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Modeling of Aging Effects in a Zinc Die Casting Alloy

M. A. Martinez Page, S. Hartmann

Zinc die casting alloys, also known as zamak, are widely used to produce components of cars and machines. Be-
cause of their low melting point and their ability to produce very accurate components, these alloys are considered
to be the best castable of all commonly used alloys. This advantage is accompanied by a pronounced rate de-
pendence and aging. In this work, we investigate these effects at room temperature for the zinc die casting alloy
zamak 5 using tension, compression and torsion experiments. A three-dimensional constitutive model of small
strain viscoplasticity is proposed, in which the aging is included by an internal variable. The model is calibrated
to the experimental data. In this point, the partitioned structure of the model plays an important role. Moreover,
the stress algorithm of the model is shown and finite element simulations are carried out to show the behavior of
the model.

1 Introduction

Aging denotes the development of the material properties and mechanical response due to microstructural changes
in the course of time. These changes are associated with precipitation of alloying elements or phases with low sol-
ubility, phase decomposition, and changes in the crystallographic structure. An increment in temperature generates
changes in solid solubility, which can accelerate the process, see, for example, (Callister and Rethwisch, 2016).
In polymers, aging can also be associated to physical or chemical changes, see (Lion and Johlitz, 2012) and the
literature cited therein. If it is not considered, aging effects can imply an overestimation (or underestimation) of
the mechanical response of a component part, which can conduce to its failure.

Zamak alloys consist of zinc as the basis metal, a constant amount of 4% aluminum, and, furthermore, magnesium
and copper as alloying elements. They are commonly used in components for cars and machines because of
its castability, its mechanical properties, and its economical price. Because of its low melting point of380 ◦C,
zamak undergoes a strong aging process even at room temperature. From the point of view of Material Science,
there are some investigations which describe microstructural changes during aging in zinc alloys. Studies on zinc-
aluminum alloys can be found in (Murray, 1983). In (Johnen, 1981), the die-casting process is explained and
some general technical information about zinc die-cast alloys is given. Additionally, it is mentioned that zinc die-
cast alloys tend to show a reduction in their dimensions in the course of time (shrinkage). There are also studies
focusing on other aspects such as the creep behavior, the aging, and the consequent volume changes as well as
the inter-crystalline corrosion. In the works of Gebhard (1940, 1942), the structure and different phases of the
Zn-Al-Cu alloys as well as their volume changes are investigated. Gebhard (1941) treated the decomposition of
the aluminum-richβ-phase in Zn-Al alloys. According to Gebhard (1942) and Kallien and Busse (2009), there
are different mechanisms during the aging process that produce volume changes. On one hand, there are phase
transformations such as the decomposition of the fccβ-crystal phase, the solid phase transformation of theβ-,
zinc-richη-, copper-richε- and the ternary compound T-phases, and the precipitation of some elements that were
diluted in the mix-crystals. On the other hand, there are volume changes in alloys which are in theη-T-β′-area
because of changes in the concentration. Additional metastable phases are recognized in (Zhu, 2001; Zhu et al.,
2002, 2003) – while a general rule of phase decomposition for Zn-Al based alloys is given in (Zhu, 2004). In
(Kallien and Busse, 2009) and (Leis and Kallien, 2011), different zamak alloys are investigated, including the
analysis of their aging mechanisms. Moreover, the influence of the temperature, the natural and artificial aging,
the thickness of the specimens and the casting conditions on several mechanical parameters are shown.

The modeling of aging was treated in several works. The definition of aging as exposed by Krempl (1979) is
adopted by Marquis and Lemaitre (1988). Aging is regarded as a modification of the micro-structure in such a way
that the same loading process – performed in the same environment at different times (or ages of the material) –
will lead to different mechanical responses. In (Marquis and Lemaitre, 1988) a model to couple elasto-plasticity,
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damage, and aging for small deformations is proposed. Marquis and Costa Mattos (1991) provided a model
for plasticity and aging. In both models, the effects of aging are represented by a new internal variable. Carol
and Bazant (1993) suggested a model of viscoelasticity to account for aging of concrete in terms of an integral
involving the relaxation function of the non-aging constituent and the variable volume fraction of the solidified
constituent. A three-dimensional multisurface viscoplasticity model, which is proposed by (Meschke, 1996) is
able to represent the time-dependent behavior of shotcrete. In that work, the aging is modeled by an additional
part of the strain tensor. Bazant and Huet (1999) suggested an integral form for aging viscoelasticity without
internal variables. Moreover, there are models for polymers, such as in (Maghous and Creus, 2003), where a
homogenized thermoviscoelasticity model with aging is shown. Johlitz (2012) distinguishes between chemical
and physical aging in polymers and develops a model for small deformations in which the aging is represented
by internal variables as well. In (Johlitz and Lion, 2013; Johlitz and Diercks, 2014; Lion and Johlitz, 2012), a
chemo-thermochemical and a chemical aging model for elastomers for small deformations is proposed and Dippel
et al. (2014) proposed a solution for polymer bonds at large deformations. Most of these models are not able to
describe volume changes due to aging.

