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Lengthwise Fracture of Two-Dimensional Functionally Graded 
Non-Linear Elastic Beam 

 
 
V. Rizov  
 
 
Non-linear elastic analysis of lengthwise fracture in functionally graded single leg four-point bending beam 
configuration is performed. The material is functionally graded along the height as well as along the width of 
the beam. A lengthwise crack is located arbitrary along the beam height. The mechanical behaviour of beam is 
described by power-law stress-strain relation. The fracture is studied analytically in terms of the strain energy 
release rate. The solution derived is verfied by analysing the fracture with the help of the J-integral. The 
influences of crack location, material gradient along the height as well as along the width of beam and the non-
linear behaviour of material on the fracture are investigated. It is found that the material non-linearity has to be 
taken into account in fracture mechanics based safety design of functionally graded structural members and 
components. The analysis revealed also that the strain energy release rate can be regulated effectively by 
employing appropriate material gradients in functionally graded structures.     
 
 
 
1 Introduction 
 
Functionally graded materials are extensively used for production of structural members and components which 
are subjected to non-uniform service requirements (Bohidar et al., 2014; Bykov et al., 2012; Butcher et al., 1999; 
Gasik, 2010; Hirai and Chen, 1999; Lu et al., 2009; Mortensen and Suresh, 1995; Nemat-Allal et al., 2011; 
Neubrand and Rödel, 1997; Parvanova et al.,  2013; Parvanova et al., 2014; Suresh and Mortensen, 1998; 
Tokova et al., 2016; Tokovyy and Ma, 2013; Tokovyy and Ma, 2016; Uslu Uysal and Kremzer, 2015; Uslu 
Uysal, 2016). This is due to the fact that these novel inhomogeneous materials possess continuously varying 
mechanical properties. The composition of constituent materials is changed gradually in one or more directions 
during manufacturing of a functionally graded structural member. Due to the smooth variation of macrostructure, 
the interfacial stress concentrations are largely avoided which is one of the most important advantages of 
functionally graded materials over the fibre reinforced composites (Szekrenyes, 2010; Szekrenyes and Vicente, 
2012; Tkacheva, 2008).  
 
Fracture is the most common failure mechanism in structural members made of functionally graded materials. 
Fracture can cause loss of stiffness and may lead to catastrophic failure. Thus, characterization of fracture 
behaviour is of great importance in the evaluation of functionally graded structures for durability and safety 
(Carpinteri and Pugno, 2006; Erdogan, 1995; Paulino, 2002; Szekrenyes, 2016; Szekrenyes, 2016; Shi-Dong Pan 
et al., 2009; Tilbrook et al., 2005; Upadhyay and Simha, 2007; Uslu Uysal and Güven, 2016).     
     
The present paper addresses the problem of lengthwise fracture in two-dimensional functionally graded single leg 
four-point bending non-linear elastic beam. The fracture is studied in terms of the strain energy release rate. The 
solution derived is applied to elucidate the influence of crack location, material gradient along the height as well 
as along the width of beam and material non-linearity on the fracture behaviour.  
 
 
 
2 Determination of the Strain Energy Release Rate    
 
The single leg four-point bending beam configuration analyzed in the present paper is shown schematically in 
Figure 1. The beam is loaded by two external forces, F, applied symmetrically with respect to the mid-span. A 
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notch of depth, 2h , is cut in order to introduce conditions for lengthwise fracture. A lengthwise crack of length, 
a, is located arbitrary along the beam height (it should be mentioned that the present paper is motivated also by 
the fact that functionally graded materials can be built up layer by layer (Bohidar et al., 2014) which is a premise 
for appearance of lengthwise cracks between layers). The upper and lower crack arm have different thickness 
denoted by 1h  and 2h , respectively. It is obvious that the lower crack arm is free of stresses. It should be noted 
that the crack is located in the beam portion between the two external forces (obviously, this beam portion is 
loaded in pure bending). The beam has a rectangular cross-section of width, b, and height, 2h.  
 

 
Figure 1. The geometry and loading of a functionally graded single leg four-point bending beam 

 
The beam mechanical behaviour is described by a power-law stress-strain relation (Petrov, 2014) 
 
       nBεσ = ,                                                                                                                                                   (1) 
 
where σ is the normal longitudinal stress, ε is the longitudinal strain, B and n are material properties. Stress-strain 
relation (1) describes non-linear elastic material behaviour which is typical for some functionally graded 
materials (for instance, zircona-titanium functionally graded material exhibits such behaviour at low content of 
zircona). The material behaviour of annealed copper and aluminium alloy can also be described by (1).      
 

