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Discrete-Continuum Transition: A Discussion of the Continuum Limit

K. Schulz, S. Schmitt

In recent years, the striving towards a proper understanding of plastic deformation on different scales led to a
substantial progress in the development of advanced dislocation based material models. In this paper the limits of
a continuum representation of dislocation dynamics in the discrete to continuous transition regime are discussed.
Using 2d discrete dislocation dynamic simulations, a systematic investigation of ensemble averages of a bounded
structure is presented considering a varying number of dislocations. Based on the results, the question, how we
can evaluate the conditions under which a discrete system behaves similarly to a homogenized continuum system,
is discussed.

1 Introduction

Several dislocation based continuum models have been introduced in the last decades, e.g. (Acharya, 2001;
Sedláček et al., 2003; Groma, 1997; Groma et al., 2003; El-Azab, 2000; Hochrainer et al., 2014). Applying
different approaches for the kinematic assumptions, all models depend on an adequate homogenization of internal
stress fields induced by the dislocation microstructure. Different stress-based formulations have been introduced
considering e.g. repellent and attractive stresses (Groma et al., 2003; Schulz et al., 2014; Schmitt et al., 2015;
Hochrainer, 2016), dipole formation and dissolution (Reuber et al. (2014); Dickel et al. (2014b); Schulz et al.
(2017)), or interactions between different slip systems (Franciosi and Zaoui, 1982; Devincre et al., 2008; Devincre
and Gatti, 2015; Zhu et al., 2016). However, the limits of the different continuum formulations in the discrete-
continuous transition regime have not been investigated yet and are therefore almost unknown.

The results of dislocation based continuum models are often validated by the comparison with discrete dislocation
dynamics (DDD) data. In the discrete models, see e.g. (Kubin and Canova, 1992; Fivel et al., 1997; Weygand
et al., 2002), each dislocation line is resolved including the corresponding stress field. Thus, the stress interaction
in the dislocation microstructure is an outcome of a simulation without any homogenization or phenomenological
parameter. In general, discrete simulations are - in the considered regimes - highly dependent on the initial dis-
location configuration. Therefore, a common procedure is to average the results of several statistically equivalent
simulations by ensemble averaging in order to get robust mean values.

In contrast, a continuum model aims to represent a regime characterized by a ’continuum limit’, in which a single
computation is sufficient to comprise all significant details of a structure. This is the case, if

(I) the considered system of discrete simulations show the same results as continuum theories (Cleveringa et al.
(1997))

(II) the simulations show a weak dependency on the initial dislocation distribution (Zaiser (2015)).

Without further analyses, it is often assumed that these conditions are fulfilled if a system contains a sufficiently
high number of dislocations. In addition, a consideration of stress correlation in dislocation systems is mostly
given for periodic structures, e.g. (Groma et al., 2003; Zaiser, 2015), neglecting any internal boundaries or hetero-
geneities. In this paper, we analyze 2d DDD simulations by a systematic investigation of ensemble averages. Using
pair correlations, we study a bounded structure considering a varying number of dislocations and compare DDD
data with results of two homogenized continuum formulations. We show, that the determination of the continuum
limit is not a trivial task and highly dependent on the structure of the system, e.g. the influence of boundaries on
the one hand and the particular stress homogenization of a dislocation based continuum model on the other hand.
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2 Continuum Framework and DDD Method

We use a 2d model of discrete dislocation dynamics which is almost identical to that described in Groma et al.
(2003). We consider a single slip system of parallel edge dislocations. The dislocations with the position xi(xi, zi)
and the orientation s = ±1 are free to move in x-direction. Impenetrable boundaries in x-direction are defined
by setting the increment ∆xi = 0 if a dislocation face the boundary with a velocity pointing out of the bounded
domain. The constitutive law is defined by the overdamped dislocation motion as

vi = bB−1siτ = bB−1si(τext + τsc) (1)

with the magnitude of the Burger’s vector b and the drag coefficient B. The resolved shear stress τ acting on a
dislocation is composed of the externally applied stress τext and the self-consistent stress field τsc representing
internal stress interaction among the dislocations. Considering the stress field of a single edge dislocation, see
Hirth and Lothe (1982), τsc is given as

τsc =

N∑
i 6=j

sj
µb

2π(1− ν)

(xi − xj)((xi − xj)2 − (zi − zj)2)

