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Numerical Investigation of the Phase Evolution in Polymer Blends under
External Mechanical Loadings

J. Voges, R. Makvandi, D. Juhre

The influences on the development of polymer blend microstructures are not yet fully understood in the manu-
facturing processes. The purpose of this paper is to give a closer look at the effect of the elastic energy on the
decomposition process. The decomposition process of a melt consisting of two polymers with different shear mod-
uli is investigated. Due to the resulting heterogeneous material behavior and deformations, the generated energy
field is heterogeneous as well. This energy causes changes in the local stability of the mixture, which yields phases
consisting of both the polymers. Additionally, possible large deformations result in dominating diffusion directions.

1 Introduction

In the manufacturing process, the microstructure of polymer blends strongly depends on different effects. To better
control the resulting microstructures, it is important to know the behavior of these single effects. One method to
mix polymers is to stir the melt, which causes an elastic deformation besides the mixing. A numerical simulation
can give some preliminary information on the influences on the phase behavior. A useful method for this is the
phase-field method. Here, an order parameter which is defined on the whole domain denotes the present phase and
thus the present material at any point of the domain. There is no need to track the phases boundaries. There are
different approaches for phase-field models. A large part is based on the Cahn-Hilliard equation. The theoretical
framework for this differential equation (DE) is provided by John W. Cahn and John E. Hilliard (see Cahn and
Hilliard (1957), Cahn and Hilliard (1959) and Cahn and Hilliard (1961)). Using this equation, the evolution of the
order parameter can be described (cf. e. g. Zhu et al. (2016)).

Studying the evolution of phases in the presence of external mechanical loadings can help to understand material
behaviors in a better way. To investigate this numerically, the Cahn-Hilliard equation can be coupled with elasticity.
One popular method among researchers is based on adding an elastic energy to the free energy of the system. The
elastic energy contains material parameters which may depend on the order parameter. Based on this, Yeon et al.
(2005) simulated the anisotropic dendritic growth due to elastic stresses in a binary alloy. Ubachs et al. (2004)
investigated the phase evolution of tin-lead solder under global strain and considered small deformations in one-
dimensional simulations with phase dependent material parameters likewise. By applying a global strain, they
observed that the concentrations in the phases change respectively. Another way of coupling based on the elastic
energy is to model the swelling due to a phase change. The basic framework for this is developed by Anand and
Chester (2010) and Duda et al. (2010), which both hold for large deformations. They also discussed that there
are two different possibilities to formulate the Cahn-Hilliard equation. One must choose between the material
description and the spatial description to derive the governing equations, which correlates with a deformation
independent and dependent diffusion, respectively. Hong and Wang (2013) implemented an algorithm to model
the swelling of polymeric gels. A swelling due to the lithiation of electrode materials is discussed by Di Leo et al.
(2014) and Zao et al. (2016), who also formulated phase dependent values for the material parameters. In both
the papers, however, the deformation dependent diffusion is not studied. In the manufacturing process, laminar
phases, which are due to shear flows, can often be observed (cf. Han et al. (2006) and Liu et al. (2013)). The
viscoplastic behavior of solder alloys based on a phase-field is investigated by Ubachs et al. (2005). The diffusion
in a decomposition process does not need to be isotropic. Kuhl and Schmid (2007) show an implementation of the
anisotropic Cahn-Hilliard equation.

