-1B2ZA-1A=B.VvB-1.A2B-1B (52)
with a symmetrizing (proper orthonormal'=X7) rotation tensor

X=XT=yA-1B2A-1AB ' =AB 1.VBA2B=

53
=+VAB2AA'B=A"1BVvB-1A2B"! 3)

in the middle of two positive definite, symmetric second-order (partial) stretch teAsokd’ andB=B” which
is determined from the symmetry conditidnX.B=(A.X.B)"=B.XT.A of the whole product. A tensor product of
symmetric tensors is, in general, not symmetric and has nine internal degrees of freedom, but the three internal
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degrees of freedom of the symmetrizing rotation tensor (53) reduce the internal degrees of freedom of the whole
commutative-symmetric stretch tensor product (52) to six. The left and right multiplication of equation (52) with
A1 results inX.B.A"1=A"1.B.X"=v/A-1.B2.A—-1 whereXT.X=I is eliminated under the square root, and simi-

larily the left and right multiplication wittB—! results inB~*. A X=X".A.B~'=v/B~1.A2.B-! whereX.X"=I is
eliminated under the square root. The corresponding left and right back multiplicatiodwitlB results in the

r.h.s. termA.vA-1.B2. A1 A or B.v/B—1.A2.B—1.B of equation (52), respectively.

If the principal axes of the symmetric tensér&indB do not coincide, the consecutive tensor products

AB=XVBA2B=VAB2AX and BA=X"VAB2A=VBA2BXT  (54)

are—in contrast to the tensor product (52)—not commutative and not symmatict B.A. From the polar
decomposition (1), the consecutive tensor products (54) are expressed on their r.h.s. as products of the symmetric

square root tensorgA.B2.A or v'B.A2.B and the rotation tensor

X=XT=VABPAA 1B =A 1B 1.VBALE =
— (AB*A) ' AB —AB. (BA2E)} (55)
———— ————
A 1B 2A T B1A 251

:

=

|

orits inverseX” . The symmetric square root tensors

VAB2A=XVBA2BXT = ABX =XBA (56)
and

VBA2E = XTVAB2AX = X' AB =BAX (57)

are theX-forward and the&X”-backward rotations of each other. Even if the principal axes of the symmetric tensors
A andB do not coincide, the principal values of the symmetric square root tensors (56) and (57) are identical. Only
the orientation of their principal axes differs according to ¥heotation tensor (55). Furthermore, the principal
values of the commutative-symmetric stretch tensor product (52) differ, in general, from the principal values of the
symmetric square root tensors (56) and (57).

4.1 Generalized Lagrangean and Eulerian Strain Tensor Definitions

The commutative-symmetric (partial) stretch tensor product (52) is also well defined for power functions of positive
definite, symmetric stretch tensoké andB? with real valued exponents

A?.V/A~4B2 A4 AT = B9.\/B~0.A% B~9.B? # BY.(B~9.A2.B9)"* B (58)

and it may be applied to the definition of (multiplicatively coupled total and partial) generalized stretch and strain
tensors.

In the following, just the definitions of total Lagrangean and Eulerian strain tensors are listed. The definitions

of the correponding partial Lagrangean and Eulerian strain tensors must be of the same generalized type as the
total ones in order to model the constitutive equations correctly. When, within a thermo-elasto-plastic constitutive
model, one focuses on pure elasticity (with no plasticity and no thermal expansion), the elastic generalized strain
tensor must be equal to the total generalized strain (and the plastic and thermal strains vanish); the same argument
applies for pure plasticity and for pure thermal expansion. Therefore, the total and the partial generalized strain
tensors should always be of the same definition type.

