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Torsional Wave Frequency in Corrugated Poroelastic Layer Bonded
Between Anisotropic Media

S. A. Sahu, K. K. Pankaj, S. Kumari

An analytical solution is obtained for torsional surface wave propagating in pre-stressed poroelastic layer sand-
wiched between transversely isotropic and pre-stressed viscoelastic half-spaces with non-planer boundaries. Fre-
guency equation has been established in closed form. Separation of variables method is adopted to obtain the
dispersion relation. Substantial influence of corrugated boundary, initial stresses, porosity and inhomogeneity on
the phase velocity of considered surface wave has been presented through graphs. Proposed study finds its possible
applications in the fields of geophysics and seismology. Results may be extended to interpret the seismic activities
near the crust-mantle boundary.

1 Introduction

The stress which is present in an elastic medium in the absence of external force is called initial stress and the
medium is said to be initially stressed. The earth is an initially stressed medium possessing different layers where
initial stresses exist because of dissimilarity in temperature, weight, overburden of layer, slow process of creep,
gravitation, etc. These stresses have noteworthy effect on the propagation pattern of harmonic waves exhibited
by earthquakes or explosions. Knowledge of propagation behavior of different seismic waves are of great signifi-
cance due to their practical importance in many engineering branches including rock mechanics and Geophysical
prospecting. Several authors applied the theory given by Biot (1965) for studying the propagation behavior of
surface wave in initially stressed medium. Dey and Sarkar (2002) observed the effect of initial stress in porous
medium when a torsional wave propagates through it. Torsional surface wave is horizontally polarized in nature
and twirls the medium when it propagates through it. It is one kind of elastic wave that causes only circumferen-
tial displacement of particles which is independent of azimuthal angle. Under the influence of these waves, the
medium particles twist either clockwise or anticlockwise as per the direction of motion of the waves. Some kind
of surface waves are torsional in nature. The torsional surface wave exhibits peculiar characteristics due to having
non-dispersive nature which unravels that the shape of the wave unaltered during progression of torsional surface
wave. The propagation of torsional surface wave in different types of elastic medium received considered attention
of many researchers and scientists from many decades. The phenomena of torsional surface wave in anisotropic
and heterogeneous half-space subjected to initial compressive stress was studied by Chattepadih{zai 3).
Georgiadiset al. (2000) analyzed that the propagation of torsional surface wave also exist in linear gradient elastic
half-space. Vardoulakis (1984) discussed about the dispersion of torsional surface wave in two different types of
inhomogeneous elastic media. Singh and Laxman (2016) have investigated the propagation of torsional wave in a
corrugated doubly layered half-space. Recently, Pagtah (2017) studied the propagation of torsional surface
wave in heterogeneous fibre-reinforced layer lying over heterogeneous half-space.

Pores and solid matrix together forms the porous medium. The pores of these medium are generally occupied
with liquid or gas. Porous layers are naturally found beneath the Earth’s surface. Almost every naturally occurring
solid material is considered to be the example of porous media. Several authors dealt with the propagation of
wave in porous media including Sharma and Gogna (1991), Gardner (1962). Gupta and Gupta (2011) examined
the phenomena of torsional surface wave propagation in anisotropic poroelastic half-space under the influence of
gravity. The investigation of torsional surface wave in anisotropic poroelastic layer lying over inhomogeneous
half-space has been carried out by Chattatal. (2011). The interface between different substrates of the Earth