In regard to numerics, there are different approaches for the local discretization of the Cahn-Hilliard equation. The
Finite Difference Method (FDM), because of the simplicity of its implementation, is usually the most convenient
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method to consider (cf. e. g. Lee et al. (2014) and Ju et al. (2015)). However, when dealing with mechanical
couplings and complex geometries, other numerical methods like the finite element method (FEM) seem to be an
inevitable choice. Since the Cahn-Hilliard equation is a fourth-order differential equation and needsC1-continuous
elements (with continuous first derivative across the elements), the conventional finite element method with mostly
Lagrangian interpolation functions (which can only provideC0-continuity across elements) is not able to solve
the problem, therefore some approaches to overcome this issue have been proposed. One way of doing this, is to
split the fourth-order governing equation into two coupled second-order equations. Another approach is to change
the discretization technique itself. For instance, the discontinuous Galerkin method can be used (cf. Wells et al.
(2006)). In Kaessmair and Steinmann (2016) it is shown that the isogeometric analysis (IGA) provides a good
numerical performance for phase-field models by comparing different numerical methods. Detailed convergence
studies are done by Ǵomez et al. (2008) and K̈astner et al. (2016) as well. Based on this, in the present work the
method of choice is the IGA. The finite element software FEAP with an IGA extension is used (nurbFEAP) (cf.
Taylor (2014)). The software nurbFEAP provides an IGA framework based on the Bézier extraction method (cf.
Borden et al. (2011)).

A mixture with unstable volume fractions of its components yields a spontaneous decomposition. While decom-
posing, in any part of the mixture there is a specific concentration of the materials. Concentrations, which behave
stable, are referred to as concentrationsin the stable domainor in the stable concentration intervalsin this pa-
per. This holds for metastable and unstable conditions in a same way. The purpose of this work is to illustrate
changes of the stabilities boundaries due to external loads within a two-dimensional domain and finite elasticity
(large deformations theory of elasticity). Phase dependent material parameters are applied.

The next chapter will be about the mathematical derivation of the governing equations. Here, the phase-field
method is introduced in detail and the elasticity is elaborated. Chapter 3 deals with the numerics and the presen-
tation of the residual formulation for the IGA framework. Chapter 4 is divided into two considerations. First,
kinematical effects due to the large deformations are studied, and second, the shift of the stabilities is investigated.
The last chapter provides a conclusion.

2 Model

This section deals with the derivation of the governing differential equations. A coupling between the phase-field
model and the finite deformations elasticity theory is established. There are dependencies in both directions: The
mixing energy in the phase-field is influenced by the resulting elastic energy and the elastic material parameters
are dependent on the phase-field.

2.1 Phase-field method

Assume a binary mixture withA andB as its components. Let{c ∈ R | 0 ≤ cB ≤ 1} be an order parameter
representing the volumetric concentration of componentB, the concentration of componentA will be cA = 1−cB .
For brevityc = cB holds. In a two dimensional domainB ⊂ R2 the order parameter is defined for every spatial
pointx ∈ B.

Assuming a transient problem, the diffusion equation is described by

∂c

∂t
= − div j with j = −M∇μ, (1)

wherej denotes the concentration flux and is based on the chemical potentialμ and the mobility tensorM. In
the special case of isotropic diffusion, the mobility tensor becomesM = M1 with the degenerative mobilityM ,
which is a function of the concentration and in this paper is calculated using the following equation.

M(c) = D(1 − c)c, (2)

whereD is the diffusive coefficient and is constant. Letψ be the volume-specific free energy of the system, the
chemical potential is defined by the variational derivative with respect toc:
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μ =
δψ

δc
=

∂ψ

∂c
− div

∂ψ

∂∇c
with ψ(c,∇c) = ψmi(c) + ψel(c) + ψin(∇c). (3)

According to the work of Cahn and Hilliard (1957), the interface energy isψin = 1
2λ∇c ∙ ∇c with a constantλ,

hence the divergence term in equation (3) becomes

div
∂ψ

∂∇c
=

1
2
λ ∇ ∙

∂(∇c ∙ ∇c)
∂∇c

= λ ∇2c and thus μ = ψ′
mi(c) + ψ′

el(c) − λ∇2c. (4)

Here, the apostrophe denotes the first derivative with respect toc. The mixing energyψmi reads

vmol ψmi(c)
NakbT

= c ln c + (1 − c) ln(1 − c) + ωc(1 − c) (5)

and is used in an analogous representation in Cahn and Hilliard (1957) and is a well-known equation in the Flory-
Huggins solution theory. In equation (5)Na is the Avogadro constant,kb is the Boltzmann constant andT denotes
the Kelvin temperature. In the present work, the mixing behavior due to the mixing energy is symmetric: both the
polymers have the same tendency to be dissolved in the other polymer. Therefore, the molar volumevmol is the
same for both the polymers. This yieldsvmol = NAvA = NBvB with the degrees of polymerizationNi and the
molar volumes of the corresponding monomers,vi. The parameterω corresponds to the interactions of the mixture
and yields the typical double-well shape in Figure 1b.