A very general class of Lagrangean strain tensoixkBand Holzapfel, 2004; Darijani and Naghdabadi, 2010) is
defined by

(t#7E = L (C} — C %) = L (Ur—U™) (59)
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which merges forr—0 to the classical Lagrangean generalized strain tensors (Doyle and Ericksen, 1956; Seth,
1964, Hill, 1968)

9E — lim @*—"E =1
r—0 q

(C2-T)=1(Ur-1). (60)

1
q

The classical Lagrangean generalized strain tensors (60) merge-forto the Lagrangean logarithmic strain
tensor (Hencky, 1928)

e="E=1limE = In(C) =1In(U). (61)

q—0
Special cases of classical Lagrangean generalized strains (60) are the engineering strain tgasor for
E=VC-1=U-1 (62)
and Green'’s strain tensor (Green, 1839)feR
E=4(C-1)=3(U*-T). (63)

The materiaR-forward rotations (8) of the tensors (58)—(61) witaR.A.R” andb=R.B.R” result in the Eulerian
form of the commutative-symmetric stretch (to tjxeh power) tensor product

a?.vVa—2.b%¢.a- 2.7 = b?.vV/b—7.a2¢.b—1.b? (64)
and the Eulerian classes of generalized strain tensors: the very general Eulerian strain tensors
(1777 = R.FERT = ——(b% —b72) = - (v! —v7"), (65)

the classical Eulerian generalized strain tensors

q

%=RIERT = L (b2 —1) = ; (v —1) (66)
and the Eulerian logarithmic strain tensor fer:0

b =ReR” = lirr%)qe = 21In(b) =In(v). (67)
(1—?

A special case of a classical Eulerian generalized strain (66) is Almansi’s strain tensor (Almansi, 19+ for

e=1(I-b1) =L (v2-1). (68)

4.2 The Multiplicative Elasto-plastic Decomposition of the Deformation Gradient

The common approach to finite elasto-plasticity is the multiplicative decomposition
F=°FrF (69)

of a positive definite deformation gradiefinto an elasticF and plastic’F contribution. In the Finite Element
literature, the multiplicative decomposition (69) is often attributed to Lee and Liu (1967) or Lee (1969) even
if there is work published earlier, e.g. &mer (1960). In his book, Bertram (2012) lists more than ten other
"original” references to the multiplicative decomposition (69), and Bruhns (2015) further discusses them. The
polar decompositions of the partial (elastic and plastic) deformation gradients

‘F=4.°R=°R-0 and PF =" R="RPU (70)

define, on the one hand, thesll determinedtulerian elastiév and Lagrangean plastic stretel tensors and, on
the otherundeterminecklastic and plastic rotation and stretch tensors

°R, PR, 0 =R 4R and = PRPUPR (71)
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which are marked with superscript tildes. The indetermination of the tensors (71) originates (Casey and Naghdi,
1980) from the possibility of multiplyianT.+Q:I in between the elasto-plastic deformation gradient product

R X X
— —~ —_—
F(PQT.TQ).PF = (v.°R).TQT. TQ.(°R *U) = R.°U.RT.*R PU = . RX.RT A R (72)
= = = =
°F PF °R PR U v

such that F=<F. QT PF=tQ.7F, *R="R.* QT and?R="+Q.”R, where*Q is an undetermined rotation tensor.
Introducing®v.¢R and”R.?U from (70) into the multiplicative decomposition (69) results in a product of well
defined tensors (exclusively without tildes) since t@indetermination of R and”R cancels out for the rotation
tensor

7R = °RPR = °R. (FQTFQ) PR = “R.(TQT. *Q).PR = °R 7R
I R PR

in the middle of the Eulerian elastie and Lagrangean plastit) stretch tensors (Sayir, 1987; Casey, 2016). Writ-
ing eithercU=RT.¢v.R as the materiaR”-back rotation of'v or Pv=R.PU.R” as the materiaR-forward rotation
(8) of PU reveals on the one hand the symmetrizing rotation tensor

X =X"T =RT2zR = vey try?eyteytry=curytvryeu2ry=
=+veUryU2eyceyryt =ceyu-tryvrytey?ry!

with the corresponding commutative-symmetric elasto-plastic stretch tensor product
U=UT=°cuXxrU="UXxTeU="°U.veutru?euteyu=ruvruteu?ru-try (75)
in Lagrangean form or on the other the symmetrizing rotation tensor

x=x"T =RXRT=2RRT = Vey=lpy2 eyl ey lry=cypy~1 \pyey2py =
=vevry=2ey ey Pyl = eyl py /oyl ey2 py-1

with the corresponding commutative-symmetric elasto-plastic stretch tensor product
v =vl=CxPy=Pyxl % = v.Vey Ll py2 eyl ¢y =Py Vpy—ley2py—1Py (77)

in Eulerian form, cf. (52) and (53).

