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Mode II Delamination Analysis of Asymmetrical Four Point Bend 
Layered Beams with Considering Material Non-linearity 
 
 
 V. Rizov  
 
 
An analytical study is performed of mode II delamination fracture in the asymmetrical Four Point Bend (FPB) 
beam configurations with considering non-linear material behavior. The beam mechanical behavior is described 
by using two non-linear constitutive models (ideally elastic-plastic model and model with power law stress-
strain relation).The crack is located arbitrarily along the beam height. Fracture is analyzed by applying the J-
integral approach. By using the classical beam theory, analytical solutions of the J-integral are obtained at 
characteristic levels of the external load. The solutions derived are compared with the strain energy release rate. 
The influence of material non-linearity and crack location along the beam height on the fracture behaviour is 
evaluated. The J-integral solutions derived are very useful for parametric investigations, since the simple 
formulae obtained capture the essentials of fracture in asymmetrical FPB beams that have non-linear material 
behaviour.    
 
 
 
1 Introduction 
 
The integrity and load bearing capacity of layered beam structures depends upon their delamination fracture 
properties. Appearance and propagation of delamination cracks between layers significantly deteriorates the 
structure performance. For instance, cracking considerably reduces the stiffness of beams and may lead to 
catastrophic failure.  
 
Considerable efforts have been made in the analysis of delamination fracture in layered beam structures by many 
researchers (Guadette et al., 2001; Guo et al., 2006; Her and Su, 2015; Hsueh et al., 2009; Jiao et al., 1998; 
Sørensen and Jacobsen, 2003; Suo et al., 1992; Szekrenyes, 2016; Szekrenyes, 2016; Tkacheva, 2008; Yeung et 
al., 2000).  
 
Influence of residual stress (hygroscopic, thermal and piezoelectric induced stresses) on the strain energy release 
rate in layered beam specimens has been analyzed by Guo et al., 2006. Methods of linear-elastic fracture 
mechanics have been applied. Closed form analytical solutions for determination of the strain energy release rate 
have been derived by using the classical beam theory. The effects of geometrical and material parameters of the 
specimens on the delamination fracture behaviour have been evaluated.   
 
Delamination fracture behaviour of laminated composite beams have been investigated by applying the J-integral 
approach by Sørensen and Jacobsen, 2003. Determination of cohesive laws for different beam specimens has 
been disscussed. The effects of specimen shape on strength have been predicted by using the cohesive laws. 
Failure of adhesive joints has also been analized. Micromechanisms of splitting of laminated composites have 
been studied both experimentally and theoretically.   
  
The effects of various bridging mechanisms on the delamination fracture resistance of laminated composites have 
been evaluated by Suo et al., 1992. A family of steady-state mixed mode delamination beams has been 
considered. A complete solution has been obtained which has been used to construct R-curves for given model 
parameters. Double cantilever beams loaded by moments and by wedge forces have been compared in order to 
elucidate the significance of steady state fracture for understanding delamination R-curves. It has been 
recommended to use R-curves when studying localized damage response.          
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Dynamic delamination fracture in layered materials has been studied analytically by Tkacheva, 2008. Linear-
elastic behaviour of the material has been assumed. Solutions have been obtained by using the classical beam 
theory. An equation for balance of energy has been used as a criterion for delamination crack growth.  
 
The stedy-state delamination fracture behaviour of multilayered beams has been analyzed assuming linear-elastic 
material behaviour by Hsueh et al., 2009. The fracture has been studied in terems of the strain energy release rate 
by applying the classical beam theory. A closed form analytical solution has been derived for a delamination 
crack located arbitrary along the beam height. The solution can be used for multilayered beam configurations 
with any number of layeres. Besides, each layer can have individual thickness and modulus of elasticity.   
 
The delamination fracture toughness of a four-layer linear-elastic beam structure has been studied by Her and Su, 
2015. It has been assumed that a delamination crack is located between the second and the third layers. A 
formula for the strain energy release rate has been derived by using the classical beam theory. The fracture has 
been studied in a function of modulus of elasticity and thickness of the layers.  
      
It can be concluded that delamination fracture in layered beam configurations, including the FPB, has been 
analyzed in terms of the strain energy release rate mainly assuming linear-elastic material behaviour. In reality, 
however, the beam structures may have non-linear behaviour of material. Therefore, the purpose of present 
article is to perform an analytical study of mode II delamination fracture in the asymmetrical FPB beam 
configuration under static loading with taking into account the material non-linearity. Fracture is analyzed by 
applying the J-integral approach. Two non-linear constitutive models (ideally elastic-plastic model and elastic-
plastic model with power law stress-strain relation) are used to describe the mechanical response of beam 
considered. Closed form analytical solutions of the J-integral are obtained by applying the conventional beam 
theory. The influence of crack location and material non-linearity on the fracture behaviour is discussed.     
 
