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We develop a numerical procedure for solving boundary value problems for elastic solids undergoing chemical
transformations. The kinetic equation for the reaction front propagation is based on an expression for the chemical
affinity tensor, which allows us to study the influence of stresses and strains on the chemical reaction rate and the
normal component of the reaction front velocity. Isogeometric analysis provides a high accuracy when finding
the normal to the reaction front, and it is applied with the use of Abaqus to a numerical simulation of the front
propagation. In order to test and demonstrate the capabilities of the developed procedure a hollow cylinder
undergoing a chemical transformation is considered. First, an axially-symmetric problem is solved and a good
agreement between numerical simulations and analytical results is demonstrated. Then a case is considered where
the initial front configuration does not have axial symmetry. Reaction front acceleration, retardation, and even
reaction blocking due to mechanical stresses are investigated.

1 Description of the Problem

During recent decades much attention in the mechanics of deformable solids has been paid to the study of ma-
terials, which change their structure due to phase or chemical transformations under thermomechanical actions
(see, e. g., Müller et al. (2015) and reference therein). The peculiarity of such studies is their interdisciplinarity
where coupled problems of mechanics, physics, and chemistry arise. Some examples come from MEMS (Mi-
croElectroMechanical Systems) and some from microelectronics. Oxidation processes interconnected with crack
growth in polycrystalline silicon microscale parts determine the lifetime of MEMS (Muhlstein et al. (2001, 2002);
Muhlstein and Ritchie (2003)). Mechanical stresses can retard the oxidation of silicon nanowires (Buttner and
M.Zacharias (2006)). Other examples for such interdisciplinary studies are LIBs (Lithium-Ion Batteries) with
novel anode materials, such as silicon. The capacity of silicon is about ten times higher than the charge capacity of
graphite anodes, which are mostly used (Kasavajjula et al. (2007)). However, the lithiation and de-lithiation with
large amounts of Li results in dramatic volumetric changes of 300% in the Si anodes. Unless accommodated by
appropriate compensating deformation the large volumetric change generates mechanical stresses, which in turn
may affect the diffusion (Yang (2010), Chang et al. (2015)). In addition, recent experimental observation shows
(Liu et al. (2012a), McDowell et al. (2013), Liu et al. (2013), Liu et al. (2012b)) that there is a sharp interface
between lithiated and unlithiated phases, that the lithiation process may be controlled by an interfacial chemical
reaction (Zenga et al. (2016)), and that the chemical reaction rate is affected by mechanical stresses as well (Yang
(2010); Cui et al. (2012a); Levitas and Hamed (2013)). As a result, one faces a complex coupled problem of
mechanochemistry with a moving chemical reaction front.

Many numerical simulations of the transformation fronts of various natures were made earlier. For the case of
phase transformations see, e.g., Finite Element Analysis (FEA) applications in Mueller and Gross (1998, 1999);
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Gross et al. (2002); Mueller et al. (2006). Stress field analysis during mimicking the lithiation front propagation
in Li-ion batteries was performed by using FE in Jia and Li (2015). A description of the FE simulation of the
propagation of a chemical reaction front with the reaction front kinetics being controlled by the chemical affinity
tensor was implemented in Freidin et al. (2016).

This paper can be considered as the step of further utilization of the concept of the chemical affinity tensor in a
form developed in Freidin (2009, 2013); Freidin et al. (2014); Freidin (2015) for studying stress controlled chemical
reaction front propagation. We use a modern powerful numerical method based on IsoGeometric Analysis (IGA)
introduced by Hughes et al. (2005). This method can be considered as the “next generation” of the convenient Finite
Element Method (FEM), and by virtue of its increasing complexity it has many advantages. A most important one
is the use of an exact geometry directly for the calculations. This is definitely good for problems with complex
geometries such as shells in geometrically non-linear formulations (Kiendl et al. (2009)). This also makes IGA
especially effective for problems that are very sensitive to geometry imperfections, i.e., sliding contact (De Lorenzis
et al. (2014)). For example, this method was used effectively in higher gradient theory studies thanks to higher-
order continuities of basis functions (see, e.g., Niiranen et al. (2016, 2017b)).

In the context of problems involving moving interfaces, such as phase boundaries or chemical reaction fronts, IGA
allows to represent the interface very smoothly, and therefore to calculate the normal vector to each point of the
interface with high accuracy. This is especially important for the movement of the interface in the right direction.
And, finally, IGA has higher accuracy with less computational effort compared to standard FEA (cf. Morganti
et al. (2015)).

The paper is organized as follows. In Section 2 we present a brief overview of the chemical affinity tensor concept
and describe how to implement this approach to the modeling of chemical reaction fronts in solids. In Section 3
a short description of the IGA method is given with its advantages for solving problems with propagating inter-
nal interfaces. Section 4 contains numerical results for different configurations of a hollow cylinder undergoing
chemical transformation. For an analytical solution of the axially symmetric problem, which is used to verify the
numerical procedure, we refer to Appendix A. Finally, conclusions are formulated in the last Section 5.