((xi − xj)2 + (zi − zj)2)2
(2)

with the shear modulus µ and the Poisson’s ratio ν. Due to the stress interaction, a bounded system of dislocations
randomly placed over the area will relax towards a converged state.
In order to derive a continuous description out of discrete dislocation dynamics simulation, we consider ensemble
averages over a number of statistically equivalent microstructures. We assume, that the average of the number of
realizations m converges for m→∞. For a discrete simulation with n dislocations {si,xi}i=1,...,n, the 1-particle
distribution function can be written as

ρd1(s,x) =

〈
n∑
i=1

δssiδ(x− xi)

〉
. (3)

The 2-particle distribution function considering dislocations of the signs s, s′ ∈ {+,−} is given as

ρd2(s, s′,x,x′) =

〈
n∑
i=1

n∑
j 6=i

δssiδs′sjδ(x− xi)δ(x
′ − xj)

〉
. (4)

Here, δ denotes the Dirac functional and 〈·〉 denotes the integration over the given averaging volume around x.
Considering the k-particle density functions ρdk of m statistically equivalent simulation, the ensemble average can
then be defined as

ρk(s1, ..., sk,x1, ...,xk) =
1

m

m∑
i=1

ρdk(s1, ..., sk,x1, ...,xk). (5)

The evolution equations (1) can equivalently be formulated for the N -particle distribution function (for N dislo-
cations) and a hierarchy of evolution equations can be deduced for any lower order particle distribution function.
The hierarchy of particle density functions can be closed at second order according to Groma (1997) and Zaiser
et al. (2001) by the introduction of the dislocation-dislocation or pair correlation function dss′ . Thus, the 2-particle
distribution function can be defined by

ρ2(s, s′,x,x′) = ρ1(s,x)ρ1(s′,x′)(1 + dss′(x,x
′)). (6)

Since the averaging of a homogeneous distribution of dislocations on a bounded domain does not lead to a van-
ishing pair correlation function, the influence of the bounded domain is characterized analytically by a relative
1-particle density function. The relative 1-particle density function is given for homogeneous dislocation distribu-
tions on a bounded domain as

ρh1 (x) =
ρt

∫
IΩ(x− x′)dx′∫

Ω
1dx′

with IΩ =

{
1 for x ∈ Ω

0 else.
(7)

The relative correlation function, which is equivalent to a screened correlation function, see Ispanovity et al. (2008),

127



can then be written as

dss′(x) =

{
ρ2(s,s′,x)

ρh1 (0)ρh1 (x′)
− 1 for 0 < x < L and 0 < z < H

0 else
. (8)

For τext = 0, it holds d++ = d−− and d+− = d−+.
In order to compare the results derived by discrete simulations with dislocation based continuum models, the
discrete results have to be ensemble averaged. The continuum quantities of the geometrically necessary dislocation
(GND) densities of positive dislocations κ+ and negative dislocations κ− as well as the total dislocation density
ρ including also statistically stored dislocation (SSD) density can be derived by the ensemble average considering
the same spacial resolution in the discrete and the continuum realization of the structure. Here, the discrimination
of the density into GND and SSD density is dependent on the resolution. Thus, for an infinite fine resolution the
transition to the discrete picture is given.
The considered 2d continuum model as proposed in Groma et al. (2003) or derived as 2d simplification from a 3D
model according to Hochrainer et al. (2014) and Schulz et al. (2014) is defined by the evolution equations

∂tρ = −∂x(κv) (9)
∂tκ = −∂x(ρv). (10)

The set of equations is closed by the assumption, that the velocity v of a given dislocation microstructure is known
or determined by the dislocation microstructure. In analogy to the discrete formulation in equation (1), we assume,
that the velocity can be defined dependent on the external and the internal stress contributions as v = τext+ τint in
the continuum approach. For the representation of the homogenized internal stress interactions contained in τint,
we will compare the two different formulations

vnfc = bB−1(τes + τnfc) (11)
vb = bB−1(τes + τb) (12)

including the backstress τb with the free parameter D according to Groma et al. (2003) and the nearfield correction
term τnfc according to Schmitt et al. (2015). The latter is based on the consideration of stress correlations in Dickel
et al. (2014a) incorporating a constant c and the resolution h∗ of the dislocation density. The terms are given as

τnfc = − cµb

(1− ν)
·

 h∗∂xκ(x) if Nel(x) ≤ 1

ρ(x)−1∂xκ(x) else
, τb = −Dµb · ρ(x)−1∂xκ(x) . (13)

If it holds Nel(x) ≤ 1 for the number of dislocations inside an averaging element Nel(x), the discrete near field
correction is recovered up to a constant. If more than one dislocation is contained within the averaging volume, the
formulation is identical to τb. τes denotes a numerical approximation of the self-consistent stress field τsc limited
by the underlying resolution.

