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Stability of double-diffusive convection in a horizontal layer of nanofluid is studied.  The couple-stress fluid 
model is employed to describe the rheological behavior of the nanofluid. Stability of nanofluid has been 
influenced by the features of couple-stress fluid,  suspended nanoparticles and examined under the 
consideration of momentum and thermal slip boundary conditions. By applying normal mode analysis method 
and linear stability theory, the dispersion relation describing the effect of various parameters is derived. We 
have assumed that the nanoparticle concentration flux is zero on the boundaries which neutralizes the 
possibility of oscillatory convection and only stationary convection occurs. The impact of the physical 
parameters, like the couple stress parameter, solutal-Rayleigh Number, thermo-nanofluid Lewis number, 
thermo-solutal Lewis number, Soret parameter and Dufour parameter have also been observed and compared 
with the published work.  A very good agreement is found between the present paper and earlier published 
results.  
 
 
1 Introduction 
 
The technology of nanofluid becomes a new challenge for the heat transfer fluid due to their higher thermal 
conductivity. The word nanofluid was first proposed by Choi (1995). The main important feature of nanofluid is 
the enhancement of thermal conductivity. Buongiorno (2006) proposed a mathematical model for nanofluid 
based on the effects of Brownian motion and thermophoresis of suspended nanoparticles after analyzing the 
effect of seven slips mechanism, he concluded that in the absence of turbulent eddies, Brownian diffusion and 
thermophoresis are the dominant slip mechanisms. Stokes (1966) proposed and postulated the theory of couple-
stress fluid. One of the applications of couple-stress fluid is its use to the study of the mechanism of lubrication of 
synovial joints, which has become the object of scientific research. A human joint is a dynamically loaded 
bearing which has articular cartilage as the bearing and synovial fluid as lubricant. When fluid film is generated, 
squeeze film action is capable of providing considerable protection to the cartilage surface. The shoulder, knee, 
hip and ankle joints are the loaded-bearing synovial joints of human body and these joints have low-friction 
coefficient and negligible wear. Normal synovial fluid is clear or yellowish and is a viscous non- Newtonian 
fluid. According to the theory of Stokes, couple-stresses are found to appear in noticeable magnitude in fluids. 
Since the long chain hylauronic acid molecules are found as additives in synovial fluid. Walicki and Walicka 
(1999)  modeled synovial fluid as couple-stress fluid in human joints. Sharma and Thakur (2000) studied the 
couple-stress fluid heated from below in hydromagnetics and found that couple stress parameter has stabilizing 
effect on the stationary convection. 
 
Double-diffusive convection in nanofluid is an important phenomenon that has various applications in the fields 
of chemical science, food processing, engineering and nuclear industries, geophysics, bioengineering and cancer 
therapy, movement of biological fluid, oceanography etc. The base fluid of the nanofluid is a couple-stress 
elastico-viscous fluid. Nanoparticles do not affect the solute concentration. In nanofluids, the base fluid does not 
satisfy the properties of Newtonian fluids in the real situations. The onset of convection in a horizontal layer 
heated from below (Bénard problem) for a nanofluid was studied by Choi (1995), Tzou (2008), Alloui et al. 
(2011), Nield and Kuznetsov (2009, 2011), Wang and Tan (2011), Chand and Rana (2012) and Rana et al. 
(2014a, b). More realistic boundary conditions are used in this paper as discussed by Nield and Kuznetsov 
(2014). We assume that there is no flux at the plate and the nanoparticle flux value adjust accordingly. There 
is a need of changing the scale of dimensionless parameters. The basic solution of nanoparticle volume 
fraction is changed. The oscillatory convection does not exist and only stationary convection occurs. 
Shivakumara et al. (2013) studied the electrohydrodynamic instability of a rotating couple stress fluid and 
found that the rotating fluid layer becomes destabilizing in the presence of couple stress for all the boundary 
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condions considered. Rana (2014) studied the thermal convection in couple-stress fluid in hydromagnetics 
saturating a porous medium and found that couple-stress parameter has stabilizing effect on the system.  
 