2 Continuum Model

2.1 Chemical Affinity Tensor

A chemical reaction between a solid and a diffusive constituent with a reaction equation

n−B− + n∗B∗ −→ n+B+ (1)

is considered, where where B−, B∗ and B+ are the chemical formulae of an initial solid constituent, a diffusive
constituent , and a transformed solid constituent, respectively; n−, n∗ and n+ are the stoichiometric coefficients.
The reaction is localized at the reaction front, and all of the supplied B∗ is consumed by the reaction (Figure 1).
For example, in the case of the charging process in LIBs this is the reaction

Figure 1: Schematic representation of the chemical reaction in solids

Si + x · Li+ + x · e− → LixSi. (2)
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between solid Si and ions of Li which diffuse through LixSi to the reaction front.

In the case of LIBs lithium ions are large enough to introduce additional deformations in the LixSi while diffusing.
Nevertheless, in order to simplify the analytical solution used for verification of the numerical one we neglect these
deformations in this paper and consider a so-called solid skeleton approach. At the same time we take the strains
produced by the chemical reaction and the corresponding internal stresses into account.

The Deal-Grove model of the oxidation of silicon (Deal and Grove (1965)) assumes that the reaction rate ω is
proportional to the concentration of a diffusive component c with a coefficient of proportionality k∗, which is a
reaction rate parameter:

ω = k∗c. (3)

A more general description is based on a chemical affinity A equal to the combination of the chemical potentials
of the reaction constituents:

A = n−M−µ− + n∗M∗µ∗ − n+M+µ+, (4)

where µ± and µ∗ are chemical potentials, and M± and M∗ are molar masses of the constituents B± and B∗,
respectively (Prigogine and Defay (1954)). Recall that the chemical affinity appears as a thermodynamic force in
the derivation of the entropy production P [S] due to a chemical reaction, i.e., as a multiplier to the reaction rate,
which is a thermodynamic flux,

TP [S] = Aω, (5)

where T is the temperature. This in turn provides a motivation to formulate a kinetic equation for the reaction rate
in a form of dependence of the reaction rate on the affinity, ω = ω(A). With the chemical affinity, in the case of
the reaction between solid and diffusive constituents, the following kinetic equations was considered (Glansdorff
and Prigogine (1971)),

ω = k∗c

[
1− exp

(
− A

RT

)]
, (6)

where R is the universal gas constant and k∗c represents the partial rate of the direct chemical reaction.

In the case of solid constituents the chemical potentials are no longer scalar but tensorial quantities M± (see,
e.g., the derivations, discussions and references in Grinfeld (1991)) and can be represented by Eshelby energy-
momentum tensors (Eshelby stress tensors), divided by the referential mass densities ρ± of B±:

M± = f±I−
1

ρ±
F>± · S±, (7)

where f± are the specific Helmholtz free energy densities of B±, F is the deformation gradient, I is the identity
tensor and S is the first Piola-Kirchhoff stress tensor.

Recently, for a chemical reaction (1) between diffusive and solid constituents of arbitrary rheologies, the expression
of the chemical affinity tensor was obtained from the mass, energy and linear momentum balances and with the
use of the entropy inequality (Freidin (2013, 2015), see also Appendix in Freidin et al. (2014)). It was shown that
the entropy production takes the form

TP [S] = ANNωN , (8)

where ωN is the reaction rate at the oriented area element with the normal N, and ANN is the normal component
of the chemical affinity tensor A which in the quasistatic case is equal to

A = n−M−M− + n∗M∗µ∗I− n+M+M+, (9)

where µ∗ is the chemical potential of the diffusive constituent. The expression (9) was obtained earlier for nonlinear
elastic solid constituents in Freidin (2009). The tensorial nature of the chemical affinity was also pointed out in
Rusanov (2005, 2006).

After replacing the scalar chemical affinity A in Eq. (6) by the normal component of the affinity tensor ANN , the
reaction rate becomes:

ω = k∗c

[
1− exp

(
−ANN
RT

)]
. (10)

Then the normal component of the reaction front velocity can be found from the mass balance at the propagating
reaction front:

W =
n−M−
ρ−

ω. (11)
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In Freidin (2013); Freidin et al. (2014); Freidin (2015) a formula for the normal component of the affinity tensor
was presented after using a kinematic compatibility condition and traction continuity across the reaction front. If
we assume that the chemical potential of the diffusive constituent is

M∗µ∗ = η∗(T ) +RT ln
c

c∗
, (12)

where η∗(T ) is a temperature dependent chemical energy of the diffusive constituent and c∗ is a reference concen-
tration, and additionally neglect the input of the pressure of the diffusive constituent into stresses at the reaction
front, then in the case of small strains the normal component of the affinity tensor takes the form

ANN =
n−M−
ρ−

(
w−− g3w++ σ± : [[ε]]

)
+ n∗

(
RT ln

c

c∗
+ η∗

)
, (13)

where w± are the Helmholtz free energies of the solid constituents per unit volumes of their reference configura-
tions, g is the volume effect of the reaction, square brackets denote the jump of a value across the reaction front
[[φ]] = φ+−φ−, and ε± are the strains at the reaction front. Note that from the displacement and traction continuity
it follows that the stress σ± on any side of the reaction front can be substituted into (13).

