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Multilayered Functionally Graded Non-linear Elastic Beams with 
Logarithmic Material Gradient: A Delamination Analysis    
 
 V. Rizov  
 
 
The delamination fracture in a multilayered functionally graded cantilever beam configuration that exhibits 
material non-linearity is analyzed in terms of the strain energy release rate. The beam under consideration has 
an arbitrary number of adhesively bonded horizontal layers of different thicknesses and material properties. The 
delamination crack is located arbitrary along the beam height. The material non-linearity is described by a 
stress-strain relation that involves two material properties. It is assumed that the two material properties are 
functionally graded in both width and thickness directions in each layer. Logarithmic laws are used to describe 
the variation of the material properties in the cross-sections of the layers (the material properties are distributed 
non-symmetrically with respect to the centroidal axes of the beam cross-section). The balance of the energy is 
analyzed in order to derive the strain energy release rate. The J-integral approach is applied for verification. 
Parametric investigations are carried-out in order to evaluate the influence of the gradients of the two material 
properties in both width and thickness directions of the layers on the delamintion fracture behaviour. The results 
obtained show that the strain energy release rate can be controlled by using appropriate material gradients in 
the design stage of multilayered functionally graded structural members exhibiting material non-linearity.     
 
 
 
1 Introduction 
 
Since the material properties of functionally graded materials vary gradually along one or more spatial 
coordinates, the behaviour of structural members and components made of these novel inhomogeneous materials 
can be modified to meet various performance requirements. Thus, it is not surprising that recently, the 
international academic circles have paid significant attention to the development of functionally graded materials 
and their applications in different structural members, components and devices (Bykov et al.,  2012; Gasik, 2010; 
Hirai and Chen, 1999; Mortensen and Suresh, 1995; Nemat-Allal et al., 2011; Neubrand and Rödel, 1997; Suresh 
and Mortensen, 1998; Uslu Uysal and Kremzer, 2015; Uslu Uysal, 2016). However, the integrity of these 
structural members and components depends to a great extent on their fracture performance. Therefore, fracture 
in functionally graded materials is a subject worth to explore (Upadhyay and Simha, 2007; Yan and Yang, 2011;  
Uslu Uysal and Güven, 2016).  
 
Cracked functionally graded beam configurations have been investigated by Upadhyay and Simha, 2007. 
Fracture analyses of beams loaded in three-point bending have been developed assuming linear-elastic behaviour 
of the functionally graded material. The compliance approach for evaluation of beams containing crack have 
been explored. Equivalent homogeneous beams of variable height for cracked beams have been developed by 
using methods of linear-elastic fracture mechanics. It has been shown that the equivalent beam captures the 
compliance characteristics of the cracked functionally graded beam with good accuracy. It has been found that 
besides for three-point bending beams, the method is suitable also for analyzing cracked functionally graded 
components loaded in bending by concentrated loads.  
 
Analyses of slender functionally graded beams with open edge cracks have been carried-out by Yan and Yang, 
2011. The cracked sections have been modelled by rotational mass-less spring.  Methods of linear-elastic fracture 
mechanics have been applied. Dynamic behaviour of cracked cantilever, hinged-hinged and clamped-clamped 
functionally graded linear-elastic beams has been studied analytically. It has been assumed that the beams are 
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functionally graded in the height direction. Effects of the location and the number of cracks, the external loading 
and the boundary conditions on the fracture behaviour have been elucidated.  
      
Interesting analyses of structural members in the presence of inhomogeneties, defects and cracks by applying 
engineering-type theories of bars, beams, shafts, discs, plates and shells have been developed by Kienzler and 
Herrmann, 2001; Kienzler and Bose, 2008; Schneider and Kienzler, 2011.   
 
Multilayered materials are a promising class of inhomogeneous structural materials which are characterized by 
high strength-to-weight and stiffness-to-weight ratios. Multilayered materials play an important role in various 
engineering applications in aeronautics, automotive industries and infrastructure. The reliability and integrity of 
layered structures is closely related with their delamination fracture behaviour (Dolgov, 2005; Dolgov, 2016; 
Szekrenyes, 2016; Szekrenyes, 2016; Rizov, 2017).  
 
