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Phase-Field Modelling of Crack Propagation in Anisotropic
Polycrystalline Materials

Z. Liu, D. Juhre

Polycrystalline materials are widely used in engineering and material science applications, e.g. automobile,
aerospace or renewable energy. The macroscopic defects are generally strongly influenced by the fracture be-
havior of the polycrystalline materials at meso- and microscopic level. In this paper, the proposed phase-field
model for anisotropic fracture, which accounts for the preferential cleavage directions within each randomly ori-
ented crystal, as well as an anisotropic material behavior with cubic symmetries, has been used to simulate the
complex crack pattern in solar-grade polycrystalline silicon. Furthermore, the proposed phase-field model allows
to distinguish the loading under tension and compression. The finite element implementation of the model has
been realized by using a monolithic solution scheme. Three representative numerical examples are carried out,
i.e. anisotropic crack propagation (i) in a sole material, (ii) in a bi-material with different crack orientation and
(iii) in multi-grains with randomly distributed anisotropy. It is demonstrated that the proposed phase-field model
is capable of characterizing fracture propagation in anisotropic solids under static loading.

1 Introduction

Nowadays, many components and structures (machines and equipment) are designed by using various polycrys-
talline materials (Zhu et al., 2016), e.g. alloys, ceramics or metals, etc. Polycrystalline microstructure contains
several varying size of grains, bonded together by grain boundaries (Saddow, 2012). At meso- and microscopic
level, each grain has different material properties, e.g. crack orientation. Microscopic material properties of poly-
crystals can influence the damage behavior of materials at the macroscale level and hence it is necessary to analyze
the fracture performances of polycrystals at the meso- and microscopic level. But in general, conventional methods
of strength calculation cannot be used to simulate defects in polycrystals and simulation of inter- and transgranu-
lar crack propagation may be a major challenging task to study among many researchers (Sukumar et al., 2003;
Richard and Sander, 2009; Infuso et al., 2014; Paggi and Reinoso, 2017).
The application ability of analytical methods for fracture problems are mostly limited so that only simple crack
propagation problems can be solved. As crack propagation problems contain special characteristics, such as com-
plex geometries, loading conditions and material behaviours, they must be simulated by using advanced numerical
methods, such as the extended finite element method (XFEM), cohesive zone models (CZM) or VCCT-Linear
elastic fracture mechanics (LEFM) (Msekh et al., 2015). However, the application of these methods in fracture
mechanics has some limitations, like the modelling of crack-branching, among others.
Recently, the phase-field method has been widely used to simulate crack nucleation, curved crack propagation,
crack branching and merging of cracks without serious difficulties (Ambati et al., 2015b). In this method, the
sharp crack is replaced by the diffuse crack which is the so-called phase-field parameter that varies smoothly from
1 (intact material) to 0 (fully cracked material). Based on the variational formulation of Griffith’s theory (Franc-
fort and Marigo, 1998), a regularized presentation of the variational phase-field model of fracture was devised by
Bourdin et al. (2000). The phase-field problem can be solved simultaneously or separately. The monolithic solu-
tion scheme has been developed by Kuhn and Müller (2010). They proposed a Ginzburg-Landau type evolution
equation for crack propagation in linear elastic solids. Miehe et al. (2010) have used the staggered solution to solve
damage evolution problems in an alternative manner. To avoid the crack propagation under compression loading, a
tension-compression partition concept was firstly performed by Amor et al. (2009). In their model, the elastic strain
energy has been split into volumetric and deviatoric contributions. Under compression, the degradation function
is only coupled with the deviatoric part of the elastic strain energy. Numerous phase-field approaches of brittle
fracture have been proposed in recent works by Borden et al. (2012), Weinberg and Hesch (2015), Wick (2017) or
Teichtmeister et al. (2017), etc. Furthermore, the phase-field method has been extended to simulate brittle fracture
in rubbery polymers (Miehe et al., 2015), ductile fracture (Miehe et al., 2016), composite failure (Liu and Juhre,
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2017) and fatigue behavior (Alessi et al., 2018), among others.
Until now, the number of attempts of phase-field modelling of crack initiation and propagation in polycrystalline
materials is very limited. Clayton and Knap (2015) carried out a phase-field model for 3D fracture propagation
in polycrystalline materials at large strains. In this work, a second order tensorω was used to enforce the crack
propagation along one preferential plane. Nguyen et al. (2017) have used as well this phase-field model for simu-
lating the failure process in polycrystals whereas they extended the simulation by inserting cohesive zone elements
in terms of grain boundaries to investigate the effect of interphase failure processes. Here, the elastic strain energy
function was modified under compression and a staggered solution scheme within the finite element framework
was used. Some selected parameters in the proposed anisotropic phase-field model were analyzed. Paggi et al.
(2018) presented a phase field model for brittle fracture to apply it for crack propagation in solar-grade polycrys-
talline silicon. The isotropic phase-field model for brittle fracture (Ambati et al., 2015b) was applied whereas the
value of the critical fracture toughness depends on the material orientation.
In this contribution, firstly, we introduce the phase-field model for isotropic and anisotropic brittle fracture, re-
spectively. Next, the proposed phase-field model is used to simulate crack propagation. In particular, a mono-
lithic solution scheme is formulated and a comprehensive parameter study for anisotropic fracture has been done.
Representative numerical examples for crack propagation in solar-grade polycrystalline silicon are carried out.
Specifically, the influences of the crack orientation of the crack path in polycrystalline materials are depicted.