(74)

(76)

5 The Chaining of (Partial) Stretch Tensors and Commutative-symmetric Stretch Tensor Products

Within chained commutative-symmetric stretch tensor products, the parentheses (round brackets) mark specific
products of positive definite, symmetric (partial) stretch tendess”, B=B” andC=C" with their corresponding
symmetrizing rotation tensod$=X-7 andY=Y~7 (in the middle), e.g.

(AX.B).Y.C = (BXTA).Y.C=CYT(BXTA)=CYT(AXB). (78)
The associative law for chained commutative-symmetric stretch tensor products

(AX.B).Y.C £ AX.[B.Y.C] (79)
is misleading since the (proper orthonormal) rotation ten¥esX~7 andY=Y 7T only symmetrize the products
of (A.X.B)=(AX.B)T=(B.XT.A) and(-).Y.C=C.YT.(-) on the |.h.s. of inequality (79). When the principal axes
of the symmetric tensors, B andC do not coincide, the rotation tensotsaandY will not symmetrize the products

of AX.[-]#[-]T.XT.A and[B.Y.C]#[B.Y.C]T=[C.YT.B] on the r.h.s. of inequality (79) where the asymmetry of
the tensor product is indicated with the square brackets.
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Table 1: Thermo-elasto-plastic commutative-symmetric stretch tensor product $6tof YU andU

total right stretch tensor U "product set’ elastic right stretch tensor¢U
ULPDY,(PUPXIY) = <0DU - me(pd)” \/U.(ﬂu‘l.\/im.ﬁu‘1 )*.U
riy pU=1./pUPU~2pyPU-L
PUPIRY (PY.0eX.U) =PIy p(de)” VVUUTZ U2 VUPU 2 U
ﬁeU
YYIEDY, (CUPXPY) =YDy " (ep) VVUIUZ U2 Ut
Py
ey PYHIYT =ty Y ey = "t/ \/U.(UVUQ.U)_%.U 2U~2.U.(UPUU) 2L
= Very.2U? ery = /9y U VAT EX TR A Ve VRV TEX TR AV

When the principal axes of the symmetric partial stretch terf8dr§U and?U differ, there are three different sets
of chained thermo-elasto-plastic commutative-symmetric stretch tensor prodgefy™ " p(de)” and "9 (ep)”
which are compiled in Table 1. The column on the left of Table 1 shows the total right stretch tefeoeach
product set and the column on the right the corresponding elastic right stretch t&nsbine fourth product set
"t/9¥" of Table 1 arises from

cu.PxX. Py = Uy Pu!
—_—

ey t/19U

— YT YTy =2y VIUURIUAU T = UL(UPURU) L.

(80)

5.1 The Unigue Thermo-elasto-plastic Decomposition of Stretch Tensors for Isotropic Thermal Expansion

A good portion of materials and especially metals exhibit isotropic thermal expansion behaviour, such that the
thermal stretch may be specified as an isotropic / spherical tensor

1 (81)

with a scalar thermal expansion fac@w):% multiplied by the second-order unit / identity tengof his factor

O(¥) is a function of the current temperatufie and become®(¥y)=1 unity at the reference temperatufg

(which implies?=L). For isotropic thermal expansion (81), the differences between the four thermo-elasto-plastic
commutative-symmetric stretch tensor products of Table 1 vanish, and they merge into one unique commutative-
symmetric stretch tensor product in which the total right stretch tensor is given by

EpU

U=0()-PU.VrU teu?rytry = )y = rWe)y = dep)y = /9y | (82)
cU.veu tru?eytey

the total left stretch tensor by

v=0() Pv.Vrv ey vl Py = O(Y) - Cv.VevTlevZeyTl oy (83)

the elastic right and left stretch tensors by

2

e_m_é/ﬁ . B e v.pv*.v_{q’/m o2 x
U= "5 _G(ﬂ)-VU.PU Urand = _e(ﬂ)'m (84)
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and the corresponding unique multiplicative polar decomposition by