Originated in the theoretical framework, which Gibbs provided in the 19th century, the stability of mixtures behaves
as follows. Cahn and Hilliard (1959) picked up the idea that if∂2f/∂c2 < 0, a spontaneous decomposition will
occur. Heref represents the free energy without the interface energy,f(c) = ψmi(c) + ψel(c). This yields the
spinodal points, cs, at∂2f/∂c2 = 0, which thus delimit the left and the right border of the unstable domain.
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Figure 1. Energy functionf(c), corresponding spinodal points,cs, and binodal points,cb

The plot in Figure 1a shows a more general case of a mixing potential (cf. Cahn and Hilliard (1957)). The common
tangent defines the borders between the metastable and the stable domains. A very detailed presentation of this
correlation is provided by Wasylkiewicz et al. (1996) and also Baker et al. (1982). The two points corresponding
to the common tangent are calledbinodal points, cb.

In the classical theory the mixing energy and the interface energy are considered. Later the elastic energy is added
(cf. e. g. Asaro and Tiller (1972)). In the isotropic case, the Cahn-Hilliard equation then becomes
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∂c

∂t
= div

[
M(c) ∇

(
f ′(c) − λ ∇2c

)]
. (6)

Multiplying equation (6) with a scalar-valued test function,w, integrating over the domainB and applying the
divergence theorem yields

∫

B

(
∂c

∂t
w + M(c) f ′′(c) ∇c ∙ ∇w + λ∇2c M ′(c) ∇c ∙ ∇w + λ∇2c M(c) ∇2w

)

dv

=
∫

∂B
M(c)∇

(
f ′(c) − λ∇2c

)
∙ n w da +

∫

∂B
M(c)λ∇2c ∇w ∙ n da.

(7)

Equation (7) is well-known and can be found in an analogous formulation in Kästner et al. (2016) and Kaessmair
and Steinmann (2016). Heren denotes a normal vector belonging to the surface. It is more convenient to apply
homogeneous boundary conditions on the domain to eliminate the right-hand side of the weak form (cf. e. g.
Kästner et al. (2016)).

2.2 Elastic Energy

The finite deformation framework is used. Some kinematical quantities can be derived from the deformation
gradient,F = ∂xi

∂Xj
ei ⊗ ej for spatial pointsx = xiei and material pointsX = Xiei. Thus,C = FT F and its

traceIC = Cii can be formulated. The determinant ofF is called Jacobian,J = detF. Based on this an elastic
energy function for a compressible neo-Hookean material can be formulated:

ψel =

(

K −
2
3
G

)

U +
1
2
G (IC − 3 − 2 ln J) and U =

1
4
(J2 − 1 − 2 ln J) (8)

with the bulk modulusK and the shear modulusG.

Since the binary mixture consists of two different materials (phases) and the order parameterc defines the local
present material, the mechanical behavior is assumed to change depending onc. This idea is also proposed in Di
Leo et al. (2014) and also in Yeon et al. (2005), where the following interpolation function is provided:

h(c) = c3(6c2 − 15c + 10) (9)

with h(0) = 0 andh(1) = 1. The shear modulus can be determined using

G(c) = GAh(1 − c) + GBh(c). (10)

Here, the indicesA andB represent the corresponding material phases. The materials are assumed to have both
the same behavior regarding bulk deformations, soK is set to be independent ofc. Figure 2a shows the qualitative
shape of the function in equation (10). The shear moduli are quite small, which is due to the usage of melts.