2 Phase-field and Crack Surface Density Function

2.1 Isotropy of the Fracture Resistance

Consider an axial homogeneous bar with cross-sectionΓ of infinite length with a crack at the axial positionx = 0
which is shown in Fig. 1(a). In the sharp crack topology, an order parameters(x) ∈ [0, 1] is described as (Miehe
et al., 2010):

s(x) :=

{
0 for x = 0

1 otherwise
, (1)

wheres(x) takes the value 1 for intact material and 0 in case of a fully broken material (Fig. 1(b)). In the phase-field
model, the sharp crack topology is replaced by the diffuse crack topology (Fig. 1(c)). This diffuse crack topology
can be approximated by using a standard exponential function:

s(x) = 1 − e−|x|/2κ, (2)

in whichκ is a diffuse parameter which defines the actual thickness of the crack. The Eq. (2) satisfies the ordinary
differential equation

s − 4κ2s′′ − 1 = 0 , (3)

with the boundary conditions:s(0) = 0 and s(±∞) = 1 and where

I(s) =
1
2

∫

Ω

{
(1 − s)2 + 4κ2s′2

}
dx, (4)

represents the quadratic functional of phase-field second order. Observing thatdV = Γdx and the crack surface
I(1−e−|x|/2κ) = 2κΓ, it can be shown that a second order Taylor expansion of the functional for the crack surface
Γκ is defined as:

Γκ(s) :=
1
2κ

I(s) =
1
4κ

∫

Ω

{
(1 − s)2 + 4κ2s′2

}
dx. (5)

Using the solution of minimization of Eq. (5), the diffuse crack topology problem can be solved. In the multi-
dimensional case, where an arbitrary bounded domainΩ ⊂ Rd(d ∈ [2, 3]) and surface boundary conditions∂Ω
are considered, the crackΓκ(s) can be denoted as:

Γκ(s) =
∫

Ω

γ(s,∇s)dV, (6)

with γ as the crack density function per unit volume:

γ(s,∇s) =
(1 − s)2

4κ
+ κ|∇s|2 . (7)

The Euler-Lagrange equation associated with the variational principle for fracture is considered as:
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(a) cracked 1D Bar

(b) sharp crack

(c) diffuse crack

Figure 1: (a) 1D bar with a crack atx = 0. (b) Sharp crack topology atx = 0. (c) Diffuse crack topology atx = 0.

s − 4κ2Δs − 1 = 0 in Ω and∇s ∙ n = 0 on∂Ω, (8)

in whichΔs is the Laplacian operation of the phase-field variables andn is defined as the outward normal to∂Ω.
A two-dimensional illustration of the phase-field method is depicted in Fig. 2.

