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Abstract. In this paper, we have formulated a fully coupled thermo-elasto-visco-plastic-damage theory, which 
includes both kinematic and isotropic hardening, and takes also into account the diffusion of several species in 
metals. This theory is based on the thermodynamics of irreversible processes under small strain hypothesis. 
Each specie is supposed to diffuse in both lattice and trapping sites. In order to take correctly into account of 
different coupling effects, the diffusion fluxes vectors depend not only on the gradient of chemical potential, but 
also on the gradient of temperature (thermodiffusion) and on the gradient of pressure (barodiffusion). The heat 
flux also depends not only on the gradient of temperature, but also on the chemical potential gradient of each 
specie, according to the thermodynamics of irreversible processes. This model is implemented into 
Abaqus/Standard using the Uel user subroutine. An application is made for the diffusion of hydrogen in TA6V 
after welding. 
 
 
1 Introduction 
 
In various industrial sectors, some metal parts of more or less complex shape have to be carefully dimensioned to 
resist with time to thermo-mechanical stresses, but also to a more or less aggressive environment (aqueous or 
gaseous media). When a metal structure must withstand thermo-mechanical stresses over very long periods, the 
problem arises to take also into account the degradation of these mechanical properties by the presence of gas 
such as hydrogen, which can diffuse into the material and weaken it. The presence of oxygen could also be 
considered, which generally oxidizes its surface. The degradation of materials subjected to such aggressive 
environments put significant challenge for engineering. To achieve such a goal, it is necessary to model and 
predict at least the diffusion of hydrogen and/or oxygen, which generates indirectly a degradation of mechanical 
properties, in order to improve the reliability and predictivity of models. 
For hydrogen, its effects on mechanical response are now well known. Metals and alloys are degraded in 
presence of hydrogen (Bernstein, 1970; Oriani, 1978; Hirth, 1980; Delafosse and Magnin, 2001; Sofronis et al., 
2001). One of this phenomenon is known as hydrogen embrittlement. Embrittlement by hydrogen is explained 
by a great number of theories, but two of them are the most developed: hydrogen enhanced decohesion (HEDE) 
and hydrogen locally enhanced plasticity (HELP). On one hand, HEDE theory explains that interstitial hydrogen 
lowers the cohesive strength by dilatation of the atomic lattice leading to lower the fracture energy. This implies 
that hydrogen reduces the cohesion (Oriani and Josephic, 1974; Gerberich and Chen, 1975). On the other hand, 
HELP theory is characterized by atomic hydrogen that favors or enhances the mobility of dislocations through an 
elastic shielding effect in some specific crystallographic planes at the crack tip, causing locally a decrease of 
shear strength (Birnbaum and Sofronis, 1994; Lufrano et al., 1996; Lufrano et al., 1998; Sofronis et al., 2001). 
Several authors have proposed models for the study of hydrogen embrittlement near a crack tip (Lufrano et al., 
1998; Sofronis et al., 2001; Taha and Sofronis, 2001; Di Leo and Anand, 2013; Diaz et al., 2016; etc.). All these 
models consider two kinds of sites for hydrogen diffusion: normal interstitial lattice sites and microstructural 
trapping sites such as dislocation core, grain boundary, and interfaces between the matrix and various second-
phase particles. Most of these models use the postulate of Oriani (1970): “within a continuum-level material 
point, and for a specific range of trap binding energies, the microstructure affects the local distribution of 
hydrogen in a manner such that the population of hydrogen in trapping sites is always in equilibrium with the 
population associated with normal interstitial lattice sites”. 
The existing models, although allowing studying the effects of hydrogen diffusion on the mechanics and 
reciprocally, are not fully based on the thermodynamics of irreversible processes. The only model, which is 
based on the thermodynamics of irreversible processes, is the one of Di Leo et al. (2013). These authors have 
formulated a thermo-mechanically coupled-theory, which accounts for diffusion of hydrogen and large elastic-
plastic deformations of metals. Their theory accounts for the trapping of hydrogen within a fully 
thermodynamically-consistent framework. 
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In the present article, as Di Leo et al. (2013), we will base our developments on the thermodynamics of 
irreversible processes and develop a constitutive model taking into account the couplings between volume 
diffusion, chemical reactions at surface, and thermo-mechanical behavior including ductile damage. This model 
includes both kinematic and isotropic hardening in the material. At our knowledge, this is the first time that a 
coupled theory for species diffusion and thermo-elasto-visco-plastic model takes into account simultaneously 
ductile damage and both kinematic and isotropic hardenings. The model supposes the presence of several 
chemical species, such as hydrogen from the environment. In this case, the flux of the considered specie n may 
depend on the gradient of the chemical potentials of the others species m. 
The elasto-visco-plastic coupled model, taking into account different hardenings (isotropic and kinematic) in the 
material and strongly coupled to damage and to temperature has been widely studied (e.g. Saanouni et al., 2011; 
Saanouni, 2012). This model is built on a thermodynamics framework, with temperature as external state 
variable to fully couple mechanics with temperature effects. Ductile isotropic damage is also considered by the 
use of a Lemaitre and Chaboche model (Lemaitre and Chaboche, 1985). Therefore, we base our modeling on this 
elasto-visco-plastic coupled model and naturally extend it to diffusion of species. 
A model for hydrogen diffusion, which is the first stage of our study, is eventually implemented in 
Abaqus/Standard to study hydrogen diffusion in TA6V after welding and submitted to a long-time severe 
environment. 
 
