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Torsional Wave Frequency in Corrugated Poroelastic Layer Bonded
Between Anisotropic Media

S. A. Sahu, K. K. Pankaj, S. Kumari

An analytical solution is obtained for torsional surface wave propagating in pre-stressed poroelastic layer sand-
wiched between transversely isotropic and pre-stressed viscoelastic half-spaces with non-planer boundaries. Fre-
quency equation has been established in closed form. Separation of variables method is adopted to obtain the
dispersion relation. Substantial influence of corrugated boundary, initial stresses, porosity and inhomogeneity on
the phase velocity of considered surface wave has been presented through graphs. Proposed study finds its possible
applications in the fields of geophysics and seismology. Results may be extended to interpret the seismic activities
near the crust-mantle boundary.

1 Introduction

The stress which is present in an elastic medium in the absence of external force is called initial stress and the
medium is said to be initially stressed. The earth is an initially stressed medium possessing different layers where
initial stresses exist because of dissimilarity in temperature, weight, overburden of layer, slow process of creep,
gravitation, etc. These stresses have noteworthy effect on the propagation pattern of harmonic waves exhibited
by earthquakes or explosions. Knowledge of propagation behavior of different seismic waves are of great signifi-
cance due to their practical importance in many engineering branches including rock mechanics and Geophysical
prospecting. Several authors applied the theory given by Biot (1965) for studying the propagation behavior of
surface wave in initially stressed medium. Dey and Sarkar (2002) observed the effect of initial stress in porous
medium when a torsional wave propagates through it. Torsional surface wave is horizontally polarized in nature
and twirls the medium when it propagates through it. It is one kind of elastic wave that causes only circumferen-
tial displacement of particles which is independent of azimuthal angle. Under the influence of these waves, the
medium particles twist either clockwise or anticlockwise as per the direction of motion of the waves. Some kind
of surface waves are torsional in nature. The torsional surface wave exhibits peculiar characteristics due to having
non-dispersive nature which unravels that the shape of the wave unaltered during progression of torsional surface
wave. The propagation of torsional surface wave in different types of elastic medium received considered attention
of many researchers and scientists from many decades. The phenomena of torsional surface wave in anisotropic
and heterogeneous half-space subjected to initial compressive stress was studied by Chattopadhyayet al. (2013).
Georgiadiset al. (2000) analyzed that the propagation of torsional surface wave also exist in linear gradient elastic
half-space. Vardoulakis (1984) discussed about the dispersion of torsional surface wave in two different types of
inhomogeneous elastic media. Singh and Laxman (2016) have investigated the propagation of torsional wave in a
corrugated doubly layered half-space. Recently, Paswanet al. (2017) studied the propagation of torsional surface
wave in heterogeneous fibre-reinforced layer lying over heterogeneous half-space.

Pores and solid matrix together forms the porous medium. The pores of these medium are generally occupied
with liquid or gas. Porous layers are naturally found beneath the Earth’s surface. Almost every naturally occurring
solid material is considered to be the example of porous media. Several authors dealt with the propagation of
wave in porous media including Sharma and Gogna (1991), Gardner (1962). Gupta and Gupta (2011) examined
the phenomena of torsional surface wave propagation in anisotropic poroelastic half-space under the influence of
gravity. The investigation of torsional surface wave in anisotropic poroelastic layer lying over inhomogeneous
half-space has been carried out by Chattarajet al. (2011). The interface between different substrates of the Earth
are not always uniformly arranged as mountains, basins, mountain roots etc. also exist. The irregular boundaries at
the interface may be of different geometrical shapes (like rectangular, triangular, parabolic, corrugated boundary,
etc.). The problems with corrugated boundaries have much significance in seismology due to their closeness to
the natural situation, as they leads to better comprehension and interpretation of seismic behavior at continental
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margins, mountain roots, etc. Propagation of seismic waves in the medium having uneven or corrugated boundaries
was discussed by Chattopadhyay and De (1983), Tomar and Kaur (2007). The elastic materials with vertical axis of
symmetry in which elastic properties of the materials change in vertical direction but not in a plane perpendicular
to that axis are said to be transversely isotropic. These types of materials shows hexagonal symmetry. Few
examples of transversely isotropic material are the crystals of hexagonal symmetry such as Cadmium, Cobalt,
Beryl and Zinc etc. Wang and Zhang (1998) have considered the propagation of Love waves in an inhomogeneous
porous layer lying over an inhomogeneous half-space. Coal tar, salt, sediments, etc., are some of the examples
of viscoelastic material found underneath the earth surface. Kauret al. (2005) studied the behavior of shear
wave propagation in heterogeneous viscoelastic half-space with corrugated interface. Horizontally polarized shear
wave (SH-wave) propagation in viscoelastic medium with irregularity is studied by Chattopadhyayet al. (2010).
Kumari and Sharma (2014) investigated the propagation characteristics of torsional surface wave in a viscoelastic
layer overlying an inhomogeneous elastic half-space.