3 Bounded Slip Channel

We consider a bounded slip channel with the width L and the height H embedded into an infinite elastic medium,
see Fig.1. A varying number of discrete positive edge dislocations is randomly distributed over the channel and
free to move in x-direction. The boundaries at x = 0 and x = L are impenetrable to dislocations, the external stress
is given as τext = 0. Considering different numbers of dislocations homogeneously distributed over the system,
we let the system relax. For a number of n = 400 dislocations, the results of the 1-particle density averaged
over m = 200 discrete simulations is shown in Fig.2. Here, the 1-particle density according to equation (3) is
symmetrized along the x- and z-axis and normalized with respect to the average total dislocation density ρt. Due
to the interaction of the dislocation stress fields, approximately 50% of all dislocations are located close to the
boundaries in the converged state and an internal structure can be observed.
In order to systematically analyze the impact of the number of dislocations (which is equivalent to the change of the
initial dislocation density from a continuum point of view) on the dislocation structure in the system and the impact
of the number of simulations on the ensemble averaging, we repeat the computations for different numbers of
dislocations in the system while keeping the product of the number of dislocations n and the number of simulations
m constant as n ·m = 20000. The ensemble averages of the discrete simulations for n = 25, 100, 400, 800 are
shown in Fig.3. Due to the symmetry, only a quarter of the different configurations are shown. The results are
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Figure 1: Bounded slip channel embedded into infinite elastic medium

Figure 2: Ensemble average of the 1-Particle density of the slip channel with n=400 positive edge dislocations over
m=200 discrete simulations. Due to the symmetry, only half of the system is shown.

symmetrized again along the x- and z-axis and normalized with respect to the average total dislocation density.
The results show the change in the structural formation in the dislocation microstructure due to the impact of the
boundaries. The finite slip system induces a dislocation free region close to the boundary which is increasing with
increasing numbers of dislocations in the system. Also the structure observable inside the channel becomes more
pronounced for larger numbers of dislocations.
In the following, we analyze the structure formation in the inner part of the system by considering the relative
correlation function d++ according to equation (8) for the systems of n = 25 and n = 800 dislocations, see Fig. 4.
Since the calculation of the correlation function requires a sufficiently homogeneous distribution of dislocations,
just the inner 80% of the channel are considered by the effective measures (Ωeff = [Leff ×Heff] = [0.1L, 0.9L]×
[0.1H, 0.9H]). This also yields a reduced average number of dislocations neff. Here, the correlation function is
computed considering the radius 0 ≤ r ≤ 3.5 normalized by Heff. The average dislocation spacing for each
structure is depicted by a circular line. The results show a structure formation for both considered configurations,
which is especially interesting since the structure formation for low numbers of dislocations was not visible in the
1-particle density in Fig. 3.
Based on these findings, we compare the configurations of n = 25 and n = 800 dislocations by applying the
projection of the correlation function in x-direction which is derived by integration in y-direction dp++(x) as

dp++(x) =
1

y0

∫ y0

0

d++(r(x, y)dy. (14)

Here, y0 = 0.25Heff is chosen. The results are shown in Fig. 5(left). An evaluation of the Fourier transform
of dp++(x) in the range of [1.5Heff, 3.0Heff], see Fig. 5(right), shows a similar signature for both systems with a
maximal amplitude ∆dp++(x) at a wave length λstruct = 0.374Heff independent of the number of dislocations. For
the system with neff = 9, a large amplitude is also observed for a wave length around λ = Heff.

4 Constitutive Modeling in the Discrete-continuum Transition

The analysis of the dislocation correlation function shows that a structure formation induced by the bounds of
the system is not limited to a small region at the boundary but is also observed in the inner part of the system.
Internal dislocation structures are already present for low numbers of dislocations in the system and become more
pronounced at the boundary with an increasing dislocation content. Thus, it has to be investigated whether a
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Figure 3: Ensemble average of the 1-particle density for a varying number of dislocations and varying number of
simulations. The product n ·m = const. for all representations. Due the symmetry of the system, just a quarter of
each configuration is shown.