In this work, we investigate the rate-dependent effects and the influence of aging in a zinc die casting alloy.
The article is divided into five main sections. Firstly, experiments in thin-walled cylindrical tubes of zamak 5 at
different strain rates and aging times are performed to investigate the changes in the mechanical response due to
aging stage. Based on these experiments, a model of viscoplasticity is developed, where the aging is described
with an aging variables. Subsequently, the model is calibrated to the experimental data. For calibrating the aging
variable, measurements from Gebhard (1942) are taken into account as well. Finally, the stress algorithm of the
model is shown, and finite element simulations are performed, where the rate dependence and the aging effect are
shown.

2 Experimental Work

The characterization of the mechanical response of zamak 5 (ZnAl4Cu1) is carried out with tension, compression
and torsion tests. The chosen specimen’s geometry is a hollow cylinder with an inner radius ofRi = 13mm,
a wall thickness ofd = 2mm, and a length ofL = 90mm. For the treatment of the experimental data, it is
reasonable to assume that the tube is thin-walled and that the stress state of the specimen is homogeneous in the
middle region. The deformation and stress in tension and compression tests are calculated from the measurements
by ε = (Le − L0)/L0 andσ = F/A, whereL0 = 20mm andLe are the initial and current length of the applied
extensometer, which was placed in the middle of the specimen. The measured force is defined byF and the initial
cross sectionA = π(R2

o − R2
i ), with the outer radiusRo = Ri + d. For the torsion experiments, in case of a

thin-walled tube, the shear strainγ and shear stressτ can be calculated byγ = Rm(tan ϕ)/L ≈ (ϕRm)/L and
τ = MT /(2dAm), with the mean radiusRm = Ri + d/2 and the length of the specimenL between the testing
machine clemps.ϕ is the rotation angle,MT the measured torque, andAm = πR2

m is the area of the circle with
the radiusRm.

The investigations of aging draw on natural aging. In order to investigate the effect of aging on the mechanical
response, first, specimens without aging were tested, and, subsequently, tests were performed at three different
aging times of 3, 6 and 12 months. In order to obtain ”correct” ages, the specimens were stored in a freezer at the
temperature of−24 ◦C in order to prevent undesired aging of the material. At this temperature, the material would
need100 years to age, see (Kallien and Busse, 2009).

2.1 Viscoplastic Behavior

The first investigations concentrate on the rate dependence. The goal is to characterize of the main behavior of the
material and are carried out with unaged specimens. In a second step, the influence of aging is investigated.

2.1.1 Rate-dependence

First, the rate-dependent material behavior is investigated. To this end, tension, compression and torsion tests at
four different strain rates were carried out. These strain rates differ from each other in one order of magnitude.
We choseε̇k = 3.3 × 10−ks−1, k = 4, 5, 6, 7 for tension and compression tests. For the shear tests, we defined
γ̇k = 3.2 × 10−ks−1, k = 4, 5, 6, 7. In Figure 1 the results of these experiments are presented. As can be seen in
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Figure 1. Results of the experiments at different strain rates
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Figure 2. Experiments for the estimation of the equilibrium state

the graphs, the compression and torsion tests were carried out up to a maximum strain of2%. Due to the porosity
of the material, see (Kallien and Busse, 2009), only a maximum strain ofεmax = 1% could be acquired before
fracture starts to occur. Hence, we restrict our investigation to the small deformation range. With a look at Figure 1,
it is obvious that the material shows a pronounced viscous behavior in all kinds of tests. Furthermore, the initial
slope in the stress-strain diagram is effected by the rate of the test as well.

2.1.2 Equilibrium State

Since – from the previous experiments – it is evident that the material is rate-dependent, information about its
equilibrium state has to be gathered. For the investigation of the equilibrium state, a long time relaxation test is
carried out to determine its relaxation time. In this test, the specimen is loaded up to a certain strain amplitudeγmax,
where the strain is kept constant, see Figure 2(a). Accordingly, the stress relaxes over the time, see Figure 3(a). In
this test, one can notice that after more than40 h, the material has not yet completely relaxed and that the relaxation
corresponds to more than50% of the initial value of the shear stress. The same behavior can be observed in tension
and compression tests, which are omitted for brevity. With this information at hand, a multi-step relaxation test
is carried out in order to estimate the equilibrium stress state. To this end, the specimen is loaded step-wise. In
every step, the specimen relaxes towards the equilibrium stress state, see Figure 2(b). Due to the magnitude of the
relaxation time, the holding time of the multistep relaxation process was chosen totr = 6h. For the estimation of
the termination points, we assume that for the same relaxation time, the material relaxes for the same percentage.
The estimated relaxation points in torsion are shown in Figure 3(b).