 
2 Thermodynamics Modeling 
 
To develop the thermo-mechanical-damage and diffusion coupled model by taking into account the kinematic 
and isotropic hardenings, we base our theory on the thermodynamics of irreversible processes with state 
variables. We assume the small strain hypothesis. The model is an extension of the fully coupled thermo-elasto-
visco-plastic model including ductile damage and both kinematic and isotropic hardening (e.g. Lemaitre and 
Chaboche, 1985; Lemaitre, 1992; Saanouni et al., 2011; Saanouni, 2012; etc.). Therefore, we introduce two 
“external” state variables: (��,��) for total strain tensor and Cauchy stress tensor; (�, ��) for absolute temperature 
and specific entropy. We introduce also “internal” state variables extended to the diffusion case: (���,��) for 
elastic strain tensor and Cauchy stress tensor; (�⃗,��⃗ �) for heat flux vector and its conjugate force the temperature 
gradient; (��,��) for the back-strain and back-stress deviator tensors that describe the kinematic hardening; (r,�) 
for equivalent plastic driving strain and stress that describe the isotropic hardening; (�,�) for isotropic damage 
and its conjugate force, which  also corresponds to a driving damage through strain energy release rate 
(Lemaitre, 1992). 
For the diffusion, we suppose that several chemical species such as hydrogen can diffuse within the material.  
For a given specie n, it is assumed that it has two “levels” of diffusion: diffusion in normal interstitial lattice sites 
(L) and “diffusion” in trapping sites (T) at microstructural defects generated by plastic strain such as dislocation. 
We introduce therefore two concentrations (��� for lattice sites and ��� for trapping sites) and two chemical 
potentials (���  for lattice sites and ��� for trapping sites) for each specie n. Therefore, we introduce (���, ���) and 
(��� , ���) as internal state variables describing the diffusion phenomena of each specie i in the model for both 
lattice and trapping sites. 
 