 
 
2 Analysis of the Asymmetrical  FPB Beam 
 
The FPB beam configuration considered is illustrated in Figure 1. The beam is in four point bending. The beam 
cross-section is a rectangle of width, b, and height, 2h. There is a delamination crack of length, a, located 
arbitrarily along the beam height. The lower and upper crack arm thicknesses are 1h  and 2h , respectively (Figure 
1). It is assumed that 21 hh ≤ .     
 

 
     Figure 1. Geometry and loading of the asymmetrical FPB beam 
 
The fracture behaviour is analyzed by using the J-integral approach (Rice, 1968; Rice et al., 1973; Broek, 1986): 
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where Γ is a contour of integration going from one crack face to the other in the counter clockwise direction, 0u  
is the strain energy density, α is the angle between the outwards normal vector to the contour of integration and 
the crack direction, xp  and yp  are the components of the stress vector, u and v are the components of the 
displacement vector with respect to the crack tip coordinate system xy, and ds is a differential element along the 
contour Γ.   
 

 
    Figure 2. Stress-strain diagram of the ideally elastic-plastic model (

pl
u0  and *

0u  are the strain energy density 

and complimentary strain energy density, respectively) 
 

It should be specified that the present analysis is based on the small strain assumption (this assumption has been 
frequently used in analyses of delamination fracture in layered beam configurations (Hsueh et al., 2009)). 
 
The J-integral solution is derived by using integration contour, Γ, consisting of the cross-sections ahead and 
behind the crack tip (Figure 1). Therefore, the J-integral value is obtained by summation: 
 
         BAA JJJJ ++=

21
,                                                                                                                                 (2) 

 
where 

1AJ , 
2AJ  and BJ  are the J-integral values in segments 1A , 2A  and B, respectively.  

 
 
 
2.1 Analysis by Using the Ideally Elastic-plastic Model 
 
First, the mechanical response of the FPB beam is described by using the ideally elastic-plastic model (Figure 2). 
At low magnitudes of the external load, the beam deforms linear-elastically. The normal stresses, induced by 
bending are distributed linearly along the beam height. Thus, the components of the J-integral in the segment 1A  
of the integration contour are written as 
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1
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bhI = is the principal moment of inertia of the lower crack arm cross-section. The coordinate, 1z , 

originates from the lower crack arm cross-section centre and is directed downwards ( 1z  varies in the interval 
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obtained by using the following formula (Rzhanitsyn, 1986)  
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where  
 
           FlM =                                                                                                                                                    (5) 
 

is the bending moment in the crack tip beam cross-section (Figure 1). The partial derivative, 
x
u

∂
∂ , is written as 

 

         
Ex

u σ
ε ==

∂
∂

1
1

1 z
EI
M

= .                                                                                                                             (6) 

 
 

where E  is the modulus of elasticity. The strain energy density is obtained as 
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By substitution of (3), (6) and (7) in (1), we obtain the following solution of the J-integral in segment 1A  
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The J-integral solution in the segment 2A  (Figure 1) is found also by (8). For this purpose, 1M  and 1h  are 

replaced with 2M  and 2h , respectively 
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is the cross-sectional bending moment in the upper crack arm (Rzhanitsyn, 1986).   
 
The J-integral components in the segment B of the integration contour are written as (Figure 1) 
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where 
( )
12
2 3

3
hbI = is the principal moment of inertia of the un-cracked beam cross-section, M is obtained by 

(5). The coordinate, 3z , originates from the beam cross-section centre and is directed downwards ( 3z  varies in 
the interval [ ]hh +− ; ). After substitution of (11) and (12) in (1), we obtain  
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The final solution is found by substitution of (8), (9) and  (13) in (2)  
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It should be mentioned that at hhh == 21  equation (14) transforms into 
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Equation (15) coincides with the formula for the strain energy release rate when the crack is located in the FPB 
beam mid-plane (Hutchinson and Suo, 1992).  
 
When the external load magnitude increases, the yield stress limit yf  will be attained first in the lower crack 

arm, since 21 hh ≤ .  
 

 
Figure 3. Elastic-plastic distribution of stresses and strains in cross-section 1A  of the lower crack arm 

 
Two symmetric plastic zones will develop in the lower crack arm, while the rest of the beam will continue to 
deform linear-elastically. The normal stresses and the longitudinal strain distribution in the segment, 1A , of the 

integration contour is shown in Figure 3. The J-integral solution in 1A  is obtained by integration along the 
elastic and plastic zones 
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By performing the necessary mathematical operations, we derive  
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where  
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The upper crack arm deforms linear-elastically. Therefore, the J-integral solution in the segment 2A  of the 

integration contour can be found by (9). For this purpose, 2M  has to be replaced with eM 2  
 

         3
2

2

2
26

2 hEb
MJ e

A =                                                                                                                                           (25) 

 
where  
 
         epe MFlM 12 −= .                                                                                                                                 (26)  
 
The solution in segment B of the integration contour is obtained by (13), since the un-cracked beam portion, 

0≥x , deforms linear-elastically (Figure 1).    
 