The Cauchy stresses are related to the strains via Hooke’s law:

σ− = C− :ε−, σ+ = C+ : (ε+ − εch), (14)

where C± are the elasticity tensors of the constituents B±, εch = εchI, εch = (g− 1) is the transformation strain,
where I is the unit tensor. Then the Helmholtz free energy densities are

w−= η−(T ) +
1

2
ε− : C− : ε−, w+ = η+(T ) +

1

2

(
ε+ − εch

)
: C+ :

(
ε+− εch

)
, (15)

where η±(T ) are the free energy volume densities of the solid constituents in stress-free states (temperature de-
pendent chemical energies of the solid constituents), and the normal component of the chemical affinity tensor can
be written as:

ANN =
n−M−
ρ−

{
γ(T ) +

1

2
σ− : ε− −

1

2
σ+ : (ε+ − εch) + σ− : (ε+ − ε−)

}
+ n∗RT ln

c

c∗
, (16)

where the energy parameter γ is determined by chemical energies of the constituents as:

γ = η− − gη+ +
ρ−

n−M−
n∗η∗. (17)

2.2 Mechanical Problem and Representation ANN through the Strains or Stresses on One Side of the
Reaction Front

As mentioned above, for simplicity sake we neglect the influence of the pressure of the diffusive constituent on the
stress state. Then the equilibrium equation to find the stress state reads:

∇ · σ = 0, (18)

and the boundary conditions at the outer surface Γ of a body and conditions at the reaction front Γch are

u|Γ1
= u0, σ ·N|Γ2

= t0,

JuK|Γch
= 0, JσK ·N|Γch

= 0,
(19)

where Γ1 ∪ Γ2 = Γ , u0 and t0 are the prescribed displacement and traction, respectively.

From the displacement and traction continuity at the reaction front it follows that if the constitutive equations of
contacting materials have Hooke’s form (14) then the jumps of strains and stresses can be expressed as functions
of strains or stresses on one side of the reaction front (Kunin (1983)):

[[ε]] = −K∓ (N) :q±, [[σ]] = S∓ (N) :m±, (20)
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where the tensors q and m are linearly related to strains and stresses at the reaction front, and the coefficients of
the linear dependencies are the jumps in elasticity or compliance tensors, and transformation strain:

q± = [[C]] :ε± −C+ : εch, m± = [[B]] :σ± + εch,

K∓(N)={N⊗G∓(N)⊗N}s, G∓(N)=(N ·C∓ ·N)−1,

S∓(N) = C∓ : K∓(N) :C∓ −C∓, B± = C−1± ,

(21)

upper and lower scripts “+” and “−” in the relationships correspond to each other, G(N) is the Fourier transform
of Green’s tensor, the inverse of the acoustic tensor, s means symmetrization: Kijkl = N(iGj)(kNl).

From (16) and (20) it follows that the “mechanical” part of the normal component of the chemical affinity tensor
can be expressed through strains or stresses on one side of the front, similar to the expressions of the jump of the
normal component of the Eshelby stress tensor across the interface in the case of phase transformations (Kubanov
and Freidin (1988); Freidin (1989), see also Morozov and Freidin (1998); Freidin (2007)). If the chemical potential
of the diffusive constituent is given by (12) then from (16) and (20) it follows that

ANN =
n−M−
ρ−

{
γ+

1

2
εch : C+ : εch +

1

2
ε± : [[C]] : ε± − ε± : C+ : εch ± 1

2
q± : K∓ (N) : q±

}
+n∗RT ln

c

c∗
, (22)

=
n−M−
ρ−

{
γ − 1

2
σ± : [[B]] :σ± − σ± :εch ± 1

2
m± :S∓ (N) :m−±

}
+ n∗RT ln

c

c∗
. (23)

The above representations allow to compute ANN directly through strains or stresses without recalculation of
strains into stresses or vice versa.

2.3 Velocity of the Reaction Front

The chemical transformation involves two processes (Figure 2), bulk diffusion of the constituent B∗ through ma-
terial B+, and a chemical reaction between the constituents B∗ and B− at the reaction front Γch.