2.1 Free Energy Specialization 
 
The state potential is classically taken as Helmholtz free energy � as a function of the different state variables, � = �(���,��, �,�,�, ��� , ���  ).  
To build this free energy, we suppose that elasticity-temperature coupling, elasticity-concentration coupling and 
damage-plasticity coupling are strong. The other couplings are supposed to be weak (meaning that only the 
coefficients depend on the different variables). We consider therefore the free energy as a sum of three energies: 
elastic, plastic and diffusion energy.  
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Note that the kind of damage to be modeled in this paper is ductile damage. The various defects responsible for 
this ductile damage are the inclusions, the dislocations stacks, the grain boundaries, the particles of additive 
elements in the alloy, and the dislocation obtained by heat treatment. 
In the case of small strain hypothesis and isotropic case, using scalar argument (representation theorem (Boehler 
1978)), we define: 
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Where ρ is the material density, λ and μ are the Lamé’s constants for isotropic elasticity, K the compressibility or 
bulk modulus (� = (3� + 2�) 3⁄ ), Cv the specific heat coefficient, T0 the reference temperature, Q and C are 
respectively the isotropic and kinematic hardening modulus. ϑ and β are respectively the thermal and the 
chemical expansion coefficient. As Di Leo and Anand (2013), in equation (2) we suppose that the amount of 
chemical expansion caused by the trapping specie is the same as the one caused by the lattice specie, hence the 
same β. NL and NT are respectively the number of moles of lattice and trapping sites per unit of reference volume,  ��� and ��� are respectively the occupancy fraction of the lattice and trapping sites and are directly related to its 
corresponding concentration by: ��� = ��� ��⁄  and ��� = ��� ��⁄ . 
Note that in equation (2), damage is introduced through the elastic strain, and we suppose that damage has no 
direct influence on the thermal and chemical state variables. Hence, damage appears in the expression (2) with a 
term (1-D) before the elastic strain energy density and 1 D−  before the thermal and chemical expansion 
terms.  
The free energy we define is therefore a generalization of the thermo-elasto-visco-plastic energy function with 
isotropic damage (Saanouni et al., 2011), extended to the diffusion. 
 
2.2 State Relations Specification 
 
Knowing the explicit expression of the Helmholtz free energy, we can explicit the “state relations”. 
In several works, the deformation due to diffusion is defined separately (e.g.: Sofronis et al., 2001; Díaz et al., 
2016; etc.). In the present work, based on the thermodynamics of irreversible processes, this deformation is 
directly included in the expression of Cauchy stress tensor as shows in equation (5): 
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The specific entropy takes now into account the diffusion effects as in equation (6): 
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Only back-stress and plastic driving stress are not explicitly function of diffusion. 
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Damage conjugate force expression also change to take into account the diffusion effects: 
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Contrarily to other works, which are not based on the thermodynamics of irreversible processes (ex: Sofronis et 
al., 2001; Díaz et al., 2016; etc.), the influence of the mechanical state on the diffusion of the specie n here is 
explicitly related to elastic strain tensor and not to Cauchy stress tensor through chemical potentials expressions 
(equations (10) and (11)). 
Chemical potential for lattice sites is for example: 
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Whereas chemical potential for trapping sites is: 
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2.3 Clausius-Duhem Dissipation Inequality 
 
In the following subsections, we analyze the dissipations. To take into account the diffusion effects, the heat flux �⃗ has also to be modified according to Vidal theory (Vidal et al., 1994):  �⃗ → �⃗ − ∑ (��� �⃗�� + ��� �⃗��)� , where �⃗�� and �⃗�� are respectively the diffusion flux in lattice and trapping sites. This 
modifies the internal energy balance and the entropy balance in these terms: 
Internal energy balance:  
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Entropy balance: 
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 with π being the body heat source. With these modifications in the internal energy balance and in the entropy 
balance, we obtain the generalized Clausius-Duhem dissipation inequality in the following form, with

e p= +& & &ε ε ε : 
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Using the state relations, the residual inequality resulting from the Clausius-Duhem dissipation inequality 
becomes the sum of mechanical, thermal and diffusion dissipation: 
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The different dissipations have now to be analyzed separately in order to derive the flux variables
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. 
 