2.2 Anisotropy of the Fracture Resistance

In the phase-field model for anisotropic brittle fracture, a second order structural tensorω , being invariant with
respect to rotations, as an additional material parameter for the directional dependency of the fracture resistance
was introduced by Clayton and Knap (2015, 2016),

ω = 1 + β ∙ (1− M ⊗ M), (9)

where1 denotes the second order identity tensor and⊗ is the tensor product of two vectors. The vectorM
represents the unit vector normal to the preferential cleavage plane (with respect to the material coordinates).β
� 0 denotes a penalty factor which mainly prevents the development of fracture on planes not normal toM . Note
that in case of isotropic fracture resistanceβ = 0. In the two-dimensional case, the coefficients of the second order
structural tensorω becomes

ω =

(
1 + β sin2(θ) −β cos(θ) sin(θ)

−β cos(θ) sin(θ) 1 + β cos2(θ)

)

, (10)

and

M =

(
cos(θ)
sin(θ)

)

, (11)

with the crack orientationθ. An illustration of the vectorM and the crack orientationθ is shown in Fig. 3. Using
this minor modification in the crack density functional, the fracture energy added by the phase-field gradient
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(a) sharp crack (b) diffuse crack

Figure 2: Illustration of the phase-field crack problem.

extension is oriented to the direction of the unit vector normal to the preferential cleavage plane. The crack density
functionγ per unit volume can be written as:

γ(s,∇s) =
(1 − s)2

4κ
+ κ ω : (∇s ⊗∇s), (12)

where the operator: is the double dot product of two tensors.

Figure 3: Illustration of the vectorM , the unit vector normal to the preferential cleavage plane.

3 Phase-field Model

3.1 Phase-field Model of Anisotropic Fracture

In the variational theory of brittle fracture by Francfort and Marigo (1998), the variational principle for brittle
fracture is the minimization of the total potential energy functionalE and can be calculated as:

E(u, Γ) =
∫

Ω

ψdV =
∫

Ω

1
2
ε : (C : ε)
︸ ︷︷ ︸

ψe

dV +
∫

Γ

GcdΓ, (13)

with respect to the displacement fieldu which is discontinuous across the admissible crack setΓ. The entire
(quasi-static) process of crack initiation and propagation can be determined by solving the minimization problem
of the total potential energy functionalE (Ambati et al., 2015a). Here,ψe is the elastic energy density of material
with the linearized strain tensorε and the fourth-order elastic stiffness tensorC. In the following we want to focus
only on cubic symmetry and hence, the principal stiffness matrix in 2D can be reduced to

C =




C11 C12 0
C12 C11 0
0 0 C44



 , (14)
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whereas anisotropy is achieved ifC44 6= (C11 − C12)/2.
The Voigt notation of the anisotropic fourth-order elastic stiffness tensor can be expressed in matrix form as:

C = PCP T with C(α = 0◦) = C(α = 90◦), (15)

whereP is a matrix which transposes the principal stiffness matrixC to the oriented stiffness matrixC in cartesian
axes. The transformation matrixP can be formulated as (Li et al., 2015):

P =






cos2(α) sin2(α) 2 cos(α) sin(α)
sin2(α) cos2(α) −2 cos(α) sin(α)

− cos(α) sin(α) cos(α) sin(α) cos2(α) − sin2(α)




 , (16)

whereα denotes the material orientation.
In Eq. (13), the critical energy release rateGc denotes the critical energy required to create a unit area of new
crack. To enable an efficient numerical treatment of Eq. (13), the elastic strain energy density is degraded with the
functiong(s) which takes the form as:

ψe(ε, s) = (g(s) + η)
1
2
ε : (C : ε), (17)

where the small positive dimensionless parameter0 < η � 1 is used to ensure a numerically well-conditioned
system for a fully-broken state (s = 0). In Eq. (17), the degradation functiong(s) must be introduced to reduce the
material stiffness after damage. In this paper, a quadratic functiong(s) = s2 is used and the phase-fields varies
smoothly from 1 (intact material) to 0 (fully cracked material). The effects of using different quadratic, quartic
and cubic degradation functions within the phase-field model have been investigated by Kuhn and Müller (2014).
Using Eq. (12), the fracture energy can be approximated by

∫

Γ

GcdΓ =
∫

V

Gcγ(s,∇s)dV =
∫

V

Gc

[
(1 − s)2

4κ
+ κ∇s ∙ (ω∇s)