A non-linear analytical solution for the strain energy release rate in the multilayered functionally graded Split 
Cantilever Beam configuration has been derived by Rizov, 2017. The beam has been made of an arbitrary 
number of longitudinal vertical layers. A delamination crack has been located arbitrary along the width of the 
beam cross-section. It has been assumed that the material is functionally graded in the thickness directions of 
each layer (i.e., the material is one dimensional functionally graded). The non-linear behaviour of the functionally 
graded material has been described by a power-law stress-strain relation.       
 
The present paper is focussed on a delamination fracture analysis of a multilayered functionally graded cantilever 
beam configuration with considering the non-linear mechanical behaviour of the material. It is assumed that the 
two material properties which are involved in the non-linear stress-strain relation are functionally graded in both 
thickness and width directions in each layer (i.e., the material is two-dimensional functionally graded). 
Logarithmic laws are applied to describe the continuous variation of the two material properties in the cross-
sections of the layers (the properties are distributed non-symmetrically with respect to the centroidal axes of the 
beam cross-section). An approach for determination of the bending moments in the two crack arms is developed.  
The solution for the strain energy release rate obtained by considering the balance of the energy is used to 
analyze the influence of material gradients in both thickness and width directions, the delamination crack location 
and the material non-linearity on the delamination fracture behaviour.             
 
 
2 Solution for the Strain Energy Release Rate  
 
The cantilever beam configuration, shown in Fig. 1, is made by an arbitrary number of adhesively bonded 
horizontal layers. The beam is clamped in section, B . 
 

 
Figure 1: Schematic of multilayered functionally graded cantilever beam containing a delamination crack 

 
It is assumed that each layer has individual thickness and material properties. Also, the material in each layer is 
functionally graded in both thickness and width directions of the layer. Besides, the material exhibits non-linear 
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mechanical behaviour. The beam cross-section is a rectangle of width, b , and height, h2 . The beam length is 
l . The external loading consists of one moment, M , applied at the free end of the beam. A delamination crack 
of length, a , is located arbitrary between layers. The thicknesses of the lower and upper crack arms are 1h  and 

2h , respectively.  
 
In the present paper, the delamination is analyzed in terms of the strain energy release rate, G , by considering 
the balance of the energy. For this purpose, the balance of the energy is written as  
 

           aGba
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where δϕ  is the increase of the rotation of the beam free end induced by an increase of the crack length, aδ . In 
(1), U  is the strain energy. From (1), G  is expressed as     
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It should be noted that the present analysis is based on the small strains hypothesis.   
 

 
Figure 2: The geometry and loading of the free end of the lower crack arm 

 
The rotation, ϕ , of the beam free end is obtained by applying the Castigliano’s theorem for structures exhibiting 
material non-linearity 
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where *U  is the complementary strain energy.  
 
The complementary strain energy, cumulated in the beam, is obtained as 
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RUL UUUU ++= ,                                                                                                                       (4) 
 
where *

LU , *
UU  and *

RU  are, respectively, the complementary strain energies in the lower crack arm, the upper 

crack arm and the un-cracked beam portion, lxa ≤≤ 4 , (Fig. 1).  
 
The complementary strain energy in the lower crack arm is expressed as 
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where Ln  is the number of layers in the lower crack arm, iz1  and 11 +iz  are, respectively, the coordinates of the 

upper and lower surfaces of the i-th layer (Fig. 2), *
0 iLu  is the complementary strain energy density in the same 

layer, 1y  and 1z  are the centroidal axes.     

 
Figure 3: Non-linear stress-strain curve (the strain energy and the complementary strain energy densities are 

denoted by 0u  and *
0u , respectively) 

 
The complementary strain energy density is equal to the area, OQR, which supplements the area, OPQ, enclosed 
by the stress-strain curve to a rectangle (Fig. 3). Thus, *

0 iLu  is written as 
 
           

ii LiL uu 0
*
0 −= εσ ,                                                                                                                                   (6) 

 
where iσ  is the distribution of the longitudinal normal stresses in the i-th layer of the lower crack arm, 

iLu0  is 
the strain energy density in the same layer, ε  is the distribution of the longitudinal strains. The strain energy 
density is equal to the area, OPQ, enclosed by the stress-strain curve (Fig. 3). Therefore, 

iLu0  is expressed as 
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The present analysis uses the following non-linear stress-strain relation (Lukash, 1998): 
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where iq  and ir  are material properties in the i-th layer.  
 