It can be observed that the initial slope in loading and unloading steps are different. This has to be considered in
the modeling section as well.
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(b) Multi-step relaxation test and equilibrium hysteresis torsion

Figure 3. Experiments for the investigation of the equilibrium state for different aging times in
torsion

2.2 Influence of Aging

In order to consider the effect of aging in the mechanical response of the material, the long-time relaxation test
and multi-step relaxation tests in torsion were carried out for three additional aging times at 3, 6 and 12 months,
see Figure 3. The termination points of the relaxation have been calculated under the same assumption as in the
previous section, see Figure 3(b). In these Figures, we can observe that the stresses decrease with longer aging
times for the same strain process. The stress in the equilibrium hysteresis for 12 months aging is approximately
23% less than for the specimen without aging.
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Figure 4. Rate-dependence for four aging times in torsion

The rate dependence was also investigated for aged specimens. In Figure 4, the results of the torsion tests are shown
for the fastest and the slowest strain rates and four different aging times. Here, we again observe a reduction of the
stresses in dependence of the age. An analogous behavior is observed in tension and compression, see Figure 9.
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3 Constitutive Model

In the presented experiments, it is observed that the material shows a pronounced rate-dependence and possesses an
equilibrium hysteresis. Based on this fact, the material can be placed in the material class of the viscoplasticity, see
(Haupt and Lion, 1995) and (Haupt, 2000). In the literature there are several proposals describing viscoplasticity.
The model presented in this article follows the modular structure suggested in works of (Haupt and Sedlan, 2001),
(Haupt and Lion, 1995) or (Hartmann, 2006) and the references cited therein. This procedure shows advantages in
the parameter identification process, offering the possibility to identify the parameters in a partitioned way.

The total strain is divided into a mechanical partEM and a component describing agingEg,

E = EM + Eg. (1)

The aging part of the strainEg = −αgI defines the volumetric change in the material, which takes place during
the aging process, see (Johnen, 1981; Leis and Kallien, 2011). The mechanical strain can be decomposed in an
elastic and a viscous part

EM = Ee + Ev. (2)

The stress is decomposed into an equilibrium partTeq and an overstress partTov. Furthermore, the equilibrium
stress consists of an elasticTe

eq and a plastic (hysteretic)Th
eq part,

T = Teq + Tov = Te
eq + Th

eq + Tov. (3)

The rate-dependent effects are represented by a modified Maxwell model. To establish the thermodynamical
consistence of the model, the dissipation inequality has to be evaluated. In the case of a constant temperature in
time and space (̇Θ = 0 andgrad Θ = ~0), the Clausius-Duhem inequality can be expressed by

1
ρ
T ∙ Ė − ψ̇ ≥ 0. (4)

The free-energyψ is assumed to depend on the strain variables and is divided into an equilibrium partψeq, an
overstress partψov, and an aging-dependent partψg. Additionally, a process variablep is introduced to model
the softening behavior which was observed in the experiments during the unloading process.Y is an internal
strain-like variable. The dependence of the free energy on the internal variables is given by

ψ = ψ̃(EM ,Ee,Y, p, g) = ψe
eq(EM) + ψh

eq(Y, p, g) + ψov(Ee, p) + ψg(g), (5)

where we choose the following strain-energy functions

ρψe
eq =

Keq

2
(trEM)2 + GeqE

D
M ∙ ED

M , (6)

ρψh
eq =

c(p, g)
2

YD ∙ YD, (7)

ρψov = Gov(p)ED
e ∙ ED

e , (8)

ρψg = C1 − C2g. (9)

Keq andGeq represent the bulk and shear modulus of the elastic part of the equilibrium stress.c(p, g) controls the
equilibrium hysteresis dependending onp and the ageg. Gov(p) symbolizes the process-dependent shear modulus
of the overstresses. The time derivative of the free energy can be calculated by applying the chain rule

ψ̇ =
∂ψ

∂EM
∙ ĖM +

∂ψ

∂Ee
∙ Ėe +

∂ψ

∂Y
∙ Ẏ +

∂ψ

∂p
ṗ +

∂ψ

∂g
ġ. (10)

Inserting expression (10) and the stress decomposition (3) into the Clausius-Duhem inequality yields

(Te
eq + Th

eq + Tov) ∙ Ė − ρ
∂ψ

∂EM
∙ ĖM − ρ

∂ψ

∂Ee
∙ Ėe − ρ

∂ψ

∂Y
∙ Ẏ − ρ

∂ψ

∂p
ṗ − ρ

∂ψ

∂g
ġ ≥ 0. (11)

Rearranging the inequality and introducing the relations (1) and (2), leads to

Te
eq ∙ ĖM + Te

eq ∙ Ėg + Th
eq ∙ Ė + Tov ∙ (Ėg + Ėe + Ėv) − ρ

∂ψ

∂EM
∙ ĖM

− ρ
∂ψ

∂Y
∙ Ẏ − ρ

∂ψ

∂Ee
∙ Ėe − ρ

∂ψ

∂p
ṗ − ρ

∂ψ

∂g
ġ ≥ 0. (12)
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Now, we draw on the definition of the aging strainEg = −αgI, yielding –after reareanging–

(

Te
eq− ρ

∂ψ

∂EM

)

∙ ĖM − α(trTe
eq)ġ + Th

eq ∙ Ė +

(

Tov − ρ
∂ψ

∂Ee

)

∙ Ėe + Tov ∙ Ėg + Tov ∙ Ėv

− ρ
∂ψ

∂Y
∙ Ẏ − ρ

∂ψ

∂p
ṗ − ρ

∂ψ

∂g
ġ ≥ 0. (13)