Γch

B−

B+

B∗

Γ+

Γ−

Figure 2: Schematic representation of the chemical transformation process

By the solid skeleton approach the tensors M± in the expression for the chemical affinity tensor do not depend on
the concentration c of the constituent B∗. Then the equilibrium concentration ceq of the diffusive constituent can
be introduced, such that for stresses acting at the reaction front we have

ANN (ceq) = n−M−M
−
NN + n∗M∗µ∗(ceq, T )− n+M+M

+
NN = 0, (24)

where M±NN = N ·M± ·N. This in turn leads to the representation of of the normal component of the chemical
through the difference of chemical potentials of the diffusive constituent calculated at the current and equilibrium
concentrations (Vilchevskaya and Freidin (2009, 2013), see also Freidin et al. (2014); Freidin (2015)):

ANN = n∗M∗ (µ∗(c, T )− µ∗(ceq, T )) , (25)

where the concentration c at the reaction front is obtained from the solution of the diffusion problem, and ceq is to
be found from Eq. (24).
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If the the assumption (12) is made about the chemical potential of the diffusive constituent, thenANN can be taken
in the form (22) or (23) at strains or stresses which act at the reaction front and, in turn, are to be found from the
solution of the mechanical problem. For example, if strains are found on one side of the reaction front, then

ceq = c∗ exp

(
−χ(ε, T )

RT

)
, (26)

where χ(ε, T ) is the “mechanical” part of ANN :

χ(ε, T ) =
n−M−
ρ−

(
γ(T ) +

1

2
εch : C+ : εch +

1

2
ε± : JCK : ε±

−ε± : C+ : εch ± 1

2
q± : K∓(N) : q±

)
.

(27)

If both concentrations, c and ceq, are found then

ANN = n∗RT ln
c

ceq
. (28)

Substituting this expression into Eq. (10) results in the expression for the reaction rate

ω = k∗c
{

1−
(ceq
c

)n∗}
. (29)

If n∗ = 1 then the reaction rate reads:
ω = k∗(c− ceq), (30)

and the normal component of the reaction front velocity can be found by substituting Eq. (30) into Eq. (11):

W =
n−M−
ρ−

k∗(c− ceq). (31)

2.4 Diffusion Problem

In order to find the concentration of the diffusive constituentB∗ one has to solve a diffusion problem. For simplicity
of further analytical solutions we assume a simple Fick’s law of diffusion. In particular the influence of mechanical
stresses on the diffusion flux is neglected. We also assume that diffusion rate is much higher then the chemical
reaction rate and consider stationary diffusion. Time affects the spatial distribution ofB∗ only through the position
of the reaction front. Then the corresponding diffusion equation can be written as the Laplace equation:

∆c = 0, (32)

which is to be solved in the domain v+ occupied by the material B+.

A boundary condition on the moving reaction front Γch follows from equalizing the consumption of the diffusive
constituent by the chemical reaction and its flux:

DN · ∇c+ n∗ω = 0 at Γch, (33)

where D is the diffusivity of B∗ through the material B+, and N is the normal to the reaction front outward to v+.

By (29), the condition (33) can be rewritten as

DN · ∇c+ n∗k∗c
{

1−
(ceq
c

)n∗}
= 0 at Γch. (34)

If n∗ = 1 then the condition at the reaction front takes the form

DN · ∇c+ k∗(c− ceq) = 0 at Γch. (35)

The second boundary condition for the diffusion problem concerns the supply at the outer surface Γ+ of the domain
v+ through which the diffusive constituent enters the domain. In this context a condition, which prescribes the flux
through the outer surface, is used:

DN · ∇c− α(c∗ − c) = 0 at Γ+, (36)

where α is the surface mass transfer coefficient, c∗ is the diffusive constituent solubility in the transformed material
B+, and the normal is outward to v+.
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2.5 A General Procedure of the Simulation of the Reaction Front Kinetics

In order to simulate reaction front kinetics one has to go through the following steps (Freidin et al. (2016)):

• Find the stresses and strains at the reaction front;

• Find the equilibrium concentration ceq from ANN = 0;

• Solve the diffusion problem and calculate the concentration c of the diffusive constituent at the reaction front
Γch;

• Calculate the normal component of the reaction front velocity W ;

• Assign an increment 4u = W∆t to each point of the reaction front in the normal direction and find a new
position of the front, where ∆t is the time increment;

• Repeat the procedure with a new position of the chemical reaction front.

3 Numerical Simulation

We consider a quasi-static model in the numerical simulation. In our approach we perform the aforementioned
steps and find a value of the normal component of reaction front velocity W . Then by choosing a reasonably small
time increment ∆t we apply a displacement 4u to every point of the reaction front. One of the key points in
order to simulate the propagation of the chemical front accurately is to guarantee a smooth transition of the normal
vector N at the reaction front. Traditional finite elements have kinks at the connecting nodes, which prohibits a
unique determination of the normal. This is one of the main reasons for implementing isogeometric analysis. By
using Non-Uniform Rational B-Splines (NURBS) as basis functions we calculate with high accuracy the direction
of the normal vector for each curve in the geometry model, and particularly for the chemical reaction front.