]

︸ ︷︷ ︸
ψf

dV, (18)

in which ψf is the fracture energy density. If the diffuse parameterκ tends towards zero, the phase-field approxi-
mation of the fracture energy densityψf is exact (Kuhn and M̈uller, 2010). By substituting Eq. (17) and Eq. (18)
into Eq. (13), the total energy densityψ can be defined as:

ψ(ε, s) = (s2 + η)
1
2
ε : (C : ε)
︸ ︷︷ ︸

ψe

+ Gc

[
(1 − s)2

4κ
+ κ∇s ∙ (ω∇s)

]

︸ ︷︷ ︸
ψf

, (19)

The stress tensorσ is defined as the derivative of the total strain energy density with respect to the elastic strain
tensorε:

σ =
∂ψ

∂ε
= (s2 + η)

∂ψe

∂ε
= (s2 + η)C : ε. (20)

Assuming neither dynamic contributions nor body loads, the local balance law can be obtained as:

div σ = 0. (21)

A time dependent Ginzburg-Landau evolution equation of the phase-fields which is variationally derived from the
phase-field energy density is formulated as follows:

ṡ

M
= −

δψ

δs
= −

[
∂ψ

∂s
− div(

∂ψ

∂∇s
)

]

= −2sψe + Gc(
1 − s

2κ
+ 2κ∇s ∙ (ω∇s)), (22)

whereM is the mobility factor. In order to ensure crack propagation only under tensile or shear loading, a modified
regularized formulation of the total strain energy density was proposed in (Amor et al., 2009), using the definition:

ψ(ε, s) = (s2 + η)ψ+
e + ψ−

e + ψf , (23)

with

ψ+
e =

1
2
ε[C − K1 ⊗ 1sign−(tr(ε))]ε, (24)
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ψ−
e =

1
2
Ksign−(tr(ε))ε1 ⊗ 1ε, (25)

whereas the corresponding bulk modulus is given asK = (C11 + 2C12)/3. The function sign−(tr(ε)) =
0 if tr(ε) ≥ 0 and sign−(tr(ε)) = 1 if tr(ε) < 0. As a consequence the stress tensorσ takes the form

σ = (s2 + η) [C − K1 ⊗ 1sign−(tr(ε))]ε
︸ ︷︷ ︸

σ+=
∂ψ+

e

∂ε

+ Ksign−(tr(ε))1 ⊗ 1ε
︸ ︷︷ ︸

σ−=
∂ψ−

e

∂ε

. (26)

Considering this modification the evolution equation can be rewritten as:

ṡ

M
= −2sψ+

e + Gc(
1 − s

2κ
+ 2κ∇s ∙ (ω∇s)). (27)

In summary, the governing equations of the proposed phase-field model are reported in Table 1.

Table 1: Governing equations of the proposed phase-field model for brittlefracture

div σ = 0

σ := (s2 + η)
∂ψ+

e

∂ε
+

∂ψ−
e

∂ε
ṡ

M
= −2sψ+

e + Gc( 1−s
2κ + 2κ∇s ∙ (ω∇s))

In the domainΩ, the partitions of the boundary satisfy the constraints:





u = uD on ∂ΩD

σ ∙ n = tN on ∂ΩN

∇s ∙ n = 0 on ∂Ωs

, (28)

wheren is the outward pointing normal vector to the boundary,tN as the prescribed traction force on Neumann
boundary∂ΩN anduD as prescribed displacement on Dirichlet boundary∂ΩD, respectively.

4 Finite Element Formulation

The finite element implementation of the phase-field model for anisotropic fracture is explained in this section.
The strong form of the balance equation Eq. (21) and the phase-field system Eq. (22) leads to the weak form with
virtual displacementδu and virtual phase-fieldδs:

∫

∂Ωt

δu ∙ tN dA −
∫

Ω

(∇δu)T : σ dV = 0, (29)

and ∫

Ω

[δs
ṡ

M
+ 2 Gcκ∇ δs ∙ (w∇s) + δs (2sψ+

e −
Gc

2κ
(1 − s))]dV = 0. (30)