2.4 Mechanical Equations 
 
For the mechanical dissipation, the derived equations from our model are those already described by many 
authors (e.g. Lemaitre, 1992; Saanouni et al., 1994).  We remind here some equations. For more information, the 
reader can refer to the specified references. 
Yield function � is defined together with plastic potential �, from which the evolution equations are derived: 
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Both the yield function and the plastic potential are closed convex functions of the stress-like variablesσ , X  

and R, with D and T playing the role of parameters (Saanouni et al., 1994; Saanouni and Chaboche, 2003). Yσ is 
the initial size of the Mises yield function, b and a are material coefficients describing the nonlinear isotropic and 
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kinematic hardening respectively, S, s, Y0 and β are material coefficients characterizing the ductile damage 
evolution (Lemaitre, 1992; Saanouni et al., 1994). Application of the generalized normality leads to constitutive 
equations: 
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where S  is the deviatoric part of the Cauchy stress tensor and the back-stress X  is a purely deviatoric stress 
tensor as mentioned above. n is a deviatoric tensor which stands for the outward normal to the yield surface in 
the tress space. It has been shown that the different constitutive equations are valid for both time dependent and 
time independent plasticity (Saanouni et al., 1994). The only difference is the form of the Lagrange multiplier &δ . 
For time dependent flow or visco-plasticity, the Lagrange multiplier is postulated equal to: 
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where kv and n characterize the material viscosity. For time independent plasticity the plastic multiplier is 
derived from the consistency condition (Saanouni et al., 1994; Saanouni and Chaboche, 2003). 
As stated previously at the beginning of this paragraph, in the present work, we take into account the diffusion of 
species in material. Indeed, hydrogen diffusion for example in metals or alloys induces softening (Sofronis et al., 
2001). To model this effect of hydrogen, these authors express the local flow stress as a function of the total 
concentration of hydrogen CH in metal and equivalent plastic strain ��: 
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With �� the initial yield stress in absence of hydrogen, �� the initial yield strain in absence of hydrogen, m the 
hardening exponent, with the parameter ξ that is supposed to be less than unity. 
In the present model, we suppose also that all species, which diffuse within the material have the same effects as 
hydrogen and we express Yσ as function of the total concentration of all species Ct: 
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With ��� the initial yield stress in absence of hydrogen. The plastic effect in equation (24) is already taken into 
account in our model by the plastic driving stress R. 
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2.5 Thermal Equations 
 
Thermal dissipation analysis allows expliciting the general heat equation governing the temperature evolution 
including the mechanical dissipation in visco-plastic flow, hardening, damage and diffusion dissipation. To 
establish this equation, on one hand, we express entropy as function of the different state variables. The time 
variation of entropy and the use of state relation of entropy (�� = −�� ��⁄ ) leads to: 
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On the other hand, using the first principle of thermodynamics (12), with � = � + ��� , we obtain: 
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Equality between equations (26) and (27) give the generalized heat equation in a thermo-elasto-inelastic-
damaging solid coupled with diffusion: 
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 being the specific heat coefficient. 

In order to take correctly into account all the multi-physical effects, the heat flux vector qr  must now also 
depends not only on the gradient of temperature, but also on the chemical potential gradient of each specie by 
application of the thermodynamics of irreversible processes (Philibert, 1995): 
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with ���� , ���� , ����  the so called kinetic coefficients of Onsager. 
Equation (28) will be used to derive the weak variational functional associated with the thermal problem. 
 
2.6 Diffusion Equations for Specie n 
 
In this paragraph, we analyze now the diffusion of a given specie n, in order to see the evolution of its different 
concentrations (in lattice and in trapping sites) in the material with time.  
Equations (10) and (11) give the expressions of chemical potentials for lattice and trapping sites respectively. 
The phenomenological model of volume diffusion is described in the present model not only as a function of the 
gradient of the chemical potentials, but also as a function of temperature (thermodiffusion) and pressure 
(barodiffusion) gradients. In the literature, the influence of these last gradients is often ignored because the 
simulations are of short duration. For the applications of our model, simulation time can be up to 100 years. In 
this case, it is then assumed that barodiffusion and thermodiffusion may have a significant influence. We define 
therefore for a given specie n (Philibert, 1995): 
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with i
nmL ( i i