One should note that notation for letters describing curves, surfaces, basis functions etc. in the following section
was introduced by Hughes et al. (2005) and is generally accepted. All these letters are defined in the following
text and are related to the IGA background section only. They must not be confused with similar symbols in other
sections of this paper.

3.1 Isogeometric Analysis Background

As it was mentioned above isogeometric analysis was introduced by Hughes et al. (2005). The main idea is to
connect CAD (Computer Aided Design) and CAE (Computer Aided Engineering), and in particular FEA closely
in industrial engineering processes. This can be achieved by replacing standard basis functions of classical finite
elements by functions that are highly utilized in CAD software, such as B-splines and NURBS. An advantage of
this approach is that we use the exact CAD geometry directly in the calculations.

NURBS functions are built from B-splines, which are defined recursively in parameter space by the Cox-de Boor
recursion formula (Cox (1971), De Boor (1972)),

p = 0 : Ni,0(ξ) =

{
1, if ξi ≤ ξ < ξi+1

0, otherwise

p = 1, 2... : Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p−1 − ξ
ξi+p+1 − ξi+1

Ni,p−1(ξ),

(37)

where p is a polynomial order of the B-spline, ξi are members of the predefined knot vector Ξ. A linear combination
of B-spline basis functions gives a piecewise-polynomial B-spline curve,

C(ξ) =

n∑
i=1

Ni,p(ξ)Bi, (38)

where Bi are coordinates of control points. An example of second order basis functions and a two-element
quadratic B-spline curve is shown in Figure 3.
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Figure 3: B-spline second order basis functions (left) and two-element quadratic curve (right) for the knot vector
Ξ = {0, 0, 0, 0.5, 1, 1, 1}

In order to build a NURBS curve we have to introduce a weight function,

W (ξ) =

n∑
i=1

Ni,p(ξ)wi, (39)

where wi is the weight of ith control point Bi. Then the NURBS curve is defined by

C(ξ) =

n∑
i=1

Ni,p(ξ)wi
W (ξ)

Bi. (40)

We consider a 2D planar problem. Hence we use NURBS surfaces that are defined analogously by bases, Ni,p and
Mj,q , and weight functions, W , weights, wi,j , and a control net, Bi,j :

W (ξ, η) =

n∑
i=1

m∑
j=1

Ni,p(ξ)Mj,q(η)wi,j ,

S(ξ, η) =

n∑
i=1

m∑
j=1

Ni,p(ξ)Mj,q(η)wi,j
W (ξ, η)

Bi,j .

(41)

With these basis functions and by using a variational formulation (Hughes et al. (2005)) we can form the global
system equation of the standard form for a static problem:

Ku = f , (42)

where K is the global stiffness matrix, u stands for the unknown vector of global degrees of freedom and f denotes
the global force vector.

The implementation of the method described above was accomplished with the aid of the commercial finite-
element software Abaqus. In particular, we created user element subroutines in order to perform an isogeometric
analysis by using the standard finite-element analysis procedure as described in Khakalo and Niiranen (2017).
Furthermore, the commercial software Abaqus was used for solving this matrix problem and for postprocessing
the results.

3.2 Algorithm for Numerical Simulation of the Reaction Front Propagation

Following the sequence of steps listed in Section 2.5 we split the problem into three steps for each iteration, as
shown in Figure 4. Since we consider a linear elastic problem with a solid skeleton approach, the mechano-
chemical problem can be decoupled. In this particular case the elasticity and the diffusion problem are solved
separately in the numerical procedure, one after another. In addition, the linearity of the model makes it possible
to present all results in the reference configuration. In all following examples we assume the existence of some
thin initially transformed material layer. First, we solve an elasticity problem governed by Eq. (18) with boundary
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conditions (19) in order to find the stresses and strains at the reaction front. By substituting these values into the
expression for the normal component of the affinity tensor (22) or (23) we obtain an equilibrium concentration of
the diffusive constituent by Eq. (26).

Second, we solve the diffusion problem governed by the Laplace equation (32) with the boundary conditions (34)
and (35) where we substitute the value of ceq. As a result we get a concentration of the diffusive constituent at the
reaction front.