From (7) and (8), one derives 
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where   
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From (6), (8) and (9), one obtains 
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     It is assumed that iq  and ir  vary continuously in the cross-section of the i-th layer according to the following 
logarithmic laws: 
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where 

i
q0 , 

iqp , 
iqm , 

i
r0 , 

ir
p  and 

ir
m  are material properties. In (12) and (13), 1y  and 1z  vary in the 

intervals [ ]2/;2/ bb−  and [ ]111 ; +ii zz , respectively. The gradients of iq  in width and thickness directions of 

the i-th layer are governed by 
iqp  and 

iqm , respectively. The material properties, 
ir

p  and 
ir

m , control the 

gradients of ir  in the in width and thickness directions of the i-th layer, respectively. Formulae (12) and (13) 

show that iq  and ir  are distributed non-symmetrically with respect to 1y  and 1z .   
 
The distribution of the longitudinal strains is analyzed by applying the Bernoulli’s hypothesis for plane sections 
since the span to height ratio of the beam under consideration is large. It should also be noted that since the beam 
is loaded in pure bending, the only non-zero strain is ε. Thus, according to the small strains compatibility 
equations, ε is distributed linearly in the cross-section. Hence, the strain distribution in the cross-section of the 
left-hand crack arm is written as 
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where 

1Cε  is the strain in the centre of the cross-section, 
1yκ  and 

1z
κ  are the curvatures of lower crack arm in 

the 11 yx  and 11zx  planes, respectively. Concerning the aplicability of the Bernoulli’s hypothesis for plane 
sections, it sholud be  mentioned that this hypothesis has already been used by other authors in fracture analyses 
of inhomogeneous structural members, such as functionally graded beams (Upadhyay and Simha, 2007), 
multilayered beams (Hsueh et al., 2009) and composite beams (Farris and Doyle, 1991).  
 
The quantities,

1Cε , 
1yκ  and 

1z
κ , are determined in the following manner. First, three equations are derived by 

using the conditions for equilibrium of the elementary forces in the cross-section of the lower crack arm 
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where 1N  is the axial force, 

1yM  and 
1z

M  are and bending moments about 1y  and 1z  axes, respectively. 
One can observe in Fig. 2 that  
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By combining of (8), (12), (13), (14), (15), (16) and (17), one obtains 
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It should be noted that at 1=Ln , 0=

iqp , 0=
iqm , 10 =
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p  and 0=
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m , equations (19), (20) and 

(21) transform in  
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It is obvious that (38), (39) and (40) coincide with equations for equilibrium of linear-elastic homogeneous beam 
of rectangular cross-section of width, 1b , and height, 1h , (Dowling, 2007). This fact is an indication for the 

consistency of equations (19), (20) and (21) since at 0=ir  the non-linear stress-strain relation (8) transforms 

into the Hooke’s law assuming that 
i

q0/1  is the modulus of elasticity.  
 
There are four un-knows, 

1Cε , 
1yκ , 

1z
κ  and 

1yM , in equations (19), (20) and (21).  The fact that the two 

crack arms deform with the same curvature in the 44 zx  plane (Fig.1), gives us the following condition 
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where 

2zκ  is the curvature of the upper crack arm in the 22 zx  plane ( 2z  is the vertical centroidal axis of the 
cross-section of the upper crack arm).  
 
Also, it is obvious that  
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where 

2yM  is the bending moment about the horizontal centroidal axis, 2y , of the cross-section of the upper 
crack arm.   
 
By using (19), (20), (21), (41) and (42), the equations for equilibrium of the cross-section of the upper-crack arm 
are written as  
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where Un  is the number of layers in the upper crack arm, 2N  and 

2zM  are, respectively, the axial force and 

the bending moment about 2z  axis (apparently, 02 =N  and 0
2

=zM ), iz2  are 12 +iz  are, respectively, the 

coordinates of the upper and lower surface of the i-th layer in the upper crack arm, 
2Cε  is the strain in the centre 

of the cross-section of the upper crack arm, 
2yκ  is the curvature of the upper crack arm in the 22 yx  plane . The 

quantities, 
iUβ , 

iUδ ,  
iUϕ , 

iUη , 
iUω , 

iUψ , 
iUγ ,  

iUφ ,  
iUθ , 

iUµ ,  
iUν , 

iUζ , 
iUλ ,  

iUf , 
iUg  and 

iUc  are determined by formulae (22) – (37). For this purpose, iz1 , 11 +iz , 
1Cε  and 

1yκ  are replaced with iz2 , 

12 +iz , 
2Cε  and 

2yκ ,  respectively.  
 