This expression is used for emphasizing the following steps. Since the Clausius-Duhem inequality (13) has to be
fulfilled, we can define the sufficient conditions

Te
eq = ρ

∂ψ

∂EM
= Keq(trEM)I + 2GeqE

D
M , (14)

Tov = ρ
∂ψ

∂Ee
= 2GovE

D
ov. (15)

Additionally, we assume

Th
eq = ρ

∂ψ

∂Y
= cYD, Ẏ = ĖD −

bṡc + ċ

c
YD, with b, c(p, g) > 0, (16)

which reduces the remaining Clausius-Duhem inequality (13) to

cYD ∙ (Ė − Ẏ) + Tov ∙ Ėv − ρ
∂ψ

∂p
ṗ − 3αKeq(trEM)ġ − ρ

∂ψ

∂g
ġ ≥ 0, (17)

with Tov ∙ Ėg = 0, becauseTov is purely deviatoric andEg volumetric. Again, we rearrange (17) by inserting (16)
and obtain

cYD ∙

(

Ė − ĖD +
bṡc + ċ

c
YD

)

+ Tov ∙ Ėv − ρ
∂ψ

∂p
ṗ − 3αKeq(trEM)ġ − ρ

∂ψ

∂g
ġ ≥ 0. (18)

The termcYD ∙
(
Ė − ĖD

)
is equal to zero, sincėE− ĖD = (tr Ė)/3I is volumetric andYD is purely deviatoric,

bṡcYD ∙ YD + ċYD ∙ YD + Tov ∙ Ėv − ρ
∂ψ

∂p
ṗ − 3αKeq(trEM)ġ − ρ

∂ψ

∂g
ġ ≥ 0. (19)

The time derivative of the parameterc(p, g) can be expressed byċ = (∂c/∂p)ṗ + (∂c/∂g)ġ yielding

bṡcYD ∙ YD +

(
∂c

∂p
ṗ +

∂c

∂g
ġ

)

YD ∙ YD + Tov ∙ Ėv − ρ
∂ψ

∂p
ṗ − 3αKeq(trEM)ġ − ρ

∂ψ

∂g
ġ ≥ 0. (20)

With the expression of the free energy (9), we obtain

ρ
∂ψ

∂p
=

1
2

∂c

∂p
YD ∙ YD and ρ

∂ψ

∂g
=

1
2

∂c

∂g
YD ∙ YD − C2 (21)

leading to
(

bṡc +
1
2

∂c

∂p
ṗ

)

YD ∙ YD +

(

C2 +
1
2

∂c

∂g
YD ∙ YD − 3αKeq(trEM)

)

ġ + Tov ∙ Ėv ≥ 0. (22)

The sum of these three terms has to be non-negative. If every term is positive, this condition is satisfied. For the
term of the overstress, we define

Ėv =
1
η
Tov, η > 0. (23)

We define the aging rate proportional to

ġ = f(g)

(

C2 +
1
2

∂c

∂g
YD ∙ YD − 3αKeq(trEM)

)

, f(g) ≥ 0. (24)

The aging ratėg is coupled with the plastic deviatoric strainY and the trace of the mechanical straintrEM. Due
to the fact that∂c/∂g < 0, a plastic deformation implies a reduction in the aging rateġ. The influence of the term
trEM depends on its sign. The magnitude of this coupling is characterized by the parameterC2. Since a negative
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aging rate is physically not realistic, the positive parameterC2 has to be larger than the term influenced by the
strain, see the discussion in the field of curing by Lion et al. (2014). In this way, the strain can just decelerate the
aging process, but not revert it. We define the functionf(g) = αg(1 − g)/(C2(βg + g)) and arrive at

ġ =
αg

C2

1 − g

βg + g

(

C2 +
1

2(1 + p)
∂c0

∂g
YD ∙ YD − 3αKeqtr (EM)

)

. (25)

The aging variableg is a growing variable with values between 0 and 1. The parameterc(p, g) represents the
initial slope of the equilibrium stress, which is monotonically decreasing with the aging state. In terms of the
plastic strain, the derivative∂c/∂p is also negative, due to the fact that there is a reduction in the initial slope due
to softening. This makes it slightly more complicated, in the context of Clausius-Duhem inequality, to be proven.
We define

ṡ =
√

ĖM ∙ ĖM ≥ 0, (26)

ṗ = αp(1 − p)ṡ, (27)

c(p, g) =
c0(g)
1 + p

, c0(g) = c1(1 − c2 exp(c3g)). (28)

The limit values ofc(p, g) are

lim
p→0

c = c0(g), lim
p→1

c =
c0(g)

2
(29)

lim
g→0

c0 = c1(1 − c2), lim
g→1

c0 = c1(1 − c2 exp(c3)). (30)

The partial derivative ofc(p, g) with respect top is according to equation (27)

∂c

∂p
= −

c0

(1 + p)2
. (31)

Due to the fact thatYD ∙ YD ≥ 0, we have to prove that

βbṡc +
1
2

∂c

∂p
ṗ ≥ 0. (32)