are not always uniformly arranged as mountains, basins, mountain roots etc. also exist. The irregular boundaries at
the interface may be of different geometrical shapes (like rectangular, triangular, parabolic, corrugated boundary,
etc.). The problems with corrugated boundaries have much significance in seismology due to their closeness to
the natural situation, as they leads to better comprehension and interpretation of seismic behavior at continental
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margins, mountain roots, etc. Propagation of seismic waves in the medium having uneven or corrugated boundaries
was discussed by Chattopadhyay and De (1983), Tomar and Kaur (2007). The elastic materials with vertical axis of
symmetry in which elastic properties of the materials change in vertical direction but not in a plane perpendicular
to that axis are said to be transversely isotropic. These types of materials shows hexagonal symmetry. Few
examples of transversely isotropic material are the crystals of hexagonal symmetry such as Cadmium, Cobalt,
Beryl and Zinc etc. Wang and Zhang (1998) have considered the propagation of Love waves in an inhomogeneous
porous layer lying over an inhomogeneous half-space. Coal tar, salt, sediments, etc., are some of the examples
of viscoelastic material found underneath the earth surface. &aat. (2005) studied the behavior of shear

wave propagation in heterogeneous viscoelastic half-space with corrugated interface. Horizontally polarized shear
wave (SH-wave) propagation in viscoelastic medium with irregularity is studied by Chattopaethgiay2010).

Kumari and Sharma (2014) investigated the propagation characteristics of torsional surface wave in a viscoelastic
layer overlying an inhomogeneous elastic half-space.

This paper attempts to study the torsional waves behavior in pre-stressed poroelastic layer embraced between
a transversely isotropic half-space and a pre-stressed viscoelastic half-space, with corrugated boundaries. The
considered sandwich structure is much closer to the asthenosphere that forms the transition zone between the lower
crust and mantle. Our main thrust is to study the wave characterization in considered structure theoretically which
supports the selection of solution method to be analytic, in particular separation of variables method is adopted
for the solution. The frequency equation has been obtained analytically in closed form and the noteworthy effect
of the flatness parameter, initial stress, inhomogeneity parameter and porosity parameter on the phase velocity of
torsional surface wave has been depicted with the help of graphs.

2 Mathematical Formulation and Solution

To model the present problem, we have considered cylindrical coordinate system in such a fashieaxihat
is along the direction of torsional wave propagation anralxis is considered positive in vertically downward
direction. As shown in Fig. 1M’ : ¢1(r) — H < z < @a(r) represents the pre-stressed porous layer with
corrugated boundaries sandwiched between a transversely isotropic halfA$page(r) — H < z < —oco and a
pre-stressed viscoelastic half-spdd€ : 5 (r) < z < co; wherep; () andp.(r) are continuous functions of
representing the corrugated boundaries of porous |dyés;the average thickness of porous layer.

As functionsy, (r) are periodic in nature, their Fourier series expansions may be given by (Asano, 1966)
o(r) = Z ((pileinbr + szinefmbr)’ 1=1,2. 1)
n=1

where, !, andy! , are the coefficients of Fourier series expansiryb is wavelength of corrugation, n is the
order of series expansion.

when the Fourier series expansion coefficients are given by

Sifn=11=1
=14 2ifn=11=2
0 ifn#l

Eqg. (1) leads to the expressions for corrugated common interfaces in the concerned problem in cosine term i.e.
p1(r) = & cos(br), pa(r) = & cos(br); whereg; and¢, are the corresponding amplitudes of corrugation.

221



Transversely isotropic

half - space (M)
. (r)
P —p Initially stressed <::'P
1|:> H porous layer (M) k— 1

¢2(i‘) O

Initially stressed
= viscoelastic [~
— half- space (M" k=

V4

Figure 1: Schematic diagram of the problem

2.1 Formulation and Solution for Transversely Isotropic Half-Space(M)

The equation of motion for transversely isotropic half-space is taken from Vishwalsrahg2013) as

0Ty 187},9 OTrs  Trr — To0 _ 0%}
o ' r 00 ' 0z r Pige
8’7}9 1 (97'99 8’7'92 2’7}9 ’ 821)/1
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where,r;; (i, j = r, 6, z) are components of stress;, v;, w; are displacement components in radigl, azimuthal
(#), and axial(z) direction respectivelyt is time andp) is density of uppermost transversely isotropic half-space.