Figure 4: Comparison of the 2-particle-correlation functions d++ for the systems of n = 25 and n = 800 disloca-
tions marked by the effective number of dislocations neff. The average dislocation spacing is denoted by the light
half circles in the two systems, respectively. Due to the symmetry, just half of each system is shown.

homogenized continuum model in the discrete-continuum transition regime shows the ability to represent the char-
acteristic internal dislocation microstructure of a bounded system.
We compare two approaches to incorporate dislocation short range interaction in the continuum constitutive for-
mulations according to equation (11) and (12), which is considered in the dislocation based continuum model given
by the evolution equations defined in (9 ,10). Here, the backstress parameter needed for τb is chosen as D = 0.8.
We use the ensemble averages of the discrete dislocation dynamics results for n ·m = 20000 simulations as input
configuration to the constitutive formulations and compute the residual fluxes fresiduum of the continuum represen-
tations given as

fresiduum(ρ+, τlocal) =
ρ+

ρt

τes(ρ+) + τlocal(ρ+)

max|τes(ρt)|
. (15)

τlokal denotes herein τnfc or τb according to equation (11) and (12), respectively. The comparison of the residual
fluxes for different discretization sizes of the discrete as well as the continuum system is given in Fig. 6 for
n = 400 dislocations. The resolution is defined by hk = 2−kH . The results show the different ability of the
continuum approaches to resolve the characteristic internal structure formation. For low resolutions, both models
show similar results with moderate residual fluxes. Here, the main issue is the reproduction of the dislocation
free zone behind a dislocation pile-up close to the boundary. Low residual fluxes are observed in the inner part
of the system. However, the discretization of the system - in DDD as well as in the continuum - by just four
elements over the height does not allow for the resolution of the internal structural details, since the edge length
of an averaging volume is approximately the same as the internal structural length. For higher resolution the
internal structures are more and more pronounced in the discrete data, which is captured by the approach using τnfc
resulting in a homogeneous residual flux. With the approach using τb the residual flux fluctuates as the resolution
increases. Further comparisons of the residual fluxes for different amounts of dislocations in the system (n = 25
and n = 400) are given in the Appendix. However, we want to remark, that the applied backstress model of Groma
et al. (2003) is derived by the consideration of correlation functions for κ/ρ << 1. Here, the results show that the
model yields good results if the general density in an averaging element is high enough. An extension of the model
to κ/ρ = 1 by the consideration of the approach proposed in Groma et al. (2015) including a surface energy based
boundary representation is an outstanding task.
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Figure 5: Projected correlation function dp++ of the 2-particle density (left) and the corresponding Fourier trans-
form in the range of [1.5Heff, 3.0Heff] (right).

Figure 6: Comparison of the residual flux for different constitutive laws of dislocation interaction with respect to
the ensemble average of n=100 dislocations for three different spacial discretization (depicted in the lower right
edge of each figure).

5 Conclusion

A large number of 2d discrete dislocation dynamics simulations has been evaluated in order to compare ensemble
averages for a varying number of dislocations and a varying number of simulations. A Fourier analysis was
used to characterize the structural influence due to the strong dislocation walls at the boundaries. While the
structural wave length λstruct = 0.374µm can be observed macroscopically for n = 800 dislocations, it was
surprising to also find it in the correlation function of n = 25 dislocations. Discussing the question, what features
define a continuum limit for the transition regime from a discrete to a continuum model, it has been shown, that
the internal length scale governed by the number of dislocations competes against the structural length scale of
the system. In situations where the internal length scale is small compared to the structural length scale, the
continuum models can be applied without special treatment of the boundary conditions. In situations where the
internal length scale dominates the system (n small) a model as e.g. proposed in Groma et al. (2015) is needed
to capture the dominating influence of the dislocation-dislocation correlation functions. The results show, that
the impact of structural boundaries can not be reduced to a small boundary layer, but rather has a significant
influence on the dislocation microstructure of the entire system. A comparison of the DDD data with a continuum
formulation incorporating two variants for the modeling of homogenized dislocation stress fields demonstrates
that the continuum approaches proposed in Schmitt et al. (2015) is a generalization of the continuum formulation
of Groma et al. (2003), since it is able to represent the averaged dislocation system of GND densities also for
ρ → 0.Furthermore, it can be concluded, that the knowledge about the characteristic length scales of the internal
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structure can be assumed to be a precondition to be able to conduct reliable continuum simulations with adequate
spatial resolution.
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A Appendix

The comparison of the residual fluxes of the continuum model with respect to the ensemble averages of the con-
verged DDD configurations for different discretization sizes is given in Fig. 7 and Fig. 8 for n = 400 and n = 25
dislocations, respectively.

Figure 7: As Fig. 6 but with n=400 dislocation

Figure 8: As Fig. 6 but with n=25 dislocation
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