Equations (19), (20), (21), (43), (44) and (45) should be solved with respect to 

1Cε , 
1yκ , 

1z
κ , 

2Cε , 
2yκ  and 

1yM  by using the Matlab computer program.   
 
The complementary strain energy cumulated in the upper crack arm is expressed as 
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where the complementary strain energy density, *

0 iUu , in the i-th layer of the upper crack arm is obtained by 

(11). For this purpose, ε  is replaced with Uε . The distribution of the longitudinal strains, Uε , in the cross-

section of the upper crack arm is obtained by (14) by replacing of ε , 
1Cε , 

1yκ , 
1z

κ , 1y  and 1z  with Uε , 

2Cε , 
2yκ , 

2zκ , 2y  and 2z , respectively.   
 
The complementary strain energy cumulated in the un-cracked beam portion is written as 
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where n  is the number of the layers in the un-cracked beam portion, iz3  and 13 +iz  are, respectively, the 

coordinates of the upper and lower surfaces of the i-th layer, *
0 iRu  is the complementary strain energy density in 

the same layer, 3y  and 3z  are the centroidal axes of the cross-section of the un-cracked beam portion.   
 
Formula (11) is applied to obtain *

0 iRu . For this purpose, ε  is replaced with Rε . Formula (14) is used to 

obtain the distribution of the longitudinal strains, Rε , in the cross-section of the un-cracked beam portion. For 

this purpose, ε , 
1Cε , 

1yκ , 
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κ , 1y  and 1z  are replaced with Rε , 
3Cε , 
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3zκ , 3y  and 3z , respectively. 

Here, 
3Cε  is the longitudinal strain in the centre of the cross-section of the un-cracked beam portion, 

3yκ  and 

3zκ  are the curvatures of the un-cracked beam portion, respectively,  in the 33 yx  and 33zx  planes, 3y  and 3z  
are the centroidal axes of the cross-section of the un-cracked beam portion. Equations (19), (20) and (21) are 
used to determine 
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The strain energy cumulated in the beam is expressed as 
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where LU , UU  and RU  are the strain energies in the lower crack arm, the upper crack arm and the un-cracked 
beam portion, respectively.  
 

LU  is written as 
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where 
iLu0  is obtained by formula (9).          

 
The strain energy cumulated in the upper crack arm is expressed as 
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Formula (9) is applied to obtain 

iUu0 . For this purpose, ε  is replaced with Uε . 
 
The strain energy in the un-cracked beam portion is written as 
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where 

iRu0  is determined by (9) by replacing of ε  with Rε . 
 
Finally, by substituting of (3), (4), (5), (46), (47), (48), (49), (50) and (51) in (2), one obtains 
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The integration in (52) should be performed by the MatLab computer program. The derivative, ( )...
M∂
∂

, in 

(52) should be determined numerically by the MatLab computer program. 
 
The solution for the strain energy release rate (52) is verified by the J-integral approach (Broek, 1986). The J-
integral is solved along the integration contour, Γ , shown by a dashed line in Fig.1. Since the J-integral has non-

zero values only in segments, 1Γ , 2Γ  and 3Γ , of the integration contour, the J-integral solution is written as 
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where 

1ΓJ , 
2ΓJ  and 

3ΓJ  are the values of the J-integral in segments 1Γ , 2Γ  and 3Γ , respectively ( 1Γ  and 

3Γ  coincide, respectively, with the cross-sections of the lower and upper crack arms, 2Γ  coincides with the 
clamping).    
 
First, the integration is performed in segment, 1Γ . The J-integral is written as 
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where α is the angle between the outwards normal vector to the contour of integration and the crack direction, 

ixp  and 
iyp  are the components of stress vector in the i-th layer of the lower crack arm, u and v are the 

components of displacement vector with respect to the coordinate system xy (x is directed along the delamination 
crack), ds is a differential element along the contour of integration.  
 