This paper attempts to study the torsional waves behavior in pre-stressed poroelastic layer embraced between
a transversely isotropic half-space and a pre-stressed viscoelastic half-space, with corrugated boundaries. The
considered sandwich structure is much closer to the asthenosphere that forms the transition zone between the lower
crust and mantle. Our main thrust is to study the wave characterization in considered structure theoretically which
supports the selection of solution method to be analytic, in particular separation of variables method is adopted
for the solution. The frequency equation has been obtained analytically in closed form and the noteworthy effect
of the flatness parameter, initial stress, inhomogeneity parameter and porosity parameter on the phase velocity of
torsional surface wave has been depicted with the help of graphs.

2 Mathematical Formulation and Solution

To model the present problem, we have considered cylindrical coordinate system in such a fashion thatr-axis
is along the direction of torsional wave propagation andz-axis is considered positive in vertically downward
direction. As shown in Fig. 1,M ′ : ϕ1(r) − H ≤ z ≤ ϕ2(r) represents the pre-stressed porous layer with
corrugated boundaries sandwiched between a transversely isotropic half-spaceM : ϕ1(r) − H ≤ z < −∞ and a
pre-stressed viscoelastic half-spaceM ′′ : ϕ2(r) ≤ z < ∞; whereϕ1(r) andϕ2(r) are continuous functions ofr,
representing the corrugated boundaries of porous layer;H is the average thickness of porous layer.

As functionsϕl(r) are periodic in nature, their Fourier series expansions may be given by (Asano, 1966)

ϕl(r) =
∞∑

n=1

(
ϕl

neinbr + ϕl
−ne−inbr

)
, l = 1, 2. (1)

where,ϕl
n andϕl

−n are the coefficients of Fourier series expansion,2π/b is wavelength of corrugation, n is the
order of series expansion.

when the Fourier series expansion coefficients are given by

ϕl
±n =






ξ1
2 if n = 1, l = 1
ξ2
2 if n = 1, l = 2
0 if n 6= 1

Eq. (1) leads to the expressions for corrugated common interfaces in the concerned problem in cosine term i.e.
ϕ1(r) = ξ1 cos(br), ϕ2(r) = ξ2 cos(br); whereξ1 andξ2 are the corresponding amplitudes of corrugation.

221



Figure 1: Schematic diagram of the problem

2.1 Formulation and Solution for Transversely Isotropic Half-Space(M)

The equation of motion for transversely isotropic half-space is taken from Vishwakarmaet al. (2013) as

∂τrr

∂r
+

1
r

∂τrθ

∂θ
+

∂τrz

∂z
+

τrr − τθθ

r
= ρ′1

∂2u′
1

∂t2
,

∂τrθ

∂r
+

1
r

∂τθθ

∂θ
+

∂τθz

∂z
+

2τrθ

r
= ρ′1

∂2v′
1

∂t2
, (2)

∂τrz

∂r
+

1
r

∂τθz

∂θ
+

∂τzz

∂z
+

τrz

r
= ρ′1

∂2w′
1

∂t2
,

where,τij(i, j = r, θ, z) are components of stress;u′
1, v

′
1, w

′
1 are displacement components in radial(r), azimuthal

(θ), and axial(z) direction respectively;t is time andρ′1 is density of uppermost transversely isotropic half-space.