Inserting definitions (27), (28), and (31) in equation (32), we obtain

bṡ
c0

1 + p
−

1
2

c0

(1 + p)2
αp(1 − p)ṡ ≥ 0 (33)

2b −
1 − p

1 + p
αp ≥ 0 (34)

The functionp is a monotonically increasing function with values between 0 and 1, see equation (27). Thus, the
inequality is fulfilled for these two cases, it will be fulfilled in the whole range of values ofp.

for p = 0 → b ≥
αp

2
(35)

for p = 1 → b ≥ 0 → It is fulfilled (36)

If condition (35) is fulfilled, the Clausius-Duhem inequality is satisfied and the constitutive model is thermody-
namically consistent. In the material parameter identification process, the fulfillment of condition (35) has to be
ensured. Furthermore, we define the shear modulusGov and the viscosityη by

Gov(p) = G1(1 − p)rov + G2, (37)

η(ĖM) = η0





(
||ĖM)||

sη
+ αη

)−rη

+ 1



 . (38)

Their limit values are

lim
p→0

Gov = G1 + G2, lim
p→1

Gov = G2, (39)

lim
ṡ→0

η = η0

(
α−rη

η + 1
)
, lim

ṡ→∞
η = η0. (40)

Table 1 summarizes the entire model.
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Table 1. Summary of the constitutive model

ConstitutiveModel

E = EM + Eg

Eg = −αgI
EM = Ee + Ev

T = Te
eq + Th

eq + Tov

ṗ = αp(1 − p)ṡ, ṡ =
√

ĖM ∙ ĖM = ||ĖM ||

ġ =
αg

C2

1 − g

βg + g

(

C2 +
1

2(1 + p)
∂c0

∂g
YD ∙ YD − 3αKeq(trEM)

)

Equilibrium stresspart

Te
eq = Keq(trEM)I + 2GeqED

M
Th

eq = cYD

Ẏ = ĖD −

(

bṡ +
ċ

c

)

YD

Overstresspart

Tov = 2Gov(p)ED
e

Ėv =
1
η
Tov

Softening and aging dependentfunctions

c(p, g) =
c0(g)
p + 1

, c0(g) = c1(1 − c2 exp(c3g))

Gov(p) = G1(1 − p)rov + G2

η(ĖM) = η0





(
||ĖM ||

sη
+ αη

)−rη

+ 1





Parameters

α, αp, αg, C2, βg, Keq, Geq, b, c1, c2, c3, G1, G2, rov, η0, sη, αη, rη

4 Parameter Identification

The constitutive model in Table 1 contains 18 material parameters, which have to be determined. Since the iden-
tification problem is an ill-posed problem, all material parameters cannot be identified simultaneously. In order to
solve this problem, we try to isolate particular phenomena, such as deviatoric behavior, rate-dependence or aging,
choosing experiments where the influence of other effects can be neglected.

In the parameter identification procedure, the square of the residuumr(κ) = s(κ) − d has to be minimized. The
vectors ∈ Rnd represents the (model) simulation andd ∈ Rnd the experimental data,

f(κ) = rT (κ)r(κ) → minimum. (41)

The material parameters are assembled in a vectorκ ∈ Rnκ with nκ material parameters. Additionally, there are
nc inequality constraintsgi(κ) ≤ 0, which have to be fulfilled for theoretical reasones, see equation (35), physical
reasons (positiveness of parameters) or to restrict their co-domain in a certain range. In the following subsections,
s can be an analytical model or the result of the numerical (or analytical) solution of an ordinary differential
equation or of an entire boundary-value problem using finite elements. For the non-linear optimization methods,
the identification is carried out with the help of Matlab routines, which can either draw on solutions provided by
Matlab itself, or they call up external programs that serve to compute a solution. Here, we refer to (Krämer et al.,
2015). The identification process is connected to the model structure and cannot be seen separately. This means,
some of the developed constitutive equations are chosen after some steps of identification.
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4.1 Aging Variable

For the identification of the aging variable, we consider the measurement in (Johnen, 1981), where the shrinkage of
a zamak 5 specimen is measured over the time. In (Kallien and Busse, 2009), the principal physical microstructural
changes during aging are described. The dimensional change is associated with change of the crystallization
system from fcc (face-centered cubic) to hcp (hexagonal close-packed) and also changes in the lattice parameter.
This deformation is a purely volumetric deformation associated to aging and is denoted in the model asEg. We
normalize the volumetric deformation from Johnen (1981),g = εmeasured/εmax, and take it as aging reference, see
dots in Figure 5(a). During this measurement, no mechanical deformation happens. Thus, we can set the deviatoric
plastic strainY = 0 andtrEM = 0. In this case, there are only two material parameters in the evolution equation
(25) of the aging variable, which have to be identified,αg andβg, i.e.