For torsional wave propagation alongdirection and causing displacemendindirection only, we have

0

uy = 0,w] = 0,v] = vi(r, z,t)
The constitutive stress-strain relations for isotropic medium are given by
Trr = MA + 2p1€00, Top = MA + 2u1€00, T2z = MA + 2u1€22, Tro = 2p11610,
Trz = 2/~L1€rzv Tog> = 2/1416927 (4)

ou', 1 OV w) ow’ . . .
where,\;, 11 are Lames constants add= -1 + - 5/ + - + L is dilatation.

Strain and displacement components are related as

. —%e _131}’1_'_1’16 _ Ouwy . _13u’1+8v£_ﬁe _8vi+18w’1

T o T 90 T E T 9 T o0 T ar v T 9z T 00
ow'  ou

Cor = 81"1 8,21' )

In view of Egs. (2 - 5), non-vanishing equation of motion and stress components are

(97}9 3ng 2 ’ 62’0/1
St = ph 2. 6
or 0z + r 0T Pge ©)
81]/1 ’U/1 81}/1
Tro ML( or r )77-29 HT 02 (7)
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where,u;, andur are directional rigidities along radigl) and axial(z) directions respectively.

Egs. (6) and (7) leads to

82I / 18/ o 8/ 82/
ML( S v1>+(u Ul)—p’ L (®)

o2 2 19z 02 \""Toz ) Mo

We consider inhomogeneity in half-space by considering defsjtyand directional rigiditieg.r., ur) as func-
tion of z given by

Qe

Hr = ,ULOeia pr = #Toei, P’1 = P/m@ . ©)

where,« is a real valued positive parameter, having dimension same that of length and is termed as inhomogeneity
parameter.

For a harmonic wave propagation alonglirection, we may assume the solution of Eq. (8) as
v = Vi (2)Jy (kr)e! (10)
Where,J; is Bessel's function of first order and first kinkjs wave numbery is frequency.

Using Eq. (10), in Eq. (8) gives

d2 / 1d dv?! k2 2/
Vi LdprdVi  Rur(f Py, (11)
dz? ur dz dz wr 1159
On substituting// = JV;TT and using Eqg. (9) in Eq. (11) leads to
eV,
dzz - ’anN - O7 (12)

2
Where, n} = k? | 3 + bLo (1 - %3” , Co = ,/’;ng.
The solution of Eq. (12) is given by,” (z) = B1e™* + Bie~ "% , whereB; and B] are arbitrary constants.

Using the fact that displacement component must vanish-as—oc which requires lim V;”(z) = 0, thus the

Z— —00

appropriate solution of Eq. (12) is
V1" (2) = Bie™?*. (13)

Hence the component of displacement in the uppermost transversely isotropic halfZ&pasebtained as

v = Bre(m=2:)2 et (14)
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2.2 Formulation and Solution for Initially Stressed Porous Layer(M’)

Dynamical equations of motion for the porous layer under the influence of initial $tRegsn absence of body
forces and fluid viscosity are given by following Biot (1965) as

87‘T 187‘ arz T T az 0 82
ser, 105v0 Sre 8 TSee_P1<w we)_ (dontdy + dyol) |

or ' r 90 ' 0z 90 0z ) o2
asrg 1 8899 8892 2 é)wz 82
z Lo, _p P _ 2
or + r 060 0z + TSTQ Yor ot?
08y, 10sg, 08,  Sps Owg H? ,
z _p == = 1
o Trae T a. T g g (et ), (15)

0s 0? 0s 0? 0s 0?
v (dyoub + dagUs) , %" o2 (dygvy + dgaV1), Frialipvol

(dTrUIQ + drﬁvl) )

(drows + dggW1),

Where,s;;, (i, = r,0, z) are components of stress acting on solid part aigdthe stress acting on fluid part of
porous material{u}, v}, wh) and (U, Vi, W) are the displacement components for solid and fluid part respec-
tively; w; is rotational component?; denote the initial stress acting on porous layer saturated with fluid along
radial direction.