For torsional wave propagation alongr- direction and causing displacement inθ- direction only, we have

u′
1 = 0, w′

1 = 0, v′
1 = v′1(r, z, t),

∂

∂θ
≡ 0. (3)

The constitutive stress-strain relations for isotropic medium are given by

τrr = λ1Δ + 2μ1err, τθθ = λ1Δ + 2μ1eθθ, τzz = λ1Δ + 2μ1ezz, τrθ = 2μ1erθ,

τrz = 2μ1erz, τθz = 2μ1eθz, (4)

where,λ1, μ1 are Lames constants andΔ = ∂u′
1

∂r + 1
r

∂v′
1

∂θ + u′
1

r + ∂w′
1

∂z is dilatation.

Strain and displacement components are related as

err =
∂u′

1

∂r
, eθθ =

1
r

∂v′
1

∂θ
+

u′
1

r
, ezz =

∂w′
1

∂z
, erθ =

1
r

∂u′
1

∂θ
+

∂v′
1

∂r
−

v′
1

r
, eθz =

∂v′
1

∂z
+

1
r

∂w′
1

∂θ
,

ezr =
∂w′

1

∂r
+

∂u′
1

∂z
. (5)

In view of Eqs. (2 - 5), non-vanishing equation of motion and stress components are

∂τrθ

∂r
+

∂τzθ

∂z
+

2
r
τrθ = ρ′1

∂2v′
1

∂t2
. (6)

τrθ = μL

(
∂v′

1

∂r
−

v′1
r

)

, τzθ = μT
∂v′

1

∂z
. (7)
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where,μL andμT are directional rigidities along radial(r) and axial(z) directions respectively.

Eqs. (6) and (7) leads to

μL

(
∂2v′

1

∂r2
−

v′
1

r2
+

1
r

∂v′
1

∂z

)

+
∂

∂z

(

μT
∂v′

1

∂z

)

= ρ′1
∂2v′

1

∂t2
. (8)

We consider inhomogeneity in half-space by considering density(ρ′1) and directional rigidities(μL, μT ) as func-
tion of z given by

μL = μL0e
z
α , μT = μT 0e

z
α , ρ′1 = ρ′10e

z
α . (9)

where,α is a real valued positive parameter, having dimension same that of length and is termed as inhomogeneity
parameter.

For a harmonic wave propagation alongr- direction, we may assume the solution of Eq. (8) as

v′1 = V ′
1(z)J1(k r)eiωt (10)

Where,J1 is Bessel’s function of first order and first kind,k is wave number,ω is frequency.

Using Eq. (10), in Eq. (8) gives

d2V ′
1

dz2
+

1
μT

dμT

dz

dV ′
1

dz
−

k2μL

μT

(

1 −
c2ρ′1
μL

)

V ′
1 = 0. (11)

On substitutingV ′
1 = V ′′

1√
μT

and using Eq. (9) in Eq. (11) leads to

d2V ′′
1

dz2
− n2

1V
′′
1 = 0, (12)

Where, n2
1 = k2

[
1

4α2k2 + μL0
μT0

(
1 − c2

c2
0

)]
, c0 =

√
μL0
ρ′
10

.

The solution of Eq. (12) is given byV ′′
1 (z) = B1e

n1z + B′
1e

−n1z , whereB1 andB′
1 are arbitrary constants.

Using the fact that displacement component must vanish asz → −∞ which requires lim
z→−∞

V1
′′(z) = 0, thus the

appropriate solution of Eq. (12) is

V1
′′(z) = B1e

n1z. (13)

Hence the component of displacement in the uppermost transversely isotropic half-space(M) is obtained as

v′1 = B1e
(n1− 1

2α )z J1(kr)
√

μT0
eiωt. (14)
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2.2 Formulation and Solution for Initially Stressed Porous Layer(M′)

Dynamical equations of motion for the porous layer under the influence of initial stress(P1) in absence of body
forces and fluid viscosity are given by following Biot (1965) as