ġ = αg
1 − g

βg + g
. (42)

Using this ordinary differential equation, we have at the initial time forg(0) = 0 the conditionġ(0) = αg/βg.
At the final timeġ(∞) = 0 yieldsg(∞) = 1 from equation (42). The derivative of the experimental pointsġ is
calculated with forward differences, see points in Figure 5(b). The identification is carried out using a gradient
based algorithm (trust-region). The identified parameters areαg = 3.67 × 10−8 s−1 andβg = 0.2. The small
value of the parameterαg indicates that the aging process happens very slowly. The fitted function is shown in
Figure 5. Moreover, for the volumetric aging strainEg = −αgI, the parameterα = 10−3 is identified from the
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Figure 5. Results of the identification for the aging variable

value of the strain for5.5 years aging (g ≈ 1) from the measurement of Johnen (1981).

The coupling between the aging variable and the plastic deformation represents a change in the aging rateġ with
the deformation, see equation (25). Due to the fact that the duration of the experiments is relatively short compared
to the time that aging variable needs to develop, it is impossible to obtain information about this coupling from
the performed experiments. In the actual model, we assume a very low influence of this term in the aging. We
assume the parameterC2 to be much larger that the term of the strain, see equation (24), so that the aging rate
ġ is marginally affected by this term. Thus, we assign the valueC2 = 106 MPa−1. In this way, we ensure that
equation (25) is approximately equal to equation (42). Expression (42) is taken at this point as the evolution
equation for the aging variable.

4.2 Shear Behavior

In this step of the identification, the evolution of the aging variable is known. The forthcoming identification step
in torsion is drawn on the partitioned structure of the model. We first identify the parameters of the equilibrium

63



stress with the help of the experimental data points of the equilibrium hysteresis for the different aging states.
Subsequently, the remaining parameters of the deviatoric part of the model are identified with experiments at
different strain rates and the relaxation steps. The aging variableg develops clearly slower than the deformation
process of all the experiments. Because of that, we assume, for the identification steps, a constant aging state, that
means, no development of the aging variable occurs during the loading or relaxation experiment.

Equilibrium Part

In case of torsion with a constant, infinitely slow strain rate,γ̇ = K � 1, the shear stress of the equilibrium part
is calculated as

τeq = τe
eq + τh

eq = GeqKt + τh
eq. (43)

To obtain the hysteretic equilirbium stress, the following system of differential equations has to be solved

ṗ = αp(1 − p)
|K|
√

2
, (44)

τ̇h
eq = c(p, g)

K

2
− b

|K|
√

2
τh

eq, with c =
c0(g)
1 + p

. (45)

The identification is carried out with Matlab with the help of the nonlinear least-squares solverlsqnonlin, using
the data of the equilibrium hysteresis at different aging times. First, the parameterc0 is identified independently
for every aging time. After that, a functionc(g) is fitted for obtainingc0, see Figure 6(a). The results of the
identification are shown in Table 2 and Figure 7 (equilibrium hysteresis). We observe a very good calibration
between simulation and experiment for the equilibrium hysteresis.
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Table 2. Results of the parameter identification for the parameter of the equilibrium part

parameter αp b c1 c2 c3

value 300 1.876 × 102 GPa 3.463 × 104 GPa 9.166 × 10−3 3.854
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Figure 7. Results of the identification in torsion

Overstress Part

For the identification of the overstress part, we take the relaxation steps of the multi-step relaxation tests into
account in a first step, and afterwards, the experiments at different strain rates are considered. In the model, the
effect of aging is only considered in the equilibrium stress part. Thus, the overstress parameters are identified with
the help of the experiments without aging. The total shear stress is equal to the equilibrium plus the overstress part

τ = τeq + τov. (46)

The equilibrium part is already known from the previous section. The shear overstress is calculated from

τov = Gov(p) (γ − γv) , (47)

with the viscous shear strainγv from equation (23)

γ̇v =
2Gov(p)

η(γ̇)
(γ − γv) . (48)

Relaxation In the isothermal relaxation process, the strain is constant,γ = γ̂ = const., and, thus, the strain-rate
is equal to zero,̇γ = 0. Thus, the rate of the arc-length is zero as well,ṡ = 0. Accordingly, the rate of the softening
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variable is zero as well̇p = 0 → p = p̂ =const, see equation (27). For a relaxation process, the shear modulus
Gov and the viscosityη are constant, see equations (37) and (38),

η̂ = η0

(
α−rη

η + 1
)

= const., (49)

Ĝov(p̂) = G1(1 − p̂)nov + G2 = const. (50)

Inserting equations (49) and (50) in equation (48) leads to

γ̇v +
2Ĝov

η̂
γv =

2Ĝov

η̂
γ̂. (51)

This differential equation can be solved analytically and results in

γv(t) = (γv(0) − γ̂) exp

(
−2Ĝov

η̂
t

)

+ γ̂. (52)

With this solution of the viscous shear strain at hand, the overstress can be calculated by equation (47). The ratio

Ĝovk

η̂k
=

G1(1 − p̂)nov + G2

η0

(
α
−rη
η + 1

) (53)

is identified for every relaxation step. This information is used in the identification step with the monotonic loading
paths. The results of the identification of the relaxation steps are shown in Figure 6(b).