Finally, we substitute all relevant values found in the previous steps into the expression (31) for the normal compo-
nent of the reaction front velocity. In order to define the value of the interface front displacement in the numerical
procedure we solve Eq. (31) with an explicit integration scheme,

ρi+1 = ρi −
n−M−
ρ−

k∗ (c(ρi)− ceq(ρi)) ∆t, (43)

where the index i refers to the previous iteration and ∆t is a fixed value for the time increment. By choosing a
reasonably small time increment, whose value we define from the numerical experiment, we obtain a displacement
for the chemical front,

uch = ρi+1 − ρi, (44)

which we use as a boundary condition for the following problem. Since IGA uses displacements of control points
as degrees of freedom which, in general, do not have interpolatory properties, we cannot move the internal front
directly. In order to apply this displacement and re-mesh the domain appropriately, we solve the following (third)
problem of classic elasticity:

We consider two phases as separate domains (recall Figure 2), which have a common boundary Γch, and apply
movements uch on this boundary as non-homogeneous Dirichlet boundary conditions. This widespread technique
for imposing such kind of boundary conditions weakly is known as Nitsche’s method (see Juntunen and Stenberg
(2009) and references therein). We use a modification of this approach based on results for interfaces described in
Hansbo (2005). All other (external) boundaries remain unchanged due to strongly imposed homogeneous Dirichlet
boundary conditions.

Summarizing all of the above-mentioned information, as the result of the analysis on the third step, we get the new
coordinates of control points, which determine the geometrical position of the reaction front and provide a fine and
uniformly structured distribution of the mesh inside of the domain. We use this information as the initial model
configuration for the next iteration. We trace the position of the reaction front and manually stop the procedure
when the chemical reaction front intersects the boundary of the body. This is done in order to avoid a numerical
singularity caused by zero or negative area of the mesh element.

Considering that the coupled problem of mechanochemistry is split and solved as a set of a linear elastic and
of a diffusion problem, we refer to Hughes et al. (2005) for the elastic problem and to Manni et al. (2011) for
advection-diffusion problems as far as the convergence analysis of isogeometric methods is concerned. For IGA of
higher order elasticity problems, theoretical error estimate formulations and optimal convergence results we refer
to Niiranen et al. (2016); Niiranen and Niemi (2017); Niiranen et al. (2017a,b).

4 Examples

We consider a hollow cylinder undergoing a chemical reaction (Figure 5). To demonstrate how IGA works we
consider three plane-strain cases: a circular cylinder with a circular hole and circular reaction front, a circular
cylinder with a circular hole and elliptic initial reaction front, and a circular cylinder with an elliptic hole and
circular initial reaction front. Due to the symmetry of the problems we analyze only one quarter of the cylinder’s
cross-section and apply symmetry boundary conditions at the cut edges.

Material properties and model parameters are given in Table 1. Elastic properties are given for Si and lithiated Si
(Cui et al. (2012b)). Due to a lack of experimental data (to the best knowledge of the authors), model parameters
were kept within reasonable values according to Freidin et al. (2016). The parameter γ was varied in order to
obtain different effects for chemical front propagation.

The isogeometric model used for numerical simulation is shown in Figure 6. For the calculations we used NURBS
basis functions of p = 5th polynomial order and 128 IGA elements to represent the geometry.

81



Figure 4: Framework of the numerical procedure

Figure 5: Quarter of a hollow cylinder consisting of two materials

4.1 Axially Symmetric Problem for the Hollow Cylinder

Axially symmetric problems for chemical transformations in a solid cylinder and in an infinite body with a cylin-
drical hole were studied earlier analytically in Vilchevskaya and Freidin (2013). In the present paper a chemical
transformation of a hollow cylinder is considered with a reaction starting from the outer surface. In order to validate
the developed isogeometric procedure we compare the results of numerical simulation with an analytical solution
(see Appendix A). Inner and outer radii of the cylinder are a = 5 mm and b = 10 mm; the position of the initial
reaction front is a circle of the radius ρ = 9 mm.

The result of the numerical simulation of the reaction front propagation is presented in Figure 7 as reaction front
radius value versus number of iterations. First, note that an originally circular reaction front keeps its circular shape
during the propagation without any additional artificial constraints, and the result of the numerical simulation –
the dependence of the front radius ρ on time – agrees perfectly with the dependence obtained from the analytical
solution that follows from the integration of the equation

dρ

dt
= −n−M−

ρ−
k∗ (c(ρ)− ceq(ρ)) , (45)

where ceq depends on ρ through the dependence of strains at the front on ρ (see Appendix A).

82



Material “−” Material “+”
E, GPa 166 59
ν 0.22 0.22
εch – 0.08
D, mm2/s 10−1

k∗c∗, mol/mm2s 10−2

γ, J/mm3 50

Table 1: Material properties and parameters used in numerical simulation

Figure 6: Geometry, created by NURBS curves, which is used for numerical simulation

ρ

Figure 7: Reaction front kinetics for axially symmetric problem

Second, it can be seen that the front velocity decreases as the front propagates, and at a chosen set of parameters
the front almost stops when it reaches a certain radius. This means that the input of stresses in the affinity tensor
becomes compatible with the input of chemical energies, and even the diffusion, which continues delivering the
constituent B∗ to the front, cannot cope with this input because the diffusion flux also decreases. As a result
the driving force practically becomes zero and the chemical reaction is nearly blocked, in other words, chemical
equilibrium is approached. This result of numerical simulations corresponds to the analytical observation of the
case when equilibrium radius ρ∗ ∈ (a, b) exists such that at the reaction front χ = 0 and, thus, ceq(ρ∗) = c∗ and
c(ρ) becomes constant equal to c∗ (see Appendix A).