∂srr

∂r
+

1
r

∂srθ

∂θ
+

∂srz

∂z
+

srr − sθθ

r
− P1

(
∂ωz

∂θ
−

∂ωθ

∂z

)

=
∂2

∂t2
(drru

′
2 + drθU1) ,

∂srθ

∂r
+

1
r

∂sθθ

∂θ
+

∂sθz

∂z
+

2
r
srθ − P1

∂ωz

∂r
=

∂2

∂t2
(drrv

′
2 + drθV1) ,

∂srz

∂r
+

1
r

∂sθz

∂θ
+

∂szz

∂z
+

srz

r
− P1

∂ωθ

∂r
=

∂2

∂t2
(drrw

′
2 + drθW1) , (15)

∂s

∂r
=

∂2

∂t2
(drθu

′
2 + dθθU1) ,

∂s

∂θ
=

∂2

∂t2
(drθv

′
2 + dθθV1) ,

∂s

∂z
=

∂2

∂t2
(drθw

′
2 + dθθW1) ,

Where,sij , (i, j = r, θ, z) are components of stress acting on solid part ands is the stress acting on fluid part of
porous material;(u′

2, v
′
2, w

′
2) and(U1, V1,W1) are the displacement components for solid and fluid part respec-

tively; ωj is rotational component;P1 denote the initial stress acting on porous layer saturated with fluid along
radial direction.

The stress acting on fluid can be defined in terms of fluid pressurep through the relation as

−s = fp, (16)

where,f is layer porosity.

The mass coefficientsdrr, drθ anddθθ are related to the mass densitiesρ′2, ds, dl of layer, solid and fluid respec-
tively by

drr + drθ = (1 − f) ds, drθ + dθθ = fdl, ρ′2 = ds + f (dl − ds) . (17)

Biot (1956(I), 1956(II)) has also shown that the said mass coefficients satisfy the following inequalities

drr > 0, dθθ > 0, drθ < 0, drrdθθ − d2
rθ > 0 . (18)

The constitutive stress - strain relationship for porous layer are as

srr = (A1 + P1) err + (A1 − 2N ′ + P1) eθθ + (F1 + P1) ezz + Q1ε,

sθθ = (A1 − 2N ′) err + A1eθθ + F1ezz + Q1ε, (19)

szz = F1err + F1eθθ + C1ezz + Q1ε,

srθ = 2N ′erθ , sθz = 2L′eθz , srz = 2L′ezr , ε =
∂U1

∂r
+

∂V1

∂θ
+

∂W1

∂z
,

whereA1, F1, C1 are elastic constants of the medium;Q1 is a positive quantity which represents the extent of
coupling between the change of volume of the solid and fluid;N ′, L′ are rigidities of porous medium alongr and
z directions respectively.

Rotational components are given by

ωr =
1
2r

(
∂w′

2

∂θ
− r

∂v′
2

dz

)

, ωθ =
1
2

(
∂u′

2

∂z
−

∂w′
2

dr

)

, ωz =
1
2r

(
∂ (rv′

2)
∂r

−
∂u′

2

dθ

)

. (20)

Strain and displacement components are related as

err =
1
2

∂u′
2

∂r
, ezz =

1
2

∂w′
2

∂z
, eθθ =

1
2

(
1
r

∂v′
2

∂θ
+

u′
2

r

)

, erθ =
1
2

(
1
r

∂u′
2

∂θ
+

∂v′
2

∂r
−

v′
2

r

)

,

eθz =
1
2

(
∂v′

2

∂z
+

1
r

∂w′
2

∂θ

)

erz =
1
2

(
∂w′

2

∂r
+

∂u′
2

∂z

)

. (21)
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The displacement components for the considered wave whose direction of propagation is alongr- axis is given by

u′
2 = 0, v′

2 = v′
2(r, z, t), w′

2 = 0,

U1 = 0, V1 = V1(r, z, t), W1 = 0. (22)

Using Eq. (22) in Eqs. (20) and (21), the non-vanishing strain and rotational components are

erθ =
1
2

(
∂v′

2

∂r
−

v′
2

r

)

, eθz =
1
2

(
∂v′

2

∂z

)

(23)