Monotonic loading In a monotonic loading process, the strain rate is constant,γ̇ = K, and the shear strain is
equal toγ (t) = Kt. The overstress has, in this case, the following form

τov = Gov(p) (γ − γv) , (54)

γ̇v +
2Gov(p)
η(K)

γv =
2Gov(p)
η(K)

Kt. (55)

Since equation (55) cannot be solved analytically, it is solved numerically in Matlab. In the next step, we have to
model and identify the parameters for the shear modulus of the overstress,G1, G2, androv and for the viscosity,
η0, αη, andrη. From the identification step of relaxation, we have four additional relations, see equation (53). The
set of parameters of the shear modulusGov in equation (37) and for the viscosityη of equation (38) are compiled
in Table 3. The parametersη in equation (38) is of the dimension of the rate of the arc-lengthṡ and is set equal to

Table 3. Results of the parameter identification for the shear modulusGov and the viscosityη

parameter G1 G2 rov η0 αη rη

value 10GPa 15GPa 0.3 300MPa s 8 × 10−8 0.93

sη = 1s−1 to obtain a dimensionless expression. The solution of the identification is shown in Figure 7. Here, we
observe again a good reproducibility of the experimental behavior and in this way, the assumption that aging only
influences the equilibrium state is justified. Moreover, in Figure 8 the effect of the aging variable in the model is
shown. The torsion experiments and the model are compared for two different strain rates and different ages. Here,
we observe the reduction in the stresses caused by the aging stage. This is a prediction from the model, since the
experiments at different strain rates were not used for the identification process.

4.3 Volumetric Behavior

The last parameter to be identified is the compression modulusKeq. In the case of tension and compression, it
is necessary to consider the complete three-dimensional model of Table 1. With the same procedure as (Krämer
et al., 2015), the three-dimensional model is reduced to the one-dimensional case for parameter identification.
The parameterKeq is identified with the help of the equilibrium hysteresis in tension and compression for the
unaged material. From the identification, we obtain a valueKeq = 49.5GPa. The results of the identification
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Figure 8. Results of the identification in torsion. Comparison in torsion for different aging times.

for the equilibrium hysteresis and the prediction of the rate dependence (these experiments were not used for the
identification) are shown in Figure 9 for the different aging times.

We observe that the information contained in the deviatoric part of the model (in this case, obtained from torsion
experiments) is almost sufficient to calibrate this material. The tension and compression tests are only necessary
to identify the compression modulus to obtain an appropriate reproducibility of the experiments in tension and
compression, see Figure 9.

5 Stress Computation and Numerical Example

To implement the model into a finite element program, we make use of the symmetry properties of the stress tensor
T and strain tensorE. They are expressed as a vector (Voigt notation) with the following components

E(X, t) = {E11, E22, E33, 2E12, 2E13, 2E23}
T , (56)

T(X, t) = {T11, T22, T33, T12, T13, T23}
T . (57)

The constitutive model is formulated depending on the mechanical strain. The scalar product reads in matrix
notation

A ∙ A = AT M−1A with M = diag(1, 1, 1, 2, 2, 2), A ∈ R6. (58)

The deviator operator of a tensorAD is given by the matrix formulation

AD = DA with D =
1
3











2 −1 −1
−1 2 −1
−1 −1 2

3
3

3











(59)

The first necessary variable for the stress computation is the time derivative of the arc-lenthṡM. Using a Backward-
Euler step, we obtain

sMn+1 = sMn + ṡMΔtn = sMn + ΔsMn (60)

with

ΔsMn = ṡMΔtn =
√

(EMn+1 − EMn)T M−1(EMn+1 − EMn) =
√

ΔEM
T
n M−1ΔEMn. (61)

67



-300

-200

-100

 0

 100

 200

 300

-0.01 -0.005  0  0.005  0.01

σ
in

M
P

a

ε in %

exp.

fit

(a) without aging

-300

-200

-100

 0

 100

 200

 300

-0.01 -0.005  0  0.005  0.01

σ
in

M
P

a

ε in %

exp.

model

(b) 3 months aging

-300

-200

-100

 0

 100

 200

 300

-0.01 -0.005  0  0.005  0.01

σ
in

M
P

a

ε in %

exp.

model

(c) 6 months aging

-300

-200

-100

 0

 100

 200

 300

-0.01 -0.005  0  0.005  0.01

σ
in

M
P

a

ε in %

exp.

model

(d) 12 months aging

Figure 9. Identification and prediction in tension/compression

In the model, there are 14 internal variables: the aging variableg, the softening variablep, and six components
for the plastic stressTh

eq and the viscous strainEv respectively. The parameterC2 was chosen in a way, that the
evolution equation forg is approximately equal to equation (42). Since the term due to the deformation has a
minor influence in the aging rate, we neglect the coupling term of aging with deformation, in order to facilitate the
implementation of the model. The evolution equation of the internal variables can be discretized in time again by
using a Backward-Euler step

gn+1 = gn + Δtnαg
1 − gn+1

βg + gn+1
, (62)

pn+1 = pn + Δtn

(

αp(1 − pn+1)
ΔsMn

Δtn

)

, (63)

Th
n+1 = Th

n + Δtn

(

c(pn+1, gn+1)D
(

ΔEMn

Δtn

)

− b
ΔsMn

Δtn
Th

n+1

)