The components of 

1ΓJ  are expressed as 
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        0=

iyp ,                                                                                                                                                     (56)         
  
        1dzds = ,                                                                                                                                                    (57) 
 
       1cos −=α .                                                                                                                                                (58)   
 
In (55), iσ  is determined by (8). The following formula from Mechanics of materials is applied to obtain the 

partial derivative, xu ∂∂ / , in (54): 
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The J-integral in segment, 2Γ , is written as 
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where  
 
      ixRi

p σ= ,                                                                                                                                                     (61) 
 
      0=

iyRp ,                                                                                                                                                     (62)          
 
      3dzdsR −= ,                                                                                                                                                (63) 
 
       1cos =Rα ,                                                                                                                                                 (64)   
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In (61), iσ  is obtained by (8) by replacing of ε  with Rε . 
 
In segment, 3Γ , the J-integral is expressed as 
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where 
 
            ixUi

p σ−= ,                                                                                                                                          (67) 
 
            0=

iyUp ,                                                                                                                                               (68)          
 
            2dzdsU = ,                                                                                                                                            (69) 
 
           1cos −=Uα .                                                                                                                                         (70) 
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In (67), iσ  is obtained by (8) by replacing of ε  with Uε . 
 
The average value of the J-integral along the delamination crack front is expressed as 
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Finally, by substituting of (53), (54), (60) and (66) in (72), one obtains 
 

+















∂
∂

+
∂
∂

−= ∫∑ ∫
+=

=
−

dsdy
x
vp

x
upu

b
J

i

i

iii

L
z

z
yxL

ni

i

b

b
av 10

1

2

2

11

1

cos1
α  

+















∂
∂

+
∂
∂

−+ ∫∑ ∫
+=

=
−

R

z

z R
yR

R
xRRR

ni

i

b

b

dsdy
x
vp

x
upu

b

i

i

iii 10
1

2

2

13

3

cos1
α  

U

z

z U
yU

U
xUUU

ni

i

b

b

dsdy
x
vp

x
upu

b

i

i

iii

U

10
1

2

2

12

2

cos1
∫∑ ∫

+

















∂
∂

+
∂
∂

−+
=

=
−

α .                                                             (73) 

 
The integration in (73) is carried-out by the MatLab computer program. The J-integral values obtained by (73) 
match the strain energy release rates calculated by (52). This fact proves the correctness of the delamination 
fracture analysis developed in the present paper.    
 
 
3 Parametric Investigations 
 
Parametric investigations of the delamination fracture are performed. The two three-layered functionally graded 
cantilever beam configurations shown in Fig. 4 are considered. A delamination crack is located between layers 2 
and 3 in the beam configuration shown in Fig. 4a. A beam configuration with a delamination crack between 
layers 1 and 2 is also analyzed (Fig. 4b). The thickness of each layer is lt . Calculations of the strain energy 
release rate are performed for both beam configurations (Fig. 4) by applying formula (52). The strain energy 
release rate is presented in non-dimensional form by using the formula ( )bqGGN 10/= . It is assumed that 
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025.0=b  m, 004.0=lt  m and 50=M  Nm. In order to evaluate the effect of the gradient of the material 

property, 1q , along the width of layer 1 on the delamination fracture behaviour, the strain energy release rate is 

plotted in non-dimensional form against 
1qp  in Fig. 5 for both beam configurations shown in Fig. 4.  

 
Figure 4: Two three-layered functionally graded beam configurations 

 
It is assumed that 7.1

1
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2
=qp , 3.1

2
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3
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11 00 =qr , 6.0
2

=rp , 5.1
2

=rm , 8.0/
12 00 =qr , 

9.1
3

=rp , 8.0
3

=rm  and 2.2/
13 00 =qr . The curves in Fig. 5 indicate that the strain energy release rate 

increases with increasing of 
1qp . This behaviour is due to the fact that the beam stiffness decreases with 

increasing of 
1qp . The curves in Fig. 5 show also that the strain energy release rate increases when the 

delamination crack location changes from this shown in Fig. 4a to that shown in Fig. 4b.  
 