ωr = −
1
2

∂v′
2

dz
, ωz =

1
2r

∂

∂r
(rv′

2) . (24)

Using Eqs. (23) and (22) in Eq. (19), the non-vanishing stress components are

srθ = N ′

(
∂v′

2

∂r
−

v′
2

r

)

, sθz = L′

(
∂v′

2

∂z

)

. (25)

Using Eqs. (22), (24) and (25) in Eq. (15), we get

(

N ′ −
P1

2

)(
∂2v′

2

∂r2
+

1
r

∂v′
2

∂r
−

v′
2

r2

)

+ L′ ∂
2v′

2

∂z2
=

∂2

∂t2
(drrv

′
2 + drθV1) , (26)

∂2

∂t2
(drθv

′
2 + dθθV1) = 0. (27)

EliminatingV1 from Eqs. (26) and (27), we obtain

(

N ′ −
P1

2

)(
∂2v′2
∂r2

+
1
r

∂v′
2

∂r
−

v′
2

r2

)

+ L′ ∂
2v′

2

∂z2
= T2

∂2v′
2

∂t2
. (28)

where,T2 = drr −
d2

rθ

dθθ
.

We assume the solution of Eq. (28) as

v′
2 = V ′

2(z)J1(kr)eiωt. (29)

Using Eq. (29) in Eq. (28), we have

d2V ′
2

dz2
+ λ2

2V
′
2 = 0, (30)

where,λ2
2 =

k2N ′(1− P1
2N′ )

L′

{
T

(1− P1
2N′ )

c2

β2
2
− 1

}

, T = T2
ρ′
2
, β2

2 = N ′

ρ′
2
.

The solution of Eq. (30) is given by

V ′
2 = (B2 sin λ2z + B′

2 cos λ2z) , (31)

whereB2 andB′
2 are arbitrary constants.

Thus the component of displacement in poroelastic layer is

v′2 = (B2 sin λ2z + B′
2 cos λ2z) J1(kr)eiωt. (32)
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2.3 Formulation and Solution for Pre-stressed Viscoelastic Half-Space(M′′)

Let us consider(u′
3, v

′
3, w

′
3) are components of displacement alongr, θ, andz directions respectively for lower

viscoelastic half-space influenced by initial stress. For the propagation of torsional surface wave we have

u′
3 = w′

3 = 0, v′
3 = v′

3(r, z, t),
∂

∂θ
≡ 0. (33)

In the pre-stressed viscoelastic half-space the only existing equation of motion is given by (Biot 1965)

(

μv + μ′
v

∂

∂t

)(
∂2v′

3

∂r2
+

∂2v′
3

∂z2
+

1
r

∂v′
3

∂r
−

v′
3

r2

)

−
∂

∂z

(
P

2
∂v′

3

∂z

)

= ρ′3
∂2v′

3

∂t2
. (34)

where,μv is modulus of rigidity;μ′
v is parameter of internal friction as a result of viscoelasticity;ρ′3 is the density

of viscoelastic half-space;P is initial stress on viscoelastic half-space acting along radial direction.

The stress-displacement equations for existing components of stress in the viscoelastic half space is given by

σθz =

(

μv + μ′
v

∂

∂t

)
∂v′

3

∂z
, σrθ =

(

μv + μ′
v

∂

∂t

)(
∂v′

3

∂r
−

v′
3

r

)

. (35)

We consider the solution of Eq. (34) as

v′3 = V ′
3(z)J1(kr)eiωt. (36)

Using Eq. (36), Eq. (34) leads to

d2V ′
3

dz2
− λ2

3 V ′
3 = 0, (37)

where,λ2
3 = k2






1− c2

β2
3

(
1+

iωμ′
v

μv

)

1− P

2μv

(
1+

iωμ′
v

μv

)





, β2

3 = μv

ρ′
3
.

On solving Eq. (37), we obtain

V ′
3(z) = B3e

−λ3z + B′
3e

λ3z, (38)

where,B3 andB′
3 are arbitrary constants.

Using the fact thatlim
z→∞

V ′
3(z) = 0 , the appropriate solution of Eq. (37) isV ′

3(z) = B3e
−λ3z.