The discretization of the node valuesui andsi in a 2D setting with Voigt notation can be expressed as:

u =
n∑

i=1

Niui, s =
n∑

i=1

Nisi, (31)

whereNi is the shape function matrices for nodesi andn denotes the total number of nodes per element.Bu
i and

Bs
i are matrices containing spatial derivatives of the shape functions of nodal displacement and nodal phase-field,

respectively

Bu
i =

[
Ni,x 0 Ni,y

0 Ni,y Ni,x

]T

and Bs
i =

[
Ni,x Ni,y

]T
, (32)

and the gradient of the fields can be expressed as:

ε =
n∑

i=1

Bui ui, Os =
n∑

i=1

Bs
i si. (33)
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The residual expression of element e at node i can be written as:

Ri =

[
Ru

i

Rs
i

]

=

[ ∫
Ω
[Bu

i ]T σ dV∫
Ω

Ni
ṡ
M + [Bs

i ]T (2Gc κ ω∇s) + Ni(2sψ+
e + Gc

2ε (s − 1)) dV

]

. (34)

The stiffness matrixKij for fully coupled simultaneous solution on the element level can be formulated as:

Kij =

[
Kuu

ij Kus
ij

Ksu
ij Kss

ij

]

, (35)

where the stiffness submatrices are given as:

Kuu
ij =

∫

Ω

[Bu
i ]T

∂σ

∂ε
Bu

j dV,

Kus
ij =

∫

Ω

[Bu
i ]T

∂σ

∂s
Nj dV,

Ksu
ij =

∫

Ω

Ni 2s
∂ψ+

e

∂ε
Bu

j dV,

Kss
ij =

∫

Ω

2Gc κ [Bs
i ]T ω Bs

j + Ni(2ψ+
e +

Gc

2κ
)Nj dV,

(36)

where∂σ
∂ε takes the form as:

∂σ

∂ε
= (s2 + η)[C − K1 ⊗ 1sign−(tr(ε))] + K1 ⊗ 1sign−(tr(ε)). (37)

∂σ
∂s and ∂ψ+

e

∂ε can be written as:
∂σ

∂s
= 2s σ+,

∂ψ+
e

∂ε
= σ+. (38)

Similar to the element stiffness matrix, the damping matrix is expressed as:

Dij =

[
Duu Dus

Dsu Dss

]

=




0 0

0
∫
Ω

1
M

NiNj



 dV. (39)

The submatrices of the element tangent matrix finally can be given as:

Sij = Kij +
1

Δt
Dij . (40)

It is necessary to prevent unphysical crack healing (Schlüter et al., 2014), therefore, we define homogeneous
Dirichlet boundary conditions, i.e. whens ≤ 0 is reached for the timet∗x , s(x, t ≥ t∗x) = 0. This imposes a
modification of the residual and the tangent matrix on element level in current time stept to realize

Δs
(t)
i,m+1 = −s

(t)
i,m+1 = 0. (41)

In subsequent time stept + 1, phase-fields remains as zero

s
(t+1)
i,m+1 = s

(t+1)
i,m+1 + Δs

(t+1)
i,m+1 = s

(t+1)
i,m+1 − s

(t+1)
i,m+1 = 0. (42)

The above algorithms have been implemented as a user defined element in FEAP (Taylor and Govindjee, 2017).
The post-process for the plotting of results is supported by a visualization software Paraview (Ayachit, 2015). The
multi-field coupled finite element problems are performed by using automatic step size control algorithms.

5 Numerical Examples

We demonstrate the potential of the proposed phase-field model to simulate the crack propagation in anisotropic
materials by performing different numerical examples. At first we are focusing on crack propagation in a sole
material and in a bi-material. These examples help to illustrate the effects of the anisotropic phase-field parameters
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(penalty factorβ and the crack orientationθ ) on the fracture propagation. Finally, simulation of inter- and trans-
granular crack propagation are investigated and we highlight on the effects of anisotropy on the results.
The initial crack is modeled as a geometrical discontinuity by duplicated nodes (Miehe et al., 2010). The auto-
matic loading step sizes for monolithic schemes is adopted. The phase-field model for anisotropic fracture has
been implemented into a fully integrated 4-node quadrilateral plane strain element. The material properties in
the numerical simulation are defined in Table 2 (Paggi et al., 2018). The principal stiffness matrixC in a two
dimension setting is chosen as follows:

C =




165700 63900 0
63900 165700 0

0 0 79600



 [N/mm2], (43)

with the corresponding bulk modulusK = 97833.33 [N/mm2].