Considering a specific deformation yields with equation (8) an elastic energy, which depends on the order param-
eterc. Let the shear moduli satisfyGA > GB , the stored elastic energy of a deformed block consisting of100%
of materialA, can be expected to be larger than the same energy of a block consisting of100% of materialB
with the same forced deformation. This effect is represented in Figure 2b. The concentration dependent elastic
energy of a specific deformation state, which occurs in later considerations, is illustrated. Since the elastic energy
is linear with respect toG, the shear modulus and the elastic energy look the same in their qualitative shape. The
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Figure 2. Shear modulus and elastic energy depending on the concentration; shift of the binodal and the spinodal
points inf(c) due to elastic deformations of different degrees

double-well potentialψmi is shown as well. Following the approach forf(c) by summing upψel andψmi, the
graph in Figure 2c results. A slightly different deformation yields the graph in Figure 2d. The binodal points and
the spinodal points are shifted.

In order to apply actual deformations on a domainB to cause an elastic energy field, the following equations and
quantities are used. The balance of linear momentum, also known as Cauchy’s first law of motion, reads

div σ + ρ(b − a) = 0 (11)

with the mass densityρ, the body force densityb and the accelerationa. The tensorσ = J−1FSFT is the Cauchy
stress tensor, whereS is the second Piola-Kirchhoff stress tensor,S = 2 ∂ψ

∂C . Considering a quasi-static case and
neglecting any body forces, equation (11) reduces to

div σ = 0. (12)

Introducing a vector-valued test functionw, the weak form for the elastic part becomes

∫

B
σ ∙ (w ⊗∇) dv −

∫

∂Bσ

w ∙ t da = 0, (13)
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wheret is the stress vector on a surface with normal directionn. In later considerations the second term of equation
(13) vanishes since the boundary conditions regarding surface stresses are chosen to be homogeneous.

3 Numerics

The Cahn-Hilliard equation and Cauchy’s first law of motion yield a system of nonlinear partial differential equa-
tions. To solve these equations, a spatial and temporal discretization and a solution algorithm for non-linear
problems are used. The governing equations are discretized using the NURBS based isogeometric analysis. The
IGA allows higher continuities across element boundaries.

The spatial domainB is subdivided intone elements, which each are represented by the element domains,Be. As
well-known from the finite element framework, the following residual equations can be derived for each control
point,I, in spatial configuration

R̄I
e =

∫

Be

(BI)T σ̄dv =
∫

Be

[
NI,1 0 NI,2

0 NI,2 NI,1

]



σ11

σ22

σ12



 dv. (14)

Here,NI are the shape functions withNI,i = ∂NI/∂xi for brevity. The vector̄σ contains the independent entries
of the second-order tensorσ. Since the domain isR2 the nodal residual̄RI

e has one entry for each directionx1

andx2. In contrast,RI
e has an additional entry for the nodal phase-field residual in the spatial configuration:

RI
e;P =

∫

Be

(

NI
∂c

∂t
+ M(c)f ′′(c)NI,ic,i + λc,jj M ′(c)NI,ic,i + λc,jjM(c)NI,ii

)

dv (15)

whereRI
e;P denotes the phase-field part of the residual. Indices appearing twice in a single term imply summation

over the values1 and2 of the index, hencec,ii represents∇2c in index notation. It should be noted that equation
(15) can be found for example in Kästner et al. (2016) and Kaessmair and Steinmann (2016), who both do not
include elastic couplings. The representation of this equation is not different from the literature, since the elastic
coupling is realized by adding an additional term insidef(c). The same holds for equation (14): The concentration
dependency of the material moduli does not affect the derivation of the residual.

The time domain is discretized as well. For numerical integration a Newmark method is implemented in the
solution algorithm of the Newton-Raphson method following Friberg (1987).