Therefore, the components of displacement in the lowermost initially stressed viscoelastic half-space is given by

v′3 = B3 J1(kr) eiωt−λ3z. (39)

3 Boundary Conditions and Dispersion Equation

Continuity of displacements and stresses gives the boundary conditions for the present problem

• At the common corrugated interface of layer(M ′) and upper half-space(M) i.e. atz = ϕ1(r) − H

v′
1 = v′

2, (40)

τzθ − ϕ̇1(r)τrθ = szθ − ϕ̇1(r)srθ. (41)

• At the common corrugated interface of layer(M ′) and lower half-space(M ′′) i.e. atz = ϕ2(r)

v′
2 = v′

3, (42)

szθ − ϕ̇2(r)srθ = σzθ − ϕ̇2(r)σrθ. (43)
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Where,ϕ̇i represents the derivative ofϕi with respect tor.

Using displacement componentsv′1, v
′
2, v

′
3 from Eqs. (14), (32), (39) and stress components from Eqs. (7), (25),

(35) in the boundary conditions (40 - 43), we get

B1e
(n1− 1

2α )(ϕ1−H) − B2
√

μT0 sin (λ2 (ϕ1 − H)) − B′
2

√
μT0 cos (λ2 (ϕ1 − H)) = 0, (44)

B1e
(n1+

1
2α )(ϕ1−H)

{
√

μT0

(

n1 −
1
2α

)

− ϕ̇1
μL0k
√

μT0
J

}

−B2 {L
′λ2 cos (λ2 (ϕ1 − H)) − ϕ̇1N

′k J sin (λ2 (ϕ1 − H))}

+B′
2 {L

′λ2 sin (λ2 (ϕ1 − H)) + ϕ̇1N
′k J cos (λ2 (ϕ1 − H))} = 0, (45)

B2 sin (λ2ϕ2) + B′
2 cos (λ2ϕ2) − B3e

−λ3ϕ2 = 0, (46)

B2 {L
′λ2 cos (λ2ϕ2) − ϕ̇2N

′k J sin (λ2ϕ2)} − B′
2 {L

′λ2 sin (λ2ϕ2) + ϕ̇2N
′k J cos (λ2ϕ2)}

+B3e
−λ3ϕ2 (μv + iμ′

vω) (λ3 + ϕ̇2k J) = 0. (47)

where,J = J̇1(kr)
J1(kr) −

1
kr , J̇1 represents derivative ofJ1 with respect tor.

Eliminating arbitrary constantsB1, B2, B3 andB′
2 from Eqs. (44 - 47), we find the complex velocity equation as

2L′λ2e
(n1− 1

2α )(ϕ1−H)α +
(
Q1 + 2e(n1− 1

2α )(ϕ1−H)αkJN ′ϕ̇1

)
tan [λ2 (H − ϕ1 + ϕ2)] =

Q2 − iQ3

Q2
2 + Q2

3

{
Q4 tan [λ2 (H − ϕ1 + ϕ2)] − L′λ2

(
Q1 + 2e(n1− 1

2α )(ϕ1−H)αkJN ′ (ϕ̇1 − ϕ̇2)
)}

. (48)

where,

Q1 = 2e(n1+
1
2α )(ϕ1−H) (2n1αμT0 − μT0 − 2αkJμL0ϕ̇1) , Q2 = A1 + μvJkϕ̇2,

Q3 = A2 + μ′
vJkωϕ̇2, Q4 = Q1kJN ′ϕ̇2 + 2e(n1− 1

2α )(ϕ1−H)α
(
L′2λ2

2 + k2J2N ′2ϕ̇1ϕ̇2

)
,

A1 =
k
√

2

(√
γ2
1 + γ2

2 + γ1

)1/2

, A2 =
k
√

2

(√
γ2
1 + γ2

2 − γ1

)1/2

γ1 = D1D3 − D2D4, γ2 = D2D3 + D1D4, D1 = μv
2 − ω2μ′

v
2
, D2 = 2ωμvμ′

v,

D3 =

(
2μvβ2

3 − 2μc2
) (

2μvβ2
3 − Pβ2

3

)
+
(
2ωμ′

vβ2
3

)2

(2μvβ2
3 − Pβ2

3)2 + (2ωμ′
vβ2

3)2
, D4 =

(
2μvc2 − Pβ2

3

) (
2ωμ′

vβ2
3

)2

(2μvβ2
3 − Pβ2

3)2 + (2ωμ′
vβ2

3)2
.