nm mnL L= ), i
npL , i

nTL , i (= L, T) the kinetic coefficients of Onsager. 
These expressions assume that on one hand, there is a coupling between the species (i.e. the flux of the 
considered specie depends on the gradient of the chemical potential of the others species) and on the other hand 
that the gradient of interstitial chemical potential does not affect flux in trapping sites and reciprocally. The 
number of moles of lattice sites (NL) is supposed to be constant, while that of trapping sites (NT) is not constant. 
Replacing the gradient of chemical potentials in (30a) and (31a), we obtain: 
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With ���� = ������ ��� (1 − ��� )⁄  and ���� = ������ ��� (1 − ��� )⁄ , the diffusion coefficients in lattice and 
trapping sites respectively. To explicit the expressions of these coefficients, we base our calculations on the 
formulation and hypotheses of Philibert (1995), and we obtain:  
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Diffusion coefficients are so functions of temperature, concentration, partial molar volume Ω� and variation of 
the free energy of Gibbs ∆G. 
The local balance equation for each specie n can be written in a single equation as the sum of the two mass 
balances (mass balance in lattice and in trapping sites): 
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Based on the classical and widely-used Oriani’s postulate of ‘‘local equilibrium’’ between lattice and trapping 
(��� = ���), we model the concentration of trapping using, with ��� ≪ 1: 
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with ��� = exp (∆��� ��⁄ ), ∆��� = ���� − ����  the trapping bending energy of specie n.  According to other works 
(e.g. Krom et al., 1999), the number of moles of trapping sites depend on plastic strain (�� = ��(��)). In our 
model, we consider that damage act as trap for species. Thus the number of moles of trapping sites is function 
not only of plastic strain but also of damage (�� = ��(��,�)). With this definition and using equation (34), the 
evolution of ��� is then given by: 
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n n n n n n

L T p T
n n

dc c dc c N d N dD c dK dT
dt c dt N dt D dt K dT dt

 ∂ ∂ ∂ ∂ ∂
= + + + ∂ ∂ ∂ ∂ ∂ 

ε
ε

        (35) 

 
Replacing equation (35) in equation (33) and after some calculations, we obtain the evolution of ���: 
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( )*
2

1
. . 0

T T bL T p T
n n nT L Tn

n n np

cdc N d N dD dTD J J
dt dt D dt RT dt

− ∆ ∂ ∂
+ + − + ∇ + ∇ = ∂ ∂ 

r rr rθ µε
θ

ε
,      (36) 

 
with ( )* 1 1T T L

n n nD c c= + −θ . 

Equations (34) and (36) will be used to analyze the diffusion of specie n in material. 
 
2.7 Summary and Boundary Conditions 
 
In this section, we summarize the equations to be solved in our isotropic thermo-mechanical-damage and 
diffusion coupled model, assuming the small strain hypothesis. In our model, we solve three equations:  
Mechanical equation:  
 

ddiv f u+ =
r r

&&σ ρ ,               (37) 
 
where �⃗� is the imposed body force vector and ��⃗  is the displacement vector. 
Heat equation: 
 

( ) ( )
. .

: : . .

: :

p L L T T L L T T
i i i i i i i i

i i
v L T

e L Ti i
i i

i i

X R r YD q c c J J
C T

X R YT r D c c
T T T T T T

 − − + − ∇ − + + ∇ + +
=
  ∂ ∂ ∂ ∂ ∂ ∂

+ + + − + +  ∂ ∂ ∂ ∂ ∂ ∂ 

∑ ∑

∑ ∑

r r r rr&& & &
&

&& & & & &

σ ε α µ µ µ µ π

ρ
σ µ µε α

     (28) 
 
Specie diffusion equation: 
 

( )*
2

1
. . 0

T T bL T p T
n n nT L Tn

n n np

c Edc N d N dD dTD J J
dt dt D dt RT dt

− ∂ ∂
+ + − + ∇ + ∇ = ∂ ∂ 

r rr rθε
θ

ε
      (36) 