The J-integral final solution is found by combining of (2), (13), (17) and (25)           
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Solution (27) is valid if 3/22lim,11 hhh =< , because plastic collapse of the lower crack arm will occur before 
the onset of plastic deformation of the upper crack arm.   
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If ,lim11 hh ≥ , plastic strains will develop also in the upper crack arm before the plastic collapse of lower crack 
arm. In this case, the J-integral solution is found as  
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It should be specified that equation (28) is applicable when the external load magnitude F is in the boundaries 
between the elastic limit load and the plastic colapse load pcF  for the lower crack arm, i.e.  
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2.2 Analysis by Using the Model with Power Law Stress-strain Relation 
 
The delamination fracture is analyzed also assuming that the mechanical behaviour of FPB beam can be 
described by using the constitutive model with power law stress-strain relation. The stress-strain equation is 
written as (Dowling, 2007) 
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where σ and ε are the normal stresses and longitudinal strains, 1H  and 1n  are material constants.  
    
The fracture is analyzed again by applying the J-integral approach (1). The J-integral solution is 
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The J-integral solutions are compared with the strain energy release rate G determined with taking into account 
the material non-linearity by using the following equation   
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where *

bU  and *
aU  are the complimentary strain energies before and after the increase of crack, respectively, 

a∆  is a small increase of the crack length. The fact that the J-integral solutions coincide with the strain energy 
release rate is an indication for consistency of the non-linear delamination fracture analyses performed in the 
present paper.  
 
 
 
3 Parametric Investigations 
 
A parametric investigation is performed in order to evaluate the effect of non-linear behaviour of material on the 
mode II delamination fracture in the asymmetrical FPB layered beam configuration. For this purpose, 
calculations of the J-integral are carried-out by using formula (28).  
 

 
 Figure 4. The J-integral value in non-dimensional form plotted against pcFF /  ratio (curve 1 – linear-elastic 

material behaviour, curve 2 – elastic-plastic material behaviour) 
 

The J-integral value obtained is presented in non-dimensional form by using the formula ( )EbJJ N /= . It is 
assumed that b=0.02 m, h=0.01 m, 009.01 =h  m and l=0.5 m. The J-integral value in non-dimensional form is 
plotted against pcFF /  ratio in Fig. 4 ( pcFF /  ratio varies in the boundaries determined by (32)). The lower 

boundary of pcFF /  ratio calculated by (32) at 009.01 =h  and 011.02 =h  is 0.755. In order to evaluate the 
effect of material non-linearity on the delamination fracture, the J-integral value obtained assuming linear-elastic 
material behaviour by formula (14) is also plotted in non-dimensional form against pcFF /  ratio in Figure 4 for 
comparison with the curve generated by non-linear solution. The curves in Figure 4 indicate that the material 
non-linearity leads to increase of the J-integral value. Therefore, the non-linear behaviour of material has to be 
taken into account in fracture mechanics based safety design of structural members composed by layered 
materials.  
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The effect of crack location along the beam height on the elastic-plastic fracture behaviour is analyzed too. For 
this purpose, the non-linear solution (34) is used. The J-integral in non-dimensional form, )/( 1bHJ , is plotted 
against hh 2/1  ratio at 8.01 =n  and 95.0/ =pcFF  in Figure 5.  

 

 
  Figure 5. The J-integral value in non-dimensional form plotted against hh 2/1  ratio for the model with power 

law stress-strain relation 
 

It can be observed that the J-integral value is maximum at 5.02/1 =hh , i.e. when the crack is located in the 
beam mid-plane (Figure 5).         
 
 
 
4 Conclusions 
 
An analyticall study is conducted of mode II delamination fracture in the asymmetrical FPB layered beams. The 
basic purpose is to analyze the fracture behaviour with considering the material non-linearity when the crack is 
located arbitrarily along the beam height. Fracture is investigated by applying the J-integral approach. The FPB 
beam mechanical behaviour is described by using two non-linear material models (ideally elastic-plastic model 
and model with power law stress-strain relation). Closed form analytical solutions of the J-integral are derived 
with the help of classical beam theory. The solutions are compared with the strain energy release rate derived 
with taking into account the material non-linearity. The effects of material non-linearity and crack location along 
the beam height on the fracture behaviour are analyzed. It is found that the J-integral value is maximal when the 
crack is in the beam mid-plane. The analytical solutions derived are very convenient for parametric 
investigations, since the simple formulae capture the essentials of delamination fracture with considering the non-
linear material behaviour. The present study contributes for the understanding of delamination fracture behaviour 
of layered beams that exhibit material non-linearity. Also, the analysis developed in the present paper can be 
applied for studying the mode II strain energy release rate in the FPB adhesion test in which adherends are made 
of metalic materials with non-linear behaviour (for inctance, the mechanical behaviour of mild steel and 
aluminium can be reasonably approximated by the ideally elastic-plastic model, the model with power law stress-
strain relation can be applied for describing the mechanical behaviour of annealed copper (Denton, 1966)).         
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