Keeping in view of various applications of couple stress and nanofluid as mentioned above, our main aim in 
the present paper is to study the double-diffusive convection in a horizontal layer of couple-stress nanofluid. 

 
 

2 Mathematical Model and Governing Equations 
 
We consider an infinite horizontal layer of a couple stress elastico-viscous nanofluid of thickness d, bounded by 
the planes z = 0 and z = d as shown in Fig.1. The layer is heated and soluted from below, which is acted upon by 
a gravity force g = (0, 0, -g) aligned in the z direction. The temperature, T, concentration, C and the volumetric 
fraction of nanoparticles, φ, at the lower (upper) boundary is assumed to take constant values T0, C0 and φ0 (T1, 
C1 and φ1), respectively. We know that keeping a constant volume fraction of nanoparticles at the horizontal 
boundaries will be almost impossible in a realistic situation.  
 

 
Fig.1. Physical configuration 

 
By applying Boussinesq approximation, the equations of conservation of mass and momentum for couple-stress 
[Kuznetsov and Nield (2011), Shivakumara (2013), Chand   and Rana (2012), Rana et al. (2014a, b)] nanofluid 
are    
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where pc ,,ρ, µµ  and q(u, v, w), denote respectively, the density,  viscosity, the material constant responsible 
for couple stress property known as the couple stress viscosity,  pressure,   and Darcy velocity vector, where φ is 
the volume fraction of nano particles,  ρp is the density of nanoparticles, Tα  is the coefficient of thermal expansion 

and Cα is analogous to solute concentration. 

The equation of conservation of mass for the nanoparticles [Buongiorno (2006)] is 
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Let c, cp , k and DT be the fluid specific (at constant pressure), the heat capacity of  the material constituting 
nanoparticles, the thermal conductivity and  the  diffusivity of Dufour type, respectively. Then  the thermal 
energy equation for a nanofluid is 
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The conservation equation for solute concentration [Nield and Kuznetsov (2011)] is 
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.22 TD+CD=
dt
dC

CTS ∇∇                                                                                          (5) 

where SD  and CTD  are respectively, the solute diffusivity and diffusivity of  Soret type.   

Assuming the temperature to be constant and the thermophoretic nanoparticles flux to be zero at the boundaries 
[Nield and Kuznetsov (2014)]. Now the boundary conditions are 
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We introduce non-dimensional variables as  
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where ( )f
f ρc

k
=k  is  the thermal diffusivity of the fluid. Thereafter dropping the dashes ( ' ) for convenience. 

Equations (1) - (8) in non-dimensional form can be written as  
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where we have dimensionless parameters as: 
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Here the parameter Le is a thermo-solutal Lewis number, Ln is a thermo-nanofluid Lewis number,  η is the 
couple-stress parameter, Ra is the thermal Rayleigh Number, Rs is the solutal-Rayleigh Number, Rm Density 
Rayleigh number, Rn is the nanoparticle Rayleigh number, NA is the modified diffusivity ratio, NB is the modified 
particle-density ratio, DB is the diffusion constant of nanoparticles, NTC is the Dufour parameter and NCT is the 
Soret parameter. 
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2.1 Basic Solutions 
 
The time-independent quiescent solution of equations (11) – (15) with temperature, concentration and 
nanoparticle volume fraction varying in the z-direction only [Nield and Kuznetsov (2011, 2014)], and Sheu 
(2011) is  
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Using boundary conditions (14) and (15), the solution of equation (18) is given by                                                                                    
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On substituting this value in equation (19), we get 
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On solving equations (18)-(20) by applying boundary conditions (14) and (15), we obtain 
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It is observed that the couple stress parameter has no effect on the basic solution. These results are identical with 
the results obtained by Nield and Kuznetsov (2014). 
 