U ev.veylpy2 eyl ey
F=R.PUVPU ! eU?PU™IPU-O(0) = (1) - Pv.VPy—ley2py—1 Py R, (85)
cU.veutruieuteu v
Theunimodular stretch tensoi@narked with a "star”)
o9 _ Y and vi= =Y (86)

within the equations of (84) ameasures of pure finite distortiqflory, 1961) since determinants of unimodular
tensors are unityU*|=|v*|=1 by definition. For plastic incompressibility, all plastic stretch ten8atsnd?v are
unimodulan?U|=|Pv|=1 and thus not marked with a "star” within this work. Applying the Lagrangean unimodular
stretch tensortl* (86), ¢U* and?U, themultiplicative decoupling of finite dilatation and finite distortiomay be
written as

U/ ((U")~LPUR (U LEU

U= {/F[-U* = /|U]- ©(9) -PU.y/PU~ " (cU*)2.PU~ 1 PU (87)
N——
/IFT u*
with the finite dilatation factor
VIFI = ¥/1eU]- 0(9) (88)

of the isotropic dilatation tensor (which does not depend on the isovolumetric t8fsand with the unimodular
total stretch tensor equal to the unimodular commutative-symmetric elasto-plastic stretch tensor product

U* =PU.y/PU~ L (eU*)2PU L PU = eu*.\/(eU*)fl.pu?(eU*)fl.eu* =ryuxTeys = U .XPU (89)
(which does not depend on the volumetric fagigi?) of finite dilatation).

5.2 Logarithmic (Hencky) Strain Tensors

The logarithm ofc - A, a symmetric tensok multiplied by a scalae, is given by

In(c-A) =In(c- Ap) By @Ky, = In(c) - B @B, +In(A) By @By, = In(c) - T+ In(A)
N——

v (90)

the sum of the isotropic tensbr(c) - I plus theln(A) tensor. For the logarithmic (Hencky) strain tensor definitions
(61) and (67), the multiplicative decoupling of finite dilatation and finite distortion (87) becomeadhlits/e

“U*.\/(cU%) U2 (eU7) Leut

| In(l©
e —In(U) = n(:LFD .1+1n(u*):w-1+m(9(ﬁ))-I+1n(Pu. pU~L (eUr)2py~try) . (91)
N—— v 7_/
kR e 3 %e In(U*)

The isotropic thermal expansion (81) is given by the logarithmic thermal strain

)
9 Ekk
3

e = I=In("VU) =n(0(9)) -1 (92)
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which is an isotropic / spherical tensor. The finite dilatation is governed by the isotropic / spherical part of the
logarithmic strain tensor

o= DD (0] o)) 1= (B o)) ) -1
3 3 3
which trace obeys
Ekk = 11’1(|F|) = eEkk + ﬁszk = ln(|pU| . @3(19)) = 1n(\"U|) +3- 111(@(19)) . (94)

The isovolumetric finite distortion is governed by the deviatoric part of the logarithmic strain tensor

g =In(U*) = 1n(PU.\/pu—l.(eU*)2.pU—1.Pu) = 1n(eu*.\/(eU*)—l.pU2.(eU*)—1.eu*) : (95)

For the numerical modelling of constitutive equations, the elastic strain tensor is required as a function of total,
plastic and thermal strains in order to formulate stress-strain (tensor) relations properly. Solving the equations
(93)—(95) for the logarithmic elastic strain tensor results in its trace given by

F
Cpp = n(|°U]) = e — Yepp = 1n(@|3(|19)> = (F)) - 3-In(0(9)) (96)
and its deviator given by
%' =In(°U*) = L In(U*PUT2U*). (97)

5.3 Time Derivatives of Deformation Tensors for Finite Elasto-plasticity with Thermal Expansion Isotropy

The material time derivative of a symmetric second-order Lagrangean terddy E, @ E, is most simply ex-
pressed in its spectral representation as

OZU}CE]C@@E]C: UkEk®Ek+UkEk®Ek+UkEk®Ek: UkEk®Ek+/\U—U/\ (98)

the time derivativesU,, of its principal valued,, (the matrix elements on the diagonal within a principal co-

ordinate system) and the time derivatiiés=A.F,=—E;.A of its rotating Lagrangean principal base vectis
(the matrix off-diagonal elements within a principal co-ordinate system) where the second-ordentensor
of the principal base vectors’ rotation velocities is antisymmetric. Therefore, the compondnibey