4 Behavior of the system

In all numerical examples, a two-dimensional square domain with the edge lengthl0 = 10μm is considered and
an initial concentration field withc = c̄ + cn in every point is set. Here an average concentrationc̄ = 0.5 is
used, so both the components have the same volume fraction in the mixture. A small noisecn with random values
ensures that the right side of equation (6) does not vanish which otherwise would cause∂c/∂t = 0 in every point
and thus the decomposition process would not start. Gómez et al. (2008) provide a mesh convergence study for
the NURBS based IGA for the Cahn-Hilliard equation with the same double-well potential as in the present paper.
Based on their findings, the mesh size is chosen to be64 × 64 with cubic NURBS elements. In this choice, of
course, the extension regarding the elasticity is taken into account as well. The influence on the error is expected
to be small, an additional calculation using a mesh with128 × 128 with cubic NURBS elements did not show
notable differences. The edges of the two-dimensional domain have no-flux boundary conditions∇c ∙ n = 0 (cf.
Liu et al. (2013)). There are two general effects which can be observed. The first one is caused by the kinematics
corresponding to the large deformations, and the other is coming from the elastic energy.
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4.1 Kinematical effects

As already mentioned, Anand and Chester (2010) show that, when considering large deformations, one must
choose between the material description and the spatial description to derive the governing equations. In the
present work, deformation dependent diffusion is considered. This is assumed due to the consideration that in
reality a particle tends more to attract the adjacent particles. This assumption yields either an anisotropic mobility
tensorMm in the material description or an isotropic mobility tensorMs in the spatial description (cf. Hong and
Wang (2013)). In the present paper, the spatial mobility tensor is applied.

To show the influence of the external loads on the diffusion directions, in this section three different kinds of
boundary conditions are considered, which are shown in Figure 3. Note that all forced non-zero displacements are
applied on the upper edge. In the simulations the displacements areuα = 0.2l0 anduβ = 0.3l0.

uα

(a) Compression

uα

(b) Tension

uβ

(c) Simple shear

Figure 3. Schematic representation of the considered deformations to investigate the kinematical effects

The deformation yields dominating diffusion directions which are due to the displacements of the nodes. The
smaller the distance between the nodes the more those nodes are likely to create a common phase. This effect can
be observed in Figure 4. Note that in contrast to Figure 4a, in Figure 4b the dominating direction corresponds with
the direction of transversal contraction. The simple shear in Figure 4c yields a preferred diffusion direction, which
is diagonal from top left to bottom right.

(a) Compression (b) Tension (c) Simple shear

Figure 4. Plot of the undeformed domain, showing the order parameterc at an equal simulation time

4.2 Energy based effects

In chapter 2.1, the binodal and the spinodal points are described. Figure 2 showsf(c) = ψm + ψel for different
applied deformations. As already mentioned, the inflection points represent the spinodal points and the common
tangents define the binodal points of each curve. Due to the well-known fact that these points correlate with the
stable, metastable and unstable concentrations of the components, it can be expected that the arising microstructure
in a mechanical loaded state may differ from the one in an unloaded state.

The main question then becomes: how might these loads affect the decomposition? To get an idea of this, the
following consideration has been made: A two-dimensional quadrilateral domain is deformed unevenly, cf. Figure
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uγ

(a) Deformation

x2

x1

Profile1

Profile2

(b) Marking for profile plots

Figure 5. Schematic representation of the considered deformation to investigate the effects in the fully coupled
case; the vertical dashed lines mark the coordinates of profile plots in later considerations

5a. On the top edge, vertical boundary conditions are set following a linear function being dependent on the
horizontal coordinate and having the maximumuγ = 0.15. The bottom left corner is the only place where a
horizontal displacement is inhibited. Note that this deformation, obviously, cannot be reproduced using polymer
melts. However, to show the influence of the elastic energy, this consideration is sufficient.

Based on the mentioned boundary conditions, the quantitiesdetF and Ic can be assumed to be bigger on the
right-hand side of the deformed domain. This yields a bigger elastic energy on the right-hand side, since equation
(8) is dependent on these two kinematic quantities. Therefore,detF andIc can move the binodal and spinodal
points (cf. Figure 2) and thus the borders of the stable and unstable concentration intervals, which influence the
decomposition process of the binary mixture. Figure 6 b–c show the distribution of those quantities corresponding
to the concentration field in Figure 6a. Note that the system is not in the equilibrium state.