Table 2: Material parameters used in the numericalsimulations.

Name Symbol Value Unit

Stiffness resistance η 10−6 -
Critical energy release rate Gc 2.04 N/mm
Mobility factor M 1000 mm2/N ∙ s

5.1 Crack Propagation in a Sole Material

Numerical simulations of anisotropic fracture for a square plane of unit length containing an initial crack located
at mid-height of the left edge with a length of0.5 mm are performed. The geometry and boundary conditions of
the specimen are shown in Fig. 4. The complete top edge is moved by a vertical displacement. The spatial model
is discretized by40000 quadrilateral elements with an element size ofh = 0.005 mm. The diffuse parameterκ is
set to0.005 mm. The displacement control with a minimum displacement increment (1.0E-7 mm) and a maximum
displacement increment (5.0E-3 mm) is applied.

Figure 4: Geometry and boundary conditions

5.1.1 Variation of the Penalty Factorβ

The crack propagation in anisotropic materials with cubic symmetries has been solved using the proposed phase-
field model for varying the penalty factorβ. The crack orientationθ and the material orientationα are fixed at
θ = 45◦ andα = −45◦, respectively. The penalty factorβ is varied in a range from 0 to 20. Fig. 5 presents the
resulting crack paths for different penalty factorsβ. The crack propagates as expected in the horizontal direction
in the case of isotropic fractureβ = 0. It can be observed that the crack path changes whenβ 6= 0. For0 < β < 1,
the crack orientation is hardly influenced. Forβ > 1, the crack orientation is obviously strongly influenced
and it converges to the pre-defined angle of crack orientationθ by increasingβ. The results show that the crack
orientation in anisotropic materials significantly depends on the chosen value of the penalty factorβ.
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(a)β = 0 (b) β = 1.0 (c) β = 10.0 (d) β = 20.0

Figure 5: Influence of the penalty factorβ on the direction of the crack path.

5.1.2 Variation of the Crack Orientation θ

In anisotropic materials with cubic symmetries, crack path is strongly influenced by the crack orientationθ, as
depicted in (Clayton and Knap, 2015). For the simulations the penalty factor and material orientation are held
constant atβ = 20 andα = 0◦, respectively. The resulting crack paths obtained with the proposed model and with
different directions of anisotropyθ are shown in Fig. 6. Forθ = 90◦ (Fig. 6(a)) up toθ = 20◦ (Fig. 6(d)) the crack
propagates as expected, following the predefined crack orientation. However, if we chooseθ = 10◦ (Fig. 6(e)) or
even lower, the resulting crack path is no longer in alignment with the predefined crack orientation. It rather follows
the opposite direction with fluctuating crack paths (Fig. 6(e) - (g))) and finally results in a diffuse horizontally
aligned crack forθ = 0◦ (Fig. 6(h)). Also Bleyer and Alessi (2018) have already shown this phenomena exclusively
for the case ofθ = 0◦. However, the reason for these findings are until now not clarified, neither analytically nor
experimentally, and has to be investigated in future studies.

(a)θ = 90◦ (b) θ = 60◦ (c) θ = 45◦ (d) θ = 20◦

(e)θ = 10◦ (f) θ = 5◦ (g) θ = 2◦ (h) θ = 0◦

Figure 6: Influence of crack orientationθ on the crack path.
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5.2 Crack Propagation in a Bi-material

As next, we examine the notched specimen consisting of bi-materials under tensile loading. The Fig. 7 shows the
geometry and boundary conditions. The effective element size is chosen to be0.05 mm using a fully integrated
4-node quadrilateral plane strain element. The material parameters are listed in Table 2 includingκ = 0.05 mm,
β = 20 andα = 0◦. We aim to analyze that how the crack propagates along material boundaries. The crack
orientation in material1 is set toθ1 = 45◦ and the crack orientation in material 2 is varied in a range from
θ1 = 90◦ to θ2 = −90◦. The results in Fig. 8 show that, except forθ2 = −30◦ (Fig. 8(e)), all configurations
lead to a transgranular fracture. After the crack crosses the material boundary, it propagates in the direction which
correlates toθ. It can also be observed that each crack orientation only influences the crack direction in its own
material domain. On the contrary, for the caseθ2 = −30◦, the crack orientation is greater than the angle between
the material boundary and x-coordinates, resulting that the crack crosses nearly the material boundary. In other
words, intergranular fracture depends on the orientation of material boundaries and the angle of crack orientation.