The stress acting on fluid can be defined in terms of fluid pregstimeugh the relation as
-8 = fp7 (16)
where,f is layer porosity.

The mass coefficient$,.,., d.y anddyy are related to the mass densitigsds, d; of layer, solid and fluid respec-
tively by

drr +drg = (1 = f)ds, drg+dgo = fdi, ph = ds+ f (di —ds). (17)
Biot (1956(1), 1956(ll)) has also shown that the said mass coefficients satisfy the following inequalities

drr >0, dog >0, dpg <0, dppdge — d2g > 0. (18)
The constitutive stress - strain relationship for porous layer are as

Spr = (Al +P1)e’r7' + (Al - 2N/ + P1)890 + (Fl + Pl)ezz + Q157
S0 = (Al - 2N/) err + Ale(%’ + Flezz + Q1€7 (19)
Szz = Flerr + F1€99 + Clezz + lev

oU vy oW
Sro = 2N’er97 S0z = 2L/60Z7 Srz = 2[/627«,5 = airl + 8791 + 82:1’

where Ay, Fy, C; are elastic constants of the mediu@; is a positive quantity which represents the extent of
coupling between the change of volume of the solid and flditl;Z’ are rigidities of porous medium alongand
z directions respectively.

Rotational components are given by

1 [ ow) vl 1 (0ufy Ow) 1 [0(rvh)  Ouf
r= (SR -ro2 ) we=z (52— 52 ), w. = -=2]. 20
v 2r<69 sz> o 2<az ar )T \Tar T e (20)
Strain and displacement components are related as
Jlowy _lowy 1 10w w) 110w o v
e”“_2ar’e“_2az7e‘)9_2 r 00 r )T g r 00 or r)’
1 /ovy 10w 1 (owhy  Oul
z = = - rz — % . 21
0 2<6z+7“89 ¢ 2 87“+(‘3z (21)
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The displacement components for the considered wave whose direction of propagation s alkiags given by

uh = 0, vy =vh(r,2,t), wh =0,
U1 = 0, V1 = Vl(’I’,Z,t), W1 =0. (22)

Using Eq. (22) in Egs. (20) and (21), the non-vanishing strain and rotational components are

- 1 (97}/2 ’U/2 . 1 (9’[}/2
6T9_2<87’_7“>7€0Z_2(8z (23)
1 81)/2 1 5‘ /
wr—fiﬁ,wz—ﬂa(’rﬂg). (24)
Using Egs. (23) and (22) in Eqg. (19), the non-vanishing stress components are

ovh vl Ovl

—_ N/ 2 "2 _ 7/ 2
Sw—N(ar r),SQZ L(az> (25)

Using Egs. (22), (24) and (25) in Eqg. (15), we get

P 0%vh  10vy b o?vhy  0?
(v 5) (5 + 50— 12) + 15 = G (et ), (20

2

@ (drgvlg + dgng) =0. (27)

Eliminating V; from Egs. (26) and (27), we obtain

P 2.,/ 1 / / 2,/ 2,/
(N’—1> (8 “2+87’2—“2)+L’(9 Y _ 00 (28)

2 or? r Or r? 0z2 ot?
_ 2
where, 15 = d,., — 2.

We assume the solution of Eq. (28) as
vh = Vi (2)J1 (kr)e™t. (29)
Using Eqg. (29) in Eq. (28), we have

&2V}

2 TV =0, (30)

2 77/ Py ’
where 2 = 28 (;”') {(17;,3/)522 - 1}, T = %, 2 — ]:—2
The solution of Eg. (30) is given by

Vy = (Basin Aoz + B)cos \az) , (31)
whereB, andBj are arbitrary constants.
Thus the component of displacement in poroelastic layer is

vy = (Bgsin gz + Bj cos A\az) Jl(kT)eiut. o)
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2.3 Formulation and Solution for Pre-stressed Viscoelastic Half-Spagé/”)