(a) Order parameterc (b) Ic (c) detF

(d) Elastic energy density[105 J/m3] (e) First binodal point (f) Second binodal point

Figure 6. Quantities at an arbitrary simulation time; the dashed lines mark the coordinates of profile plots in later
considerations; in (a), the contour lines representc = 0.85 andc = 0.90, in (b)–(f), the contour lines represent
c = 0.5

To illustrate changes in the borders of the stable concentration intervals, Figure 6 (e)–(f) provide the binodal points.
Since in the considered cases the energy function has two binodal points (cf. Figure 1), there is one surface plot for
each point. The stiffer phase is deformed less, so the binodal points do not change very much in the corresponding
areas. The darker the color, the more the binodal point is changed in comparison to an undeformed system. The
qualitative shape of the spinodal field behaves quite similar, so an illustration is dropped. However, these surface
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plots serve just to get a first idea of the changes in the stability. The following consideration is more precise and
includes the spinodal points as well.

For a closer look, Figure 7 represents profile plots corresponding to the dashed lines in Figure 5b and 6. The actual
concentrations and the borders of stability based on the binodal points and the spinodal points are shown. Figure
7a represents a weakly deformed area. Here, unstable, metastable and stable concentration intervals are quite
similar along thex2-axis. Figure 7b, however, represents a strongly deformed area. Generally speaking, the actual
concentrations tend to be at the binodal points and thus at the borders of the stable domain. It is a well-known fact
that once the actual concentration reaches stability, a further decomposition cannot be expected, irrespective of the
local minima in the energy function (cf. e. g. Kuhl and Schmid (2007)).
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Figure 7. Profile plots, correspondng to the dashed lines in Figure 5b, 6a, 6e and 6f; actual concentration values
(solid lines), spinodal points (roughly dashed lines) and binodal points (finely dashed lines)

While the stability border changes atx2 ≈ 0.7 in Figure 7b, the actual concentration behaves smoother, which is
due to the surface energy term in equation (6), which forces the curvature to be low. The small deviation between
stability border and the actual concentration atx2 ≈ 0.1 is assumed to be influenced by the same reason along
with the no-flux boundary condition∇c ∙ n = 0 at the edges, which forces the slope of the concentration curve in
7b to be zero atx2 = 0 andx2 = 1. It also matters that the solution is not in the equilibrium state, especially when
considering the phases being in the metastable domain (e. g. atx2 ≈ 0.3).

Obviously, in Figure 7 the binodal points of the material having a smaller shear modulus tend to change more than
the binodal points of the other material. This is due to the shape of the functions in Figure 2a and 2b. The stronger
the deformation becomes, the moreψel dominatesf(c), thusψel limits the shift of the binodal points being defined
by the common tangent off(c) in each case.

5 Conclusions

The present work shows numerical studies providing two major effects caused by the presence of elastic energy and
large deformations in a heterogeneous domain to investigate the phase behavior of polymer blends. First, the shift
of the binodal points due to the energy, and second, the dominating diffusion directions caused by the deformations
are investigated. This shift happens unevenly along the domain, since the energy field is heterogeneous. While the
resulting diffusion directions occur regardless of the chosen materials, the shift of the binodal points requires two
materials with different elastic moduli. The laminar structures due to preferred diffusion directions should not be
confused with the laminar structures due to shear flows (cf. e. g. Han et al. (2006)). These two effects are due
to different physical mechanisms and should not be confused. The effect in the present work is rate-independent.
However, it can be assumed that both these mechanisms can occur at the same time in a shear flow, if deformation
is permitted.

As already mentioned, the purpose of the proposed model is to give a first idea. However, the results permit the
assumption that these effects may be observed in real experiments as well. In order to verify this assumption by
comparing with experiments, the model must be improved by using a viscoelastic material model which considers
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the relaxation of the mechanical energy, and considering non-static mechanical loads (e. g. forced strain rates)
which counteract with the relaxation and thus, shift the binodal and the spinodal points. For instance, the strain
rate could be chosen to fit those strain rates, which occur in the process of stirring a melt in the manufacturing
process of polymer blends.
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