4.2 Hollow Cylinder with an Elliptic Initial Reaction Front

The next configuration considered is the same hollow cylinder, but with an initially elliptical reaction front with
semi-major axis Ra = 9 mm and semi-minor axis Rb = 8 mm (Figure 8, left). In order to avoid stability issues
near the equilibrium reaction front, we increase the parameter γ up to 150 J/mm3. In this case the equilibrium
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reaction front cannot be reached, because it is outside of the body.

The results of the numerical simulations of the reaction front propagation are presented in Figure 9 which shows
values for the semi-axes Ra and Rb versus the number of iterations. One can conclude that an initially elliptic
chemical reaction front tends to become circular during propagation in a cylinder with a circular hole in the center.

Ra

Rb

Figure 8: Initial (left) and final (right) position of the reaction front in hollow cylinder with an elliptic initial
reaction front

Ra
Rb

R
a
,

R
b

Figure 9: Reaction front kinetics in hollow cylinder with initially elliptic transformed layer

4.3 Cylinder with Elliptical Hole and Circular Initial Reaction Front

The last example is a cylinder with an elliptical hole. The initial reaction front is a circle of the radius ρ = 9 mm.
The ellipse has a semi-minor axis a1 = 2 mm and semi-major axis a2 = 5 mm (Figure 10, left). The parameter
γ = 150 J/mm3 was chosen as in the previous example. The results of the numerical simulation of the reaction
front propagation are presented in Figure 11, which shows values of the semi-axes Ra and Rb of the reaction front
versus the number of iterations.

5 Conclusions and Discussions

In this work we developed a numerical approach to studying the influence of stresses and strains on chemical
reaction front propagation. With the use of the concept of a chemical affinity tensor as a theoretical framework, we
developed a numerical procedure based on the IGA method, which, to our knowledge, was used for the first time
in elasticity problems with moving internal interfaces. We implemented IGA by using Abaqus subroutines. The
numerical procedure was validated by an analytical solution for the axially symmetric problem and its effectiveness
was confirmed by the approbation for other geometries.

Due to the linearity of the elastic problem and with the assumption of the solid skeleton approach we were able to
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Rb

a1

a2

Figure 10: Initial (left) and final (right) position of the reaction front in hollow cylinder with an elliptic hole and
circular initial reaction front

Ra
Rb

R
a
,

R
b

Figure 11: Reaction front kinetics in hollow cylinder with elliptic hole

decouple diffusion and elasticity problems and project all the solutions on the reference configuration. In order to
use the proposed procedure for nonlinear elasticity problems or to take a dependency of diffusion on stresses into
account, one has to introduce a distinction between the reference and the actual configuration in both analytical
and numerical models suitably.

The aforementioned assumptions gave us an opportunity to split the diffusion and the elastic problem also in the
numerical procedure and to represent the reaction front propagation in the reference configuration. Since in IGA
we cannot move the internal front directly, we used the Nitsche method to move the interface and introduced
one more elasticity problem to each iteration in the numerical procedure. Moving the interface is performed on
the meshed domain; this is why we had to trace its position and manually stop the numerical procedure when
the reaction front reaches one of the external boundaries in order to avoid numerical singularities due to negative
volume elements. If we wish to consider a fully reacted solid, we have to add a mesh topology changing procedure.
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A Reaction Front Propagation in a Hollow Cylinder. Analytical Solution

We consider the plane strain problem for the hollow cylindrical tube (Figure 5). With given internal and external
radii, a and b, respectively, we assume that the reaction front initial position between materials B+ and B− is a
cylindrical surface of the radius ρ. In a present problem we assume that the transformation strain is plane:

εch =
1

2
εch(er ⊗ er + eφ ⊗ eφ), (46)

where er and eφ are the unit vectors of the cylindrical coordinates, and solid constituents are linear elastic and
isotropic:

σ− = C− : ε−, σ+ = C+ : (ε+ − εch), (47)

C± = λ±I⊗ I + 2µ±
4I, (48)

where λ± and µ± are Lamé parameters, 4I is the forth rank unit tensor.