, (64)

Evn+1 = Evn +
Δtn

η(EMn+1)
(2Gov(pn+1)D (EMn+1 − Evn+1)) , (65)
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which can analytically be solved to obtain

gn+1 =
1
2
(gn − βg − Δtnαg) +

√
1
4
(βg + Δtnαg − gn)2 + βggn + Δtnαg, (66)

pn+1 =
pn + αpΔsMn

1 + αpΔsMn

, (67)

Th
n+1 =

Th
n + c(pn+1, gn+1)DΔEn

1 + bΔsMn

, (68)

Evn+1 =
Evnη(EMn+1) + 2ΔtnGov(pn+1)DEn+1

η(EMn+1) + 2ΔtnGov(pn+1)
. (69)

equation (66) is obtained for the positive solution of the quadratic equation forgn+1, which results from (62). The
functions for the material parameters are given by

c(pn+1, gn+1) =
c1(1 − c2 exp(c3g))

pn+1 + 1
, (70)

Gov(pn+1) = G1(1 − pn+1)
rov + G2, (71)

η(EMn+1) = η0

((
1
sη

ΔsMn(EMn+1)
Δtn

+ αη

)−rη

+ 1

)

. (72)

Now, the total stress can be calculated by

Tn+1 = Teqn+1 + Tovn+1 (73)

with the equilibrium stress

Teqn+1 = Keq(tr En+1)I + 2GeqDEn+1 + Th
n+1, (74)

and the overstress

Tovn+1 = 2Gov(pn+1)D(EMn+1 − Evn+1). (75)

With the simplification of equation (25) in the implementation, we obtain a model, where the internal variables
can be calculated without a local Newton iteration, which is an advantage from the point of view of computational
efficiency.

5.1 Simulation Example

In this section, the behavior of the model is demonstrated with a numerical example. In this example, we consider
a complex geometry modeled with the proposed material. The geometry, mesh and boundary conditions are shown
in Figure 10.

~u = −uy~ey

~u = ~0

Figure 10. Mesh and boundary condition

The part is fixed in left red area and we apply a displacement in negativey-directionuy with a constant displace-
ment rate in the right red area. Two different displacement rates are investigated,u̇1 = 2 × 10−1 mms−1 and
u̇2 = 2 × 10−3 mms−1, and three different aging times: without aging, with 6 months aging and with 2 years
aging. The mesh is composed of11 783 twenty-noded hexahedral elements. The time step for the simulations is
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chosen asΔt1 = 0.33 s for the first displacement rate andΔt2 = 10 s for the second one. For the simulations,
the initial conditions are for the component without agingg(0) = 0, for six months agingg(0) = 0.637 and for
two yearsg(0) = 0.933, with t = 0 the initial time of the simulation. During the simulations, the aging variable
changes its value marginally, since the aging happens more slowly than the deformation process.

The results of the simulations are shown in Figures 11 and 12. Figure 11 shows the reaction force for the six
different cases. In this diagram, it becomes clear that rate dependence as well as the aging stage of the material
exhibit a strong influence on the mechanical response. Here, we observe a reduction in the reaction force of
approximately20% between the unaged material at the fast displacement rate and the material after two years
aging at the slow displacement rate. Figure 12 displays the von Mises stress for the unaged material at the fast
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Figure 11. Reaction force over the displacement for the different aging times and displacement rates

displacement rate, the 2-years aged material at the fast displacement rate and at the slow displacement rate. Here,
we observe again a reduction in the von Mises stress of11% for the same displacement rate but with two different
aging times (Sim. 1 and Sim. 2) and a reduction of18% with the same aging stage for two different displacement
rates (Sim. 2 and Sim. 3).

6 Conclusion

In this work, the influence of aging on the mechanical response of the zinc die-casting alloy zamak 5 has been
investigated. Experiments at different strain rates for tension, compression and torsion were carried out with the
help of thin-walled cylindrical specimens. Additionally, the specimens were investigated at different ages in order
to gather data of the alteration of the material behavior over the time. Since the material belongs to the material
class of viscoplasticity, relaxation and multi step tests have been carried out to describe the equilibrium hysteresis.
The developed material model is motivated by a rheological model where the stresses are decomposed into an
equilibrium part and an overstress part. With the help of an internal variableg, the influence of aging is introduced
in the model. Furthermore, the thermomechanical consistence of the model is shown. The material parameters
of the model are identified using an approach where the different phenomena are addressed consequently making
use of the partitioned structure of the model. The identification is carried out mainly for the shear behavior of
the model, leading to a good agreement in tension and compression, where just one parameter was identified.
Finally, we observe the influence of aging and strain rate in the computed reaction force and von Mises stress in
a simulation example, which differs in this concrete example in about20%, and which shows the importance of
considering these effects in the prediction for components made of zamak 5.
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(a) Sim. 1: without aging,̇u1 = 2 × 10−1 mms−1

(b) Sim. 2: two years aging,̇u1 = 2 × 10−1 mms−1

(c) Sim. 3: two years aging,̇u2 = 2 × 10−3 mms−1

Figure 12. Von Mises stress in MPa for three different cases
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