Aij = —Aji = —eiji M and X = —Seiju Ajr = Seie Arj (99)

and the matrix components 6f(98) within a principal co-ordinate system read

Uy (U = Us) Ao (U3 —Tn)
U= | 3a(0, - 0) 0 A (T — U) (100)
;\2 (U3 — 01) ;\1 (UQ — Ug) Ug

In an analogous manner, the logarithmic strain-rate tensor is given by the material time derivative

¢ =In(U) = n(Up) B, @ B + A.In(U) —In(U).A = Uk BBy +Ae—eA (101)

k

of the logarithmic straim which may, due to the additive decoupling of isotropic finite dilatation and isovolumetric
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finite distortion (91), be split into its spherical part: primarily the trace of the logarithmic strain-rate tensor

. . Fl* :‘ . R B
=y = Z Ve _ O, Ua Us
|F‘ Uk Ul U2 U3

(102)

and into its deviatoric part: the material time derivative of the logarithm of the unimodular stretch tensor

& = Tn(U") = In( 75 By @ By, + A In(U*) — In(U*).A = gf By @B, +Ae —¢' A (103)
k

where theﬁ;:# denote the principal values of the unimodular stretch tetSof86). The isotropic /
1Y2U3

spherical part of the logarithmic elastic strain-rate tensor

o

g)
)

S>

of
Il
—
=
—~
o=
c
=
Il
>

LB @ °B; + AL In(°U) — In(PU).A = —= °B; @ B + A% — 2.6 (104)

>

“ i 1_|_ 2+ 3

¢ey = In(leU]) = = — = — ~ — 105
(IeU[) FUl Cn o T en, T (105)

and its isovolumetric part by the logarithmic elastic strain-rate deviator

- . ¥ C(:;,* et et e ey 1* el 1*\ e

e’ = In(eU*) = U E; ® °E; + ¢A. In(°U*) — In(°U*) .°A. (106)

65/ egl

For plastic incompressibility, the logarithmic plastic strain-rate tensor is deviatoric by definition

: e .

P =In(rU) = 3 PE; @ PE; +PA. In(PU) —In(PU) PA =P’ (107)

Pg Pe

since its trace, i.e. its isotropic / spherical part, vanishes

ry|” P(:]- Pf] p(} p(:]
_ MUl S ST A (108)
PUl - rU; PUy U, PUS

ve;; = In(jPU])

And for isotropic thermal expansion (92), the logarithmic thermal strain-rate tensor

o (U] = m(0D) 1= %ﬁ?é T (109)

is purely isotropic / spherical so that the logarithmic thermal strain-rate deVidted vanishes.

The material time derivative of the unimodular commutative-symmetric elasto-plastic stretch tensor product (89)
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follows from the product rule and with (74) as

. toa . - . . T .
U* = U; B, @ E + AU* — U* A =rUXTeU* =PUXTeU* +PUX .cU* +PUXTeU* =

= pU.,/PUL (cU*)2.2U~ 1 pU = PU., /PU L (cU*)2.0U~ 1 PU +

+PU/PUTL (U200~ PU 4 PUL [PU L (U )2U L PO =

— eUr XU = eU* X.PU + eU* X.PU + cU* XPU = (110)

= eUty/(cUr)LUR (cUr) Lo = 0% f(eUr) - LrUR (eUs) LU 4

T eUm((U) T LPUR (U) LU 4 U [ (eUn)UR (eUn)1e0 =
— U ep*(eU,PU)" 4 ef* (2U,PU).U* + PUPF* (U, PU) T 4 Pf*(eU, PU).PU

two sums of unimodular elastid)* or pIasticPL'J stretch tensor rates symmetrically multiplied by corresponding
unimodular elastié¢f*(°U,? U) or plastic?f*(°U.? U) tensor functions of the partial stretch tenstidsand?U .