2.2   Perturbation Solutions 
 
To study the stability of the system, we superimposed infinitesimal perturbations on the basic state. We write 
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Using equations given in (24) into equations (9) – (15), linearizing the resulting equations by neglecting nonlinear 
terms that are product of prime quantities and dropping the primes ('') for convenience, we obtained  
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Note that as the parameter Rm is not involved in equations (25)-(30) it is just a measure of the basic static pressure 
gradient.  
The seven unknowns u, v, w, p, T, C and φ can be reduced to four by operating equation (26) with 
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3  Normal Modes Analysis Method 
 
Express the disturbances into normal modes of the form  
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where r, s  are the wave numbers in the x and y direction, respectively, and p is the growth rate of the disturbances. 
Substituting equation (32) into equations (31) and (27)-(30), we obtain the following boundary-value problem  
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where 
dz
d=D and ω2 = r2+s2   is the dimensionless horizontal wave number. 

Considering solutions W, Θ, Γ and Ф of the form 
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Substituting (38) into equations (33) – (36) and integrating each equation from z = 0 to z = 1, we obtain the 
following matrix equations 
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where 22 a+π=J 2 is the total wave number. 
The linear system (37) has a non-trivial solution if and only if  
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Equation (38) is the dispersion relation representing the effect of medium porosity, thermo-solutal Lewis number, 
thermo-nanofluid Lewis number, solutal Rayleigh Number, nanoparticle Rayleigh number, kinematic visco-
elasticity parameter, modified diffusivity ratio, Soret and Dufour parameter on double-diffusive convection in a 
layer of couple stress nanofluid saturating a porous medium. 

 
4  The Stationary Convection  
 
Due to the absence of opposing buoyancy forces, the oscillatory convection does not exist. So we consider only 
the case of stationary convection. For stationary convection, putting p = 0 in equation (40) reduces it to 
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Equation (41) represents the thermal Rayleigh number as a function of the non-dimensional wave number ω 
corresponding to the parameters F, NTC, NCT, Rs, Ln  Rn, Le, NA. Since Pr vanishes with p, thus, the stationary 
convection does not depend on the value of  Prandtl number Pr. Equation (41) is identical to that obtained by 
Nield and Kuznetsov (2011), Chand and Rana (2012) and Rana et al. (2014a, b). Also in equation (37) the 
particle increment parameter NB does not appear and the diffusivity ratio parameter NA appears only in 
association with the nanoparticle Rayleigh number Rn. This implies that the nanofluid cross-diffusion terms 
approach to be dominated by the regular cross-diffusion term. 
In the absence of the Dufour and Soret parameters TCN  and CTN equation (39) reduces to 
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which is identical with the result derived by  Kuznetsov and Nield and Rana et al. In the absence of the stable 
solute gradient parameter Rs, equation (40) reduces to 
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Equation (42) is identical with the results derived by Sheu (2011), Chand and Rana (2012) and Rana et al. 
(2014a, b). 
The critical cell size at the onset of instability is obtained by minimizing Ra  with respect to a. Thus, the critical 
cell size must satisfy 
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5  Results and Discussions  
 
The dispersion relation (41) is analyzed numerically and  graphs have been plotted  to depict the stability 
characteristics. According to the definition of nanoparticle Rayleigh number Rn, this corresponds to negative 
value of Rn for heavy nanoparticles ( )ρρ >p . In the following discussion, negative values of Rn (indicates a 
bottom heavy case) are presented.  
The variations of thermal Rayleigh number Ra

 
 with the wave number ω for different values of the couple stress 

parameter  η = 0.2, η = 0.4 and η = 0.6 is plotted in Fig. 2 and it is noticed that the thermal Rayleigh number Ra
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increases with the increase of  couple stress parameter. Thus couple stress parameter stabilizes the stationary 
convection.  