 
Boundary conditions. We add to the three previous equations the usual boundary conditions (Dirichlet and 
Neumann) to complete the theory. Let V be the volume of the body and S the boundary of the body. 
Mechanical boundary conditions: the boundaries Su, SF and Sc are parts of boundary S where the displacement ur , 
the traction forces t

r
and the contact forces ct

r
are prescribed: su u=

r r
on uS , .n t=

rrσ on FS and . cn t=
rrσ  on

cS ; with u F cS S S S= ∪ ∪ and u F cS S S∩ ∩ = ∅ . 
Thermal boundary conditions: ST is the part of the boundary S where the temperature T is imposed and Sq is the 
boundary where the heat flux vector qr  is prescribed: sT T= on TS and q q=

r
on qS ; with T qS S S= ∪ and

T qS S∩ = ∅ . 
Diffusion boundary conditions: ScL is the part of the boundary S where lattice concentration of specie n is 
imposed and SJL the part of the boundary S where diffusion flux in lattice sites of specie n is prescribed: 

L Le
n nc c= on cLS  and .L

n nJ n J=
r r

on JLS ; with
L Lc JS S S= ∪ and 

L Lc JS S∩ = ∅ . Only lattice concentration 
is our variable, therefore we don’t need boundary conditions for trapping. 
Considering the equilibrium between the dissolved specie n and its gas, which leads to equality between the 
different chemical potentials, we obtain the Le

nc value to be applied for Dirichlet boundary condition. This is 
different from Di Leo and Anand (2013) that have used in their model the lattice chemical potential as variable. 
So, these authors have preferentially used the lattice chemical potential as the imposed boundary condition. 
However, we consider in the present problem that it is physically more consistent to use concentration as 
variable. 
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3 Non-coupled Model: Hydrogen Diffusion in TA6V 
 
In this section, we present only diffusion model for hydrogen diffusion in TA6V metal. This is therefore a totally 
uncoupled model for diffusion. In this case, equation (36) becomes simply: 

* . . 0
L

L TH
H H

dcD J J
dt

+ ∇ + ∇ =
r rr r

                     (36bis) 

We have implemented equation (36bis) in the finite element software Abaqus/Standard, 2013, by writing a user 
element (Uel) with four isoparametric nodes (see Diamantopoulou et al. 2017). It is used to test hydrogen 
diffusion in TA6V metal after welding. The welding used two plates, each 50 mm long and 30 mm wide. After 
welding, a metal has 60 mm long and 50 mm wide, and has three zones: fused zone (FZ), heat affected zones 
(HAZ) and base metal (BM) who was not affected by welding. The schematic geometry and the mesh used are 
given on Figure 1. FZ length is taken to 7 mm and each HAZ length to 1 mm. The meshes are more refined in 
FZ, HAZ and near HAZ than for BM in order to describe all the phenomena occurring in the affected zones. The 
mesh element size is 1 mm x 1 mm for the FZ, 0.5 mm x 1 mm for the HAZ. For the BM, the mesh element size 
increases from 1 mm x 1mm to 1.5 mm x 1 mm from the HAZ. 
 

 
Figure 1. Schematic geometry (left) and mesh (right) 

 
We consider initial zero concentration of hydrogen for all the zones and constant diffusion coefficients. For 
boundary conditions, only Dirichlet conditions are used. ���� is calculated from equilibrium (2��� = ���� ) by 

2

0
0

exp
L L

Le H
H H

Nc p
RTp

 −
=  

 

µ
, which is imposed on the left side of metal, with 0p the reference pressure,

2Hp the dihydrogen pressure. At the right side of the metal, we impose zero concentration. Table 1 gives the 
different numerical values of the parameters. For BM, only trapping coefficient of diffusion value comes from 
Díaz et al. (2016); the others values come from Di Leo and Anand (2013). Some values are slightly modified for 
HAZ and FZ. The temperature is taken to 298K for all zones. According to Krom et al. (1999), the number of 
moles of trapping sites NT is assumed to increase with an increase in equivalent plastic strain �� according to this 
expression: ����� = 23.26 − 2.33exp (−5.5��). In the present case without plastic strain, we use ����� =20.93. 
 