The real part of Eq. (48) gives the dispersion equation and the imaginary part gives damping equation associated
with torsional surface wave propagation. In the present study we are concern about only the dispersive nature of
considered surface wave and hence we consider only the dispersion equation for characterization of considered
wave.

Equating the real parts of Eq. (48) we get the following relation

2L′λ2e
(n1− 1

2α )(ϕ1−H)α +
(
Q1 + 2e(n1− 1

2α )(ϕ1−H)αkJN ′ϕ̇1

)
tan [λ2 (H − ϕ1 + ϕ2)] =

Q2

Q2
2 + Q2

3

{
Q4 tan [λ2 (H − ϕ1 + ϕ2)] − L′λ2

(
Q1 + 2e(n1− 1

2α )(ϕ1−H)αkJN ′ (ϕ̇1 − ϕ̇2)
)}

. (49)

Eq. (49) is the dispersion equation for torsional surface waves propagating in pre-stressed poroelastic layer sand-
wiched between transversely isotropic and pre-stressed viscoelastic half-spaces with non-planer boundaries.
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4 Particular Cases

4.1 Case 1

If the uppermost half-space is absent; only corrugated common interface isϕ2(r) i.e. ϕ1(r) = 0, then dispersion
equation (49) reduces to

Q2

Q2
2 + Q2

3

{L′λ2 tan [λ2 (H + ϕ2)] + (kJN ′ϕ̇2)} = 1. (50)

which is the dispersion equation for torsional surface wave propagation in pre-stressed poroelastic layer overlying
pre-stressed viscoelastic half-spaces with corrugated interface.

4.2 Case 2

If the uppermost half-space is absent; intermediate layer is made free from porosity, initial stress and corrugated
interface i.e.T → 1, P1 = 0, ϕ1 (r) = ϕ1 (r) = 0 and alsoN ′ = L′ = μ′, then dispersion equation (49) reduces
to

tan

[

kH

√
c2

β2
02

− 1

]

=
A2

1 + A2
2

A1

1

μ′k
√

c2

β2
02

− 1
. (51)

where,β2
02 = μ′

ρ′
2
.

which is the dispersion equation for torsional surface wave propagation in an isotropic layer overlying pre-stressed
viscoelastic half-spaces with corrugated interface. The obtained dispersion equation (51) is in well agreement with
the result obtained by Singhet. al. (2015).

4.3 Case 3

If the uppermost half-space is absent; intermediate layer is made free from porosity(T ), initial stress(P1) and
corrugated boundaries(ϕ1(r), ϕ2(r)) and alsoN ′ = L′ = μ′. Lower most half-space is made free from initial
stress and viscoelasticity i.e.P = 0, μ′

v = 0 ; then the considered problem becomes problem of homogeneous
isotropic layer overlying a homogeneous isotropic half space and Eq. (49) reduces to

tan kH

√
c2

β2
02

− 1 =
μv

√
1 − c2

β2
3

μ′
√

c2

β2
02

− 1
. (52)

Which represents the classical Love wave equation (Ewinget. al.,1957), which validates the obtained result.

5 Numerical Example and Discussions

For graphical illustrations, we have considered dispersion equation (49) together withϕ1(r) = ξ1 cos(br), ϕ2(r) =
ξ2 cos(br) and the following data

• Transversely isotropic half-space(M): μL0 = 8.665 × 1010 N/m2, μT0 = 6.53 × 1010 N/m2, ρ′10 =
2700 kg/m3 (Acharyaet al. (2009)).

• Initially stressed poroelastic layer(M ′): N ′ = 0.49×109 N/m2, L′ = 0.52×109 N/m2, ρ′2 = 2435 kg/m3

(Batugin and Nirenburg (1972)).