Figure 7: Geometry and boundary conditions

(a)θ2 = 0◦ (b) θ2 = 30◦ (c) θ2 = 45◦ (d) θ2 = 90◦

(e)θ2 = −30◦ (f) θ2 = −45◦ (g) θ2 = −60◦ (h) θ2 = −90◦

Figure 8: Influence of the crack orientationθ on the crack path.
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5.3 Crack Propagation in Polycrytalline Materials

To demonstrate the numerical performance of the proposed phase-field model for anisotropic fracture in solar-
grade polycrystalline silicon (Paggi et al., 2018), crack growth in a square polycrystalline microstructure with 10
mm× 10 mm domain consisting of an initial crack and 10 grains under uniaxial tension is simulated. The details
of the geometry and boundary conditions are schematically shown in Fig. 9(a). Each grain has been associated a
randomly crack orientation, as depicted in Fig. 9(b). The material parameters are listed in Table 2. The unstructured
mesh consists of 50141 quadrilateral elements with a mean element sizeh of 0.05 mm. The diffuse lengthκ is
considered as the same value ash.

Figure 9: (a) Geometry and boundary conditions for the polycrystalline structure containing 10 grains; (b) Angle
of the crack orientation.

Fig. 10(a) - (d) depict the evolution of the crack phase-field at several failure stages under tensile loading. In
each transgranular fracture system, the direction of the crack path appears not identical. Fig. 10(c) shows that the
crack runs within the grain boundary from the secondary transgranular fracture system and the crack swifts to the
neighboring grain. A phenomenon for inter- and transgranular fracture can be observed for the numerical results
that the crack orientation influences the crack propagation in each transgranular fracture system. The intergranular
fracture will take place mainly when the orientation of the boundary of grains resists the crack propagation from
transgranular fracture system.

(a) (b) (c) (d)

Figure 10: Crack phase-field at various fracture stages.

The same arrangement of polycrystals is used for another simulation in which the crack orientation in one grain is
changed from29.32◦ to 0◦ (see Fig. 11(a)). All the other settings remain as before. The impact of this modification
is shown in Fig. 11(b). It can be observed that the crack propagates nearly horizontally in the modified grain
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due to the change of the crack orientation. Obviously, the resulting crack path may be changed by defining a
new crack orientation for another involved grain. It signifies that the anisotropic properties within each grain can
strongly affect the microscopic crack propagation. Hence, for a detailed investigation of such cracks the anisotropic
properties should be taken into account.

Figure 11: (a) Crack orientation; (b) Crack phase-field at final failure stage.

6 Conclusions

In this contribution, we firstly provided a brief overview of the phase-field model for crack propagation in isotropic
and anisotropic materials, respectively. Next, we presented the phase-field model for anisotropic fracture which can
distinguish the loading under tension and compression. The fully coupled monolithic solution scheme within the
finite element framework was formulated. Comprehensive parameter studies for the proposed phase-field model
have been done and the results have been analyzed. Simulations of the anisotropic fracture within the lower value
of the crack orientationθ are also considered, though the resulting crack path is no longer in alignment with the
predefined crack orientation, and the opposite direction with fluctuating crack paths can be observed in the results.
Furthermore, it is necessary to account for such phenomena that the widely used anisotropic materials (e.g. woods)
consist of the lower value of the crack orientation in the structure and it can play an important role in material design
processes. This topics will be addressed elsewhere. Representative numerical examples of the crack propagation
in solar-grade polycrystalline silicon are carried out which can validate its capability of modelling of inter- and
transgranular fracture process. Last but not least, the damage and failure analysis of solar-grade polycrystalline
silicon using phase-field method will also be compared with experimental results in future.
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