In an analogous manner, the logarithmic strain-rate deviator is given as

¢ = Ui By, @ By, + A In(U*) — In(U*).A =
k

eygr . . pUj ~ . (111)
= o (B B AU~ (U A+ LB @ 7B + PA (L) — In("U). A
efJ* prT.
[ J
ot ef(ee,7e)T 4 ef (%, 7). ! n2 pf(ce, ve)T 4 Pf(, 7o) B

two sums of elastiéZ’ or plastic?s logarithmic strain-rate deviators symmetrically multiplied by corresponding
elasticef(%, P=) or plastic?f(%, %) tensor functions of the logarithmic partial strain tenserand?: .

The elastiE;®°E; and pIasticPEj®pEj principal bases of the elastic and plastic (logarithmic) strain tensors
differ in general such that all the principal values and the principal base rotation velocities of total and partial strain
tensors are interdependent and coupled. The (material) time derivatives of (Lagrangean) commutative-symmetric
strain tensor products with symmetrizing rotation tensors (in the middle) result from (109), (111) and the product
rule in summands of partial (logarithmic) strain-rate tensors

F — M I+ _
s T . (112)
= (£ + d(?lgg) 9) -1+ o’ of(%,Pe) T+ of (%, Pe). 5’ + PEPf(%, Pe)T 4 PF(%, Pe) PR

and, therefore, provide a link to the additive decomposition of tahd partial *D, D, D} rate of deformation
tensors—as implied by the first fundamental law of thermodynamics: the total stress power

lT D= Tyr D?f( + lTD/ — Tk (CD?’“ + d(31(919) ;9) 4 l(eT”eD/ +prD) _
p p P p P

_ 1t ot L o (% de(®) &

= o= T 4 Lo gl = Tk (S T ) 4

(113)

—ﬁ—pio (“f(%, ) o+ 0,56 (%, ) )..ez-;’ + pl—a(pf(es, 2o + 0. PF(%, %) )P,

o Pg

basically the double scalar product D=1, D;; of the symmetric second-order tensdrg¢Cauchy stress) ard

(rate of deformation), is given by the sum of the partial (elastic, plastic, thermal, ...) stress power termg; where
andpg denote the mass densities in the curreand the reference, configurationsg the symmetric second-order
tensor of the stress (Hoger, 1987) which is work-conjugate to the logarithmic stf@ites), where the deviators

of second-order tensofs) are denoted with a prime matk’ and where the traces of the strain raf&s=¢,, are
identical and where the traces of stresses dptiéyc:piookk for the total as well as for the partial (elastic, plastic,
thermal, ...) tensors.
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6 Conclusion

In summary, for the constitutive modelling of finite deformations, total and partial strain tensors must be

o of the same generalized tyf&“~")E (59)—as outlined in Subsection 4.1—since
for pure elasticity, the elastic and the total generalized strains are idefifieal* ") E;
for pure plasticity, the plastic and the total generalized strains are idertical?”—")E ;
and for pure thermal expansion, the thermal and the total generalized strains are idéBticat:—")E

e geometrical interpretable (and independent on the geometrical deformation path):
$dQ;;=0,; for @={E, °E,PE, ’E}—as outlined at the bottom of Section 2
%)

o defined with respect to treamereference configuratios, (the one with the orthogonal fibers)—as outlined
at the beginning of Section 3

In conjunction with the commutative-symmetric stretch tensor product, the suggestions presented herein provide
a new constitutive approach to the formulation of elasto-plasticity with isotropic thermal expansion under finite
deformations where the Cauchy-Green elastic deformation tensors are given by

1

e - - . P -1 _ . P —1 T
C o2 () urc—-.u and b CHE) FPCTF (114)
and the Lagrangean logarithmic elastic strain tensor by
% =1In(°U) = L In(°C) = L n(U.PC".U) — In(0(¥)) - I (115)

with ?C~'=rU~?2 denoting the inverse of the Lagrangean Cauchy-Green plastic deformation tensor. On the one
hand, the presented constitutive equations are suitable for a wide range of metals used for industrial applications
where the elastic strain tensor is an order of magnitude smaller than the second-order unit / identity «ehsor

and, on the other, they are also applicable for the mechanical modelling of e.g. (human) tissue where the elastic
tensor of logarithmic straife may become large.
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