• Initially stressed viscoelastic half-space(M ′′): μv = 203.2 × 109 N/m2, ρ′3 = 4744 kg/m3 (Gubbins
(1990)).
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The variation of dimensionless wavenumber(kH) against dimensionless phase velocity(c/β2) under the influence
of various affecting parameters has been revealed by Figs. 2-6.

1. 1 H 0.0

2. 1 H 0.15

3. 1 H 0.3

1
2

3

0.5 1.0 1.5 2.0 2.5 3.0
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c 2

Figure 2: Variation of phase velocity(c/β2) versus wave number(kH) for different values of flatness parameter
(ξ1/H) associated with common corrugated interface of mediumM andM ′ .
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Figure 3: Variation of phase velocity(c/β2) versus wave number(kH) for different values of flatness parameter
(ξ2/H) associated with common corrugated interface of mediumM ′ andM ′′ .

It is clear from Fig. 2 to Fig. 6 that phase velocity(c/β2) decreases with increase in dimensionless wave number
(kH) Fig. 2 represents the effect of flatness parameter on the propagation of torsional surface wave associated
with common corrugated interface of mediumM andM ′, whereas Fig. 3 represents the influence of flatness
parameter associated with corrugated common interface of mediumM ′ andM ′′. The comparative study of Fig. 2
and Fig. 3 portrays that phase velocity(c/β2) increases as flatness parameter(ξ1/H) associated with corrugated
common interface of mediumM andM ′ increases; whereas flatness parameter(ξ2/H) associated with corrugated
common interface of mediumM ′ andM ′′ has an adverse effect on phase velocity(c/β2) of torsional wave. Fig.
4 shows the effect of inhomogeneity parameter(αk) associated with transversely isotropic half spaceM on phase
velocity of torsional wave. It has been examined from Fig. 4 that phase velocity of torsional wave increases with
the increase of inhomogeneity parameter. Fig. 5 reflects the effect of porosity parameter(T ) associated with the
sandwiched poroelastic layerM ′. From Fig. 5, it has been observed that as the porosity parameter increases the
phase velocity of torsional wave decreases. Fig. 6 depicts the variation of phase velocity against wave number for
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Figure 4: Variation of phase velocity(c/β2) versus wave number(kH) for different values of inhomogeneity
parameter(αk) associated with transversely isotropic half space(M).
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Figure 5: Variation of phase velocity(c/β2) versus dimensionless wave number(kH) for different values of
porosity parameter(T ) associated with poroelastic sandwiched layer(M ′).

different values of initial stress in fluid saturated porous layerM ′. It can be examined from Fig. 6 that the phase
velocity of torsional waves decreases with increasing values of initial stress of the layer.

6 Conclusions

The present study investigates the possibility of torsional wave propagation in pre-stressed, corrugated poroelastic
layer, sandwiched between a transversely isotropic and pre-stressed viscoelastic half-spaces. Frequency equation
has been obtained analytically in closed form. Substantial effect of various affecting parameters (viz. flatness,
inhomogeneity, porosity and initial stress) on the phase velocity of torsional surface wave has been highlighted.
The compact form of obtained dispersion relation has been matched with classical Love wave equation, as a special
case of present study. Finally, we may conclude with the following salient outcomes of the present investigation

• Torsional wave velocity is affected significantly by different parameters viz. corrugated boundaries, initial
stress, porosity and inhomogeneity.
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Figure 6: Variation of phase velocity(c/β2) versus wave number(kH) for different values of initial stressP1/N
′

acting on fluid saturated porous layer(M ′) along radial direction.

• Phase velocity of torsional wave decreases with wave number.

• Initial stress of poroelastic layer has an adverse effect on the phase velocity of torsional wave.

• As the magnitude of porosity parameter increases the phase velocity decreases.

• Phase velocity increases with increase in heterogeneity parameter of transversely isotropic half-space.

In view of the fact that earth is an initially stressed layered elastic medium, outcomes of the present analysis may
contribute towards interpretation of wave profile during earthquakes. Due to specific model of the study, results
are expected to be utilized for the purpose of seismic exploration.
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