Table 1 Diffusion properties 
Variables BM HAZ FZ ���  (m2/s) 1.27×10-8 1.43×10-8 1.59×10-8 ���  (m2/s) 4.53×10-18 4.70×10-18 5.22×10-18 
NL (mol/m3) 8.47×105 8.47×105 8.47×105 ∆��� (J/mol) -60×103 -60×103 -60×103 ����  (J/mol) 28.6×103 28.6×103 28.6×103 
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To validate the Uel subroutine, we use both Uel subroutine and the existing diffusion element of Abaqus named 
DC2D4 (which does not take into account the presence of traps) with the same diffusion properties (normal 
diffusion only) to simulate diffusion problem. Figure 2 shows the comparison of the distribution of normalized 
lattice hydrogen concentration (c�� c���⁄ ) obtained with Uel and with Abaqus at t = 0.5 and t = 1 year. So we can 
say with respect to the Figure 2 that the Uel subroutine is well implemented and thus valid this first stage of our 
model. 
 

 
Figure 2. Comparison Uel-Abaqus of normalized lattice hydrogen concentration at t = 0.5 year and t = 1 year 

Figure 3 shows the distribution of normalized lattice hydrogen concentration (��� ����⁄ ) to the left, and normalized 
trapping hydrogen concentration (��� ����⁄ ) to the right in the metal for different simulation times. Increase in the 
different normalized hydrogen concentrations is observed, which reflects hydrogen diffusion in metal. The 
increase of trapping hydrogen concentration is more than the increase in lattice hydrogen concentration. The 
same observations are made in existing models (e.g. Di Leo and Anand, 2013; Díaz et al., 2016). 
 

 
Figure 3. Normalized lattice hydrogen concentration ��� ����⁄   (left) and normalized trapping hydrogen 

concentration ��� ����⁄  (right) with time. 

To check if the diffusion in trapping sites has an effect on our results, we perform a second simulation taking ��� = 0 ⇒ �⃗�� = 0 for all zones. Figure 4 shows the comparison between ��� ����⁄  with �⃗��  and without �⃗��  to the 
left, and ��� ����⁄  with �⃗��  and without �⃗��  to the right. The comparison shows that at this stage of our simulations, �⃗��  has no influence on our results. 
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Figure 4. Normalized lattice hydrogen concentration ��� ����⁄   (left) and normalized trapping hydrogen 

concentration ��� ����⁄  (right) with and without �⃗��  for t = 0.5 year and t = 1 year. 

 
4 Conclusion and Perspectives 
 
A fully coupled thermo-elasto-visco-plastic and diffusion model has been presented from a theoretical point of 
view. This model includes the different hardenings (isotropic and kinematic) in the material, ductile damage and 
is based on the thermodynamics of irreversible processes with state variables and assuming the small strain 
hypothesis. This is the first time that a coupled theory for species diffusion and thermo-elasto-visco-plastic 
model takes into account ductile damage and both kinematic and isotropic hardenings. The different 
concentrations are introduced as internal variables, which allowed us obtaining chemical potentials as a 
derivative of state potential (taken equal to the Helmholtz specific free energy). Diffusion contribution is taken 
into account through internal energy balance and entropy balance. Therefore a generalized Clausius-Duhem 
dissipation inequality is proposed. 
The uncoupled model for hydrogen diffusion showed the increase in both lattice and trapping hydrogen 
concentrations. But the increase in trapping hydrogen concentration is more important than the increase in lattice 
hydrogen concentration. The first study on the influence of trapping diffusion coefficient (trapping flux) has 
shown that, at this stage, this coefficient does not influence significantly the numerical results. 
In future prospects, we will validate the fully coupled model with only hydrogen as diffusing specie and with 
hydrogen and oxygen as diffusing species. After validation of the model, numerical simulations will be made as 
well as studies of sensibility for some parameters of the model. 
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