1.1 Elasticity Problem and Equilibrium Concentration

In order to find the stresses and strains at the reaction front we use the equilibrium equation, which in the case of
axial symmetry takes the form

dσr
dr

+
σr − σφ

r
= 0 (49)

with boundary conditions

σr(a) = 0, σr(b) = 0, Ju(ρ)K = 0, Jσr(ρ)K = 0. (50)

The radial displacement is given by the Lamé solution:

u±(r) = A±r +
B±
r
, (51)

and the strains can be found through

ε±r (r) =
du±(r)

dr
= A± −

B±
r2
, ε±φ (r) =

u±(r)

r
= A± +

B±
r2
. (52)

Four unknown constants A± and B± can be found from the boundary conditions (50):

B− =
εch

2

(
1

ρ2
+

µ−
λ− + µ−

1

a2
− µ−
µ+

b2(ρ2 − a2)

a2(ρ2 − b2)

(
1

ρ2
+

µ+

λ+ + µ+

1

b2

))−1
,

B+ =
µ−
µ+

b2(ρ2 − a2)

a2(ρ2 − b2)
B−,

A− =
µ−

λ− + µ−

B−
a2

,

A+ =
µ+

λ+ + µ+

B+

b2
+
εch

2
.

(53)

With material parameters as described in Section 4, Table 1, and for a = 5 mm, b = 10 mm and a reaction
front positioned at ρ = 9 mm, the distribution of stresses and strains along the radius are shown in Figure 12 and
Figure 13, respectively.

The strains at the reaction front are substituted into the expression (27) for χ. Then χ(ε+, T ) in the case of this
axially symmetric problem takes the form

χ(ε+, T ) =
n−M−
ρ−

(
γ(T ) +

1

2
(λ+ + µ+)(εch)2 +

1

2

(
[[λ]](ε+r + ε+φ )2 + 2[[µ]]((ε+r )2 + (ε+φ )2)

)
−(ε+r + ε+φ )εch(λ+ + µ+) +

1− 2ν−
4µ−(1− ν−)

(
[[λ]](ε+r + ε+φ ) + 2[[µ]]ε+r − (λ+ + µ+)εch

)2) (54)
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Figure 12: Distribution of stresses along the radius Figure 13: Distribution strains along the radius

with the strains which satisfy the equalities

ε+r + ε+φ = 2A+, (ε+r )2 + (ε+φ )2 = 2

(
A2

+ +
B2

+

ρ4

)
, (55)

and with the dependencies of A+ and B+ on ρ given by formulae (53). Then the equilibrium concentration ceq of
the diffusive constituent in dependence on the reaction front position ρ can be calculated by Eq. (26).

1.2 Diffusion Problem

Stationary diffusion is considered. The corresponding diffusion equation in the case of axial symmetry becomes:

d

dr

(
1

r

dc

dr

)
= 0, r ∈ [ρ, b]. (56)

Boundary and interface conditions according to the notation of Figure 5 can be written as follows (as described in
Section 2):

D
dc

dr

∣∣∣∣
r=b

− α(c∗ − c(b)) = 0, D
dc

dr

∣∣∣∣
r=ρ

− k∗ (c(ρ)− ceq(ρ)) = 0. (57)

In a cylindrical coordinate system the solution of the Laplace equation can be found as follows:

c(r) = C1 ln
(r
b

)
+ C2. (58)

The two unknown constants C1 and C2 can be found uniquely from the boundary conditions (57):

C1 =
ceq − c∗

ln
ρ

b
−D

(
1

k∗ρ
+

1

αb

) ,
C2 = c∗ −

D

αb
C1.

(59)

From (58), (59) it follows that

c(ρ) =
1

ln
ρ

b
−D

(
1

k∗ρ
+

1

αb

) {(ln
ρ

b
− D

αb

)
ceq(ρ)− D

k∗ρ
c∗

}
(60)

1.3 Reaction front kinetics

Since the normal component of the reaction front velocity is

W = −dρ

dt
, (61)

87



the reaction front kinetics – the dependence ρ(t) – can be obtained by integration of Eq. (31), which takes the
above mentioned form (45):

dρ

dt
= −n−M−

ρ−
k∗ (c(ρ)− ceq(ρ)) . (62)

where the dependencies c(ρ) and ceq(ρ) are already found.

It was shown earlier that the comparison of the values ceq and c∗ may be a tool for preliminary predictions of the
reaction front behavior (Freidin et al. (2014, 2015)). Indeed, from Eq. (62) it follows that the direct reaction can
go only if c(ρ) > ceq(ρ). Since c(b) < c∗ and c(b) ≥ c(ρ), the front can propagate only if ceq < c∗.

From (26) it follows that if χ(ε+(ρ), T ) = 0 at some ρ = ρ∗ ∈ (a, b) then ceq(ρ∗) = c∗ and, by (60), c(ρ∗) = c∗.
Then c(r) = c∗ r ∈ [ρ∗, b], and, by (62), the reaction front velocity W = 0. This case was shown by numerical
simulation in Figure 7.
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