Let us considefu}, v4, wh) are components of displacement alang, andz directions respectively for lower
viscoelastic half-space influenced by initial stress. For the propagation of torsional surface wave we have

0. (33)

0
I —wh =0. vh = of t
Us Ws y Us ’U3(T?Z7 )7 90
In the pre-stressed viscoelastic half-space the only existing equation of motion is given by (Biot 1965)

0 % O%vh  10ovh 0 ([ P o 02!
;9 3 3, 10vy vz\ O (Fovz) 3
(Mv +Mv8t> (81"2 + 022 + r Or 7’2) 0z (2 87;) P3 ot? - (34)

where,u,, is modulus of rigidity;u,, is parameter of internal friction as a result of viscoelastigityis the density
of viscoelastic half-space? is initial stress on viscoelastic half-space acting along radial direction.

The stress-displacement equations for existing components of stress in the viscoelastic half space is given by

0\ O} 0 vy vl
_ / 3 — / 3 23
70z = (Mﬂ T Hy 875) 9z 7 ('uﬂ T 875) ( ar r ) ' (35)

We consider the solution of Eq. (34) as

vy = V4 (2)J1 (kr)e™. (36)

Using Eq. (36), Eq. (34) leads to

d*Vy
o ~ N V=0, (37)
1— 2
2M'U(1+%‘L)
On solving Eq. (37), we obtain
V4(z) = Bze % 4+ Bhe?s?, (38)

where,B; and B are arbitrary constants.

Using the fact thatlim VJ(z) = 0, the appropriate solution of Eq. (37)#§(z) = Bze 3>,

Z— 00

Therefore, the components of displacement in the lowermost initially stressed viscoelastic half-space is given by

vh = By Jy(kr) et re7, (39)
3 Boundary Conditions and Dispersion Equation

Continuity of displacements and stresses gives the boundary conditions for the present problem

e At the common corrugated interface of lay@d’) and upper half-spage\/) i.e. atz = ¢1(r) — H
V] = v, (40)
720 — @1(r)Trg = 520 — P1(7)Sr0- (41)
e At the common corrugated interface of lay@d’) and lower half-spacéM”) i.e. atz = p2(r)
vh = vh, (42)
820 — P2(1)srg = 020 — P2(1)0rg- (43)
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Where,p; represents the derivative gf with respect ta-.

Using displacement components v}, v from Egs. (14), (32), (39) and stress components from Egs. (7), (25),
(35) in the boundary conditions (40 - 43), we get

Bye(m=22)er—H) _ g, s sin (s (01 — H)) — Bh/firo cos (Aa (01 — H)) =0, (44)
it (or 1 . ktrok

el e i (- 5 ) - e

—By{L'\g cos (N2 (p1 — H)) — 91N’k J sin(X2 (p1 — H))}

+B5{L' X2 sin (A2 (o1 — H)) + o1 Nk J cos (A2 (91 — H))} =0, (45)

By sin (Aa2) + Bh cos (A\yws) — Bye 23%2 =, (46)

By {L'\a cos (Aap2) — paN'k J sin (Aaga)} — B’ {L'\y sin (Aay2) + 92N’k J cos (A2p2)}

+Bse %2 (1, +iplw) (A3 + ok J) = 0. (47)

where,J = ﬂ’;:g — ﬁ Ji represents derivative of; with respect to-.