The influence of the gradient of 1q  along the thickness of layer 1 on the strain energy release rate is also 
investigated. For this purpose, the strain energy release rate in non-dimensional form is presented as a function of 

1qm  in Fig. 6. The three-layered functionally graded beam configuration with a delamination crack located 

between layers 1 and 2 (Fig. 4b) is analyzed. It is assumed that 6.0
1

=qp , 2.1
2

=qp , 3.1
2

=qm , 

8.0/
12 00 =qq , 4.1

3
=qp , 6.1

3
=qm , 7.1/

13 00 =qq , 6.0
1

=rp , 5.0
1

=rm , 4.1/
11 00 =qr , 

6.0
2

=rp , 5.1
2

=rm , 8.0/
12 00 =qr , 9.1

3
=rp , 8.0

3
=rm  and 2.2/

13 00 =qr . One can observe in Fig. 

6 that the strain energy release rate increases with increasing of 
1qm . The effect of the non-linear mechanical 

behaviour of the functionally graded material on the strain energy release rate is evaluated too. The three-layered 
functionally graded beam configuration shown in Fig. 4b is considered. The strain energy release rate derived 
assuming linear-elastic behaviour of the functionally graded material is plotted in non-dimensional form against 

1qm  in Fig. 6 for comparison with the non-linear solution. It should be noted that the linear-elastic solution for 

the strain energy release rate is derived by substituting of 00 =
i

r  in formula (52). It can be observed in Fig. 6 
that the non-linear behaviour of the functionally graded material leads to increase of the strain energy release 
rate. 
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Figure 5: The strain energy release rate in non-dimensional form presented as a function of material property, 

1qp , for the three-layered functionally graded beam containing a crack between layers 2 and 3 (curve 1) and the 
three-layered functionally graded beam containing a crack between layers 1 and 2 (curve 2) 

 
The influence of the gradients of the material property, 1r , along the width as well as along the thickness of layer 
1 on the strain energy release rate is also explored.  

 
Figure 6: The strain energy release rate in non-dimensional form presented as a function of material property, 

1qm , at linear-elastic behaviour of the functionally graded material (curve 1) and non-linear behaviour of the 
functionally graded material (curve 2) 

 
For this purpose, the strain energy release in non-dimensional form is presented as a function of 

1r
p  in Fig. 7 at 

three values of 
1r

m . 
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Figure 7: The strain energy release rate in non-dimensional form presented as a function of material property, 

1r
p , at 5.0

1
=rm  (curve 1), 7.0

1
=rm  (curve 2) and 2.1

1
=rm  (curve 3) 

 
 The three-layered functionally graded beam configuration with a delamination crack between layers 1 and 2 
(Fig. 4b) is considered. It is assumed that 6.0

1
=qp , 7.0

1
=qm , 2.1

2
=qp , 3.1

2
=qm , 8.0/
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3
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3

=rm  and 2.2/
13 00 =qr . The curves in Fig. 7 show that the strain energy release rate 

increases with increasing of 
1r

p  and 
1r

m .  
        
 
4 Conclusions 
 
The delamination fracture in multilayered functionally graded cantilever beam configuration is analyzed with 
taking into account the non-linear mechanical behaviour of the material. It is assumed that the material in each 
layer is functionally graded in both width and thickness directions. The non-linear behaviour of the functionally 
graded material is described by using a stress-strain relation that involves two material properties. Logarithmic 
laws are applied to describe the continuous variation of the two material properties in the cross-sections of the 
layers. It should be mentioned that the material properties are distributed non-symmetrically with respect to the 
centroidal axes of the beam cross-section. A solution for the strain energy release rate is derived by considering 
the balance of the energy. A comparison with the J-integral approach is performed for verification. The solution 
obtained is applicable for beams made of an arbitrary number of functionally graded layers which have different 
thicknesses and material properties. Parametric investigations of the delamination fracture behaviour are carried-
out. Two three-layered functionally graded beam configurations are considered in order to evaluate the effect of 
the crack location along the beam height. It is found that the strain energy release rate increases when the 
material properties, 

1qp  and 
1qm , increase (

1qp  and 
1qm  govern the gradients of the material property, 1q , in 

the width and thickness directions of layer 1, respectively). The analysis reveals also that the strain energy release 
rate increases with increasing of 

1r
p  and 

1r
m  (

1r
p  and 

1r
m  govern the gradients of the material property, 1r , in 

the width and thickness directions of layer 1, respectively). The results obtained in the present paper show that 
the strain energy release rate can be controlled by employing materials with appropriate two-dimensional 
gradients in the design stage of the multilayered functionally graded non-linear elastic structural members and 
components.         
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