 
Fig. 2. The variations of Rayleigh number Ra

 
with the wave number ω for different values of the couple stress 

parameter η = 0.2, η = 0.4 and η = 0.6 

`  
Fig. 3. The variations of Rayleigh number Ra

 
with the wave number a for different values of the solute 

concentration  Rs = 1000, Rs = 5000 and Rs = 9000 
 
In Fig. 3, the variations of thermal Rayleigh number Ra

 
 with the wave number ω for three different values of the 

solutal-Rayleigh number, namely, Rs = 1000, 5000 and 9000 is plotted and it is observed that the thermal 
Rayleigh number slightly increases with the increase in solutal Rayleigh number so the solutal Rayleigh number 
stabilizes the system slightly.  In Fig. 4, the variations of thermal Rayleigh number Ra

 
 with the wave number a 

for three different values of the thermo-nanofluid Lewis number, namely, Ln = 300, 600 and 900 which shows 
that thermal Rayleigh number increases with the increase in thermo-nanofluid Lewis number. Thus thermo-
nanofluid Lewis number has stabilizing effect on the system.  
 

               η = 0.6                 η = 0.4                   η = 0.2 

              Rs = 9000            Rs = 5000             Rs = 1000 
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Fig. 4. The variations of Rayleigh number Ra

 
 with the wave number a for different values of the thermo-

nanofluid Lewis number  Ln = 300, Ln = 600 and Ln = 900 

 
Fig. 5. The variations of Rayleigh number Ra

 
 with the wave number a for different values of the thermosolutal 

Lewis number Le = 1500, Le = 5500 and Le = 9500 
 
The variations of thermal Rayleigh number Ra

 
with the wave number ω for three different values of the 

thermosolutal Lewis number, namely, Le = 1500, 5500 and 9000 is plotted in Fig. 5 and it is noticed that thermal 
Rayleigh- Darcy number increases slightly with the increase in thermosolutal Lewis number so the thermosolutal 
Lewis number has slight stabilizing effect on the system. 

 
In Fig. 6, the variations of thermal Rayleigh  number Ra

 
with the wave number ω for three different values of the 

Soret parameter, namely CTN  = 10, 20, 30 which shows that thermal Rayleigh number increases with the 
increase in Soret parameter. Thus Soret parameter has stabilizing effect on the system. 

          Ln = 900           Ln = 600             Ln = 300 

          Le = 9500            Le = 5500           Le = 1500 
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Fig. 6. The variations of Rayleigh number Ra

 
 with the wave number a for different values of the Soret parameter 

NCT = 10, NCT  = 20 and NCT  = 30 

 
Fig. 7. The variations of Rayleigh number Ra

 
 with the wave number a for different values of the Dufour 

parameter NTC = 5, NTC  = 45 and NTC  = 85 
 
The variations of thermal Rayleigh  number Ra

 
 with the wave number ω for three different values of Dufour 

parameter, namely TCN  = 5, 45 and 85 is plotted in Fig. 7 and it is observed that thermal Rayleigh number 
increases with the increase in Dufour parameter so the Dufour parameter has stabilizing effect on the onset of 
stationary convection in a layer of couple stress nanofluid. The system becomes more stable when the values of 
Soret and Dufour parameters are equal. The results obtained in figures 2 to 7 are in good agreement with the 
result obtained by Nield and kuznetsov (2011, 2014) Chand and Rana (2012), Rana et al. (2014a, b), and Sheu 
(2011). 
 
6   Conclusions 
 
The onset of double-diffusive convection in a layer of couple stress Nanofluid in a more realistic boundary 
conditions has been investigated which comprises the effects of thermophoresis and Brownian motion. We have 
assumed that there is no flux at the boundary and the nanoparticle flux value adjust accordingly. It is found 
that the couple stress parameter has no effect on the basic solution. The couple stress parameter, solutal Rayleigh 
Number, thermo-nanofluid Lewis number, thermosolutal Lewis number, Soret parameter and Dufour parameter 
have stabilizing effects on the stationary convection as shown in figures 2, 3, 4, 5, 6 and 7 respectively.  
Oscillatory convection does not exist under the more realistic boundary conditions.  
 

            NCT = 30               NCT = 20              NCT = 10 

           NTC = 85            NTC = 45           NTC = 05 
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