Eliminating arbitrary constant8;, B, Bs and B}, from Eqgs. (44 - 47), we find the complex velocity equation as

2UAﬁ@H—ﬁXW_H%v+(Q1+2Am—ﬁﬂer%MJN@h)mnugﬂf—@1+¢g]:
Q2 —iQ3

Q2 n Q2 {Q4 tan [)\2 (H —p1+ (pg)] - L/)\Q (Ql + 26(7“_%)(501_]{)04]{]]\[/ ((pl — (,DQ))} . (48)
2 3

where,

Q1 = 9¢ (12 ) (e1—H) (2niapro — pro — 20k I provr), Q2 = Ar + e Jka,
Q3 = Ay + p, Jkwpa, Qs = QrkJN'ps + 2e(m—2s)(e1=H) g, (LPX5 + K> TP N"¢142)

_ kK /72 1 A2 i _k /02 1 A2 v
Al\/é< ’Y1+72+’Yl> ) AQ*% Mt —m

v = D1D3 — D2Dy, vo = D2D3+ D1Dy, Dy = Mv2 - W2M;27 Dy = QW,UvaN
2 2
(20003 = 2pc?) (2083 = PB3) + (200, 55)" ) (20¢® = PB3) (2wp1,53)
2 2 ) - 2 2°
(2103 — PB3)” + (2w, 53) (2103 — PB3)” + 2wy, 53)
The real part of Eq. (48) gives the dispersion equation and the imaginary part gives damping equation associated
with torsional surface wave propagation. In the present study we are concern about only the dispersive nature of

considered surface wave and hence we consider only the dispersion equation for characterization of considered
wave.

D3 =

Equating the real parts of Eq. (48) we get the following relation

2L/)\Qe("1_ﬁ)(¢1_H)a + (Ql + 26("1_ﬁ)(“’1_H)akJN’gb1) tan [A2 (H — o1 + p2)] =
Q2
Q3 + Q3

Eqg. (49) is the dispersion equation for torsional surface waves propagating in pre-stressed poroelastic layer sand-
wiched between transversely isotropic and pre-stressed viscoelastic half-spaces with non-planer boundaries.

{Q4 tan Ao (H — @1 + o)) — L' Ao (Ql 4 2e(m=32) @) o) TN (5 — @)) } . (49)
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4 Particular Cases
4.1 Casel

If the uppermost half-space is absent; only corrugated common interfagérisi.e. 1 (r) = 0, then dispersion
equation (49) reduces to

QﬁzgﬂuﬂwMﬂH+mﬂ+%ﬂW@ﬂ:L (50)

which is the dispersion equation for torsional surface wave propagation in pre-stressed poroelastic layer overlying
pre-stressed viscoelastic half-spaces with corrugated interface.

4.2 Case?2

If the uppermost half-space is absent; intermediate layer is made free from porosity, initial stress and corrugated
interface i.eT — 1,P; = 0,91 (1) = ¢1 (r) = 0and alsaN’ = L’ = 1/, then dispersion equation (49) reduces

to
2 A% + A3 1
tan |KH | S — 1| = 21042 . (51)
Bo2 Ay Wk 5722 1
02

/

where, 32, = e

which is the dispersion equation for torsional surface wave propagation in an isotropic layer overlying pre-stressed
viscoelastic half-spaces with corrugated interface. The obtained dispersion equation (51) is in well agreement with
the result obtained by Sing#. al. (2015).

4.3 Case3

If the uppermost half-space is absent; intermediate layer is made free from pdgityitial stress(P;) and
corrugated boundarigg; (1), ¢2(r)) and alsoN’ = L’ = u/. Lower most half-space is made free from initial
stress and viscoelasticity i.? = 0, u!, = 0 ; then the considered problem becomes problem of homogeneous
isotropic layer overlying a homogeneous isotropic half space and Eq. (49) reduces to

c2 Ho - %
02 w 5 1

Which represents the classical Love wave equation (Ewingl,1957), which validates the obtained result.

5 Numerical Example and Discussions

For graphical illustrations, we have considered dispersion equation (49) together With= &1 cos(br), @a(r) =
& cos(br) and the following data

e Transversely isotropic half-spa¢@/): uro = 8.665 x 101° N/m? uro = 6.53 x 1019 N/m? p}, =
2700 kg/m? (Acharyaet al. (2009)).

o Initially stressed poroelastic layéh/’): N’ = 0.49x10° N/m?, L' = 0.52x10° N/m?2, p}, = 2435 kg/m?>
(Batugin and Nirenburg (1972)).

e Initially stressed viscoelastic half-spat®/”’): u, = 203.2 x 10° N/m?, py = 4744 kg/m?> (Gubbins
(1990)).
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The variation of dimensionless wavenumbkefl ) against dimensionless phase velo¢ity3:) under the influence
of various affecting parameters has been revealed by Figs. 2-6.
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Figure 2: Variation of phase velocity:/32) versus wave numbék H) for different values of flatness parameter
(&1 /H) associated with common corrugated interface of medidrand M’ .
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Figure 3: Variation of phase velocity:/3:2) versus wave numbék H) for different values of flatness parameter
(&2/H) associated with common corrugated interface of medidfrand M .

It is clear from Fig. 2 to Fig. 6 that phase velociy/3-) decreases with increase in dimensionless wave number
(kH) Fig. 2 represents the effect of flatness parameter on the propagation of torsional surface wave associated
with common corrugated interface of mediuni and M’, whereas Fig. 3 represents the influence of flatness
parameter associated with corrugated common interface of meditemdM”’. The comparative study of Fig. 2

and Fig. 3 portrays that phase velocfty 82) increases as flatness paramétgy H) associated with corrugated
common interface of mediud/ andM’ increases; whereas flatness param@tefH ) associated with corrugated
common interface of medium/’ and M has an adverse effect on phase velo€it3,) of torsional wave. Fig.

4 shows the effect of inhomogeneity paramétek) associated with transversely isotropic half spAf®n phase

velocity of torsional wave. It has been examined from Fig. 4 that phase velocity of torsional wave increases with
the increase of inhomogeneity parameter. Fig. 5 reflects the effect of porosity paréifesessociated with the
sandwiched poroelastic layéf’. From Fig. 5, it has been observed that as the porosity parameter increases the
phase velocity of torsional wave decreases. Fig. 6 depicts the variation of phase velocity against wave number for
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Figure 4: Variation of phase velocity:/32) versus wave numbeikH) for different values of inhomogeneity
parametefak) associated with transversely isotropic half spaté).
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Figure 5: Variation of phase velocityt/3;) versus dimensionless wave numtjéi?) for different values of
porosity parametefI’) associated with poroelastic sandwiched layér).

different values of initial stress in fluid saturated porous lay€r It can be examined from Fig. 6 that the phase
velocity of torsional waves decreases with increasing values of initial stress of the layer.

6 Conclusions

The present study investigates the possibility of torsional wave propagation in pre-stressed, corrugated poroelastic
layer, sandwiched between a transversely isotropic and pre-stressed viscoelastic half-spaces. Frequency equation
has been obtained analytically in closed form. Substantial effect of various affecting parameters (viz. flatness,
inhomogeneity, porosity and initial stress) on the phase velocity of torsional surface wave has been highlighted.
The compact form of obtained dispersion relation has been matched with classical Love wave equation, as a special
case of present study. Finally, we may conclude with the following salient outcomes of the present investigation

e Torsional wave velocity is affected significantly by different parameters viz. corrugated boundaries, initial
stress, porosity and inhomogeneity.
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Figure 6: Variation of phase velocity/3,) versus wave numbék H ) for different values of initial stres®; /N’
acting on fluid saturated porous lay@r’) along radial direction.

e Phase velocity of torsional wave decreases with wave number.
e Initial stress of poroelastic layer has an adverse effect on the phase velocity of torsional wave.
¢ As the magnitude of porosity parameter increases the phase velocity decreases.

e Phase velocity increases with increase in heterogeneity parameter of transversely isotropic half-space.

In view of the fact that earth is an initially stressed layered elastic medium, outcomes of the present analysis may
contribute towards interpretation of wave profile during earthquakes. Due to specific model of the study, results
are expected to be utilized for the purpose of seismic exploration.
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