 
Figure 2. The beam cross-section  

 
 The material is functionally graded along the width as well as along the height of beam. The material property, 
B, varies continuously in the beam cross-section according to the following law: 
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where UB  and LB  are, respectively, the values of B in the upper and lower surface of beam, 0B  is a material 

property that governs the material gradient along the beam width, 3y  and 3z  are the centroidal axes of beam 

cross-section (Figure 2). Formula (2) indicates that B is distributed symmetrically with respect to 3z -axis.   
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It should be noted that the fracture analysis developed in the present paper is based on the small strains 
assumption.       
    
In order to derive the strain energy release rate, a small increase, a∆ , of the crack length is assumed (the 
external load is kept constant). The strain energy release rate is written as 
 

       
A

UWG ext

∆
∆−∆

= ,                                                                                                                                    (3) 

 
where the change of external work is  
 
      *UUWext ∆+∆=∆ .                                                                                                                                 (4)  
 
The increase of crack area is  
 
      abA ∆=∆ .                                                                                                                                                  (5) 
 
In (3) and (4), U∆  and *U∆  are the changes of strain energy and complementary strain energy, respectively.  
From (3), (4) and (5), it is found 
 

     
ab

UG
∆

∆
=

*

,                                                                                                                                                    (6) 

 
where the change of complementary strain energy is  
 
    ***

ba UUU −=∆ .                                                                                                                                          (7) 
 
In (7), *

aU  and *
bU  are the complementary strain energies after and before the increase of crack, respectively. 

Thus, G is written as 
 

    
ab
UUG ba

∆
−

=
**

.                                                                                                                                               (8) 

 

 
Figure 3. The upper crack arm cross-section ( 11 nn −  is the neutral axis) 

 
The complementary strain energy after the increase of crack is obtained by integrating the complementary strain 
energy density, *

0u , in a portion of the upper crack arm (the lower crack arm is free of stresses) of length, a∆ , 
behind the crack tip 
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where 1y  and 1z  are the centroidal axes of cross-section of the upper crack arm (Figure 3). 
 

 
Figure 4. Non-linear stress-strain curve ( 0u  and *

0u  are the strain energy density and complementary strain 
energy density, respectively) 

 
The complementary strain energy density is equal to the area, OQR, which supplements the area, OPQ, enclosed 
by the stress-strain curve to a rectangle (Figure 4). Thus, *

0u  is written as 
 
       0

*
0 uu −= σε .                                                                                                                                            (10) 

 
The strain energy density, 0u , is equal to the area OPQ enclosed by the stress-strain curve (Figure 4). Thus,  
 

     ( ) εεσ
ε

du ∫=
0

0 .                                                                                                                                            (11) 

 
By combining of (1) and (11), it is found  
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By substituting of (1) and (12) in (10), it is derived 
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The strain, ε, which is necessary to calculate *

0u  is analyzed by applying the Bernoulli’s hypothesis for plane 
sections, since the span to height ratio of the beam under consideration is large. Concerning the application of 
Bernoulli’s hypothesis in the present paper, it can also be mentioned that the beam portion between the external 
forces is loaded in pure bending (Figure 1). Therefore, the only non-zero strain in this beam portion is ε . Thus, 
according to the small strain compatibility equations, ε  is distributed linearly along the beam height  
 
       )(

111 nU zz −= κε ,                                                                                                                                    (14)  
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where Uκ  and 
11nz  are the curvature and the neutral axis coordinate of upper crack arm (the neutral axis shifts 

from the centroid (Figure 3), since the material is functionally graded).  
 
The curvature and the neutral axis coordinate are determined form the following equilibrium equations of upper 
crack arm cross-section: 
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where N and 

1yM are, respectively, the axial force and the bending moment in the upper crack arm. It is obvious 
that (Figure 1) 
 
    0=N , FlM y =

1
.                                                                                                                                      (17) 

 
In order to facilitate the integration in (15) and (16), the variation of B in the upper crack arm cross-section is 
expressed as (refer to (2)) 
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where  
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is the value of B at the level of lengthwise crack.      
 
By substituting of (1), (2), (14) and (18) in (15) and (16), it is obtained 
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Apparently, at 1=n  the non-linear stress-strain relation (1) transforms into the Hooke’s law. This means that at 

1=n  equation (21) should transform in the formula for curvature of linear-elastic beam. Indeed, by substituting 
of at 1=n , EBB LU ==  and 00 =B  (E is the modulus of elasticity) in (21), it is obtained 
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which is exact match of the formula for the curvature of linear-elastic homogeneous beam (Dowling, 2007). 
Equations (20) and (21) should be solved with respect to Uκ  and 

11nz by using the MatLab computer program.  
 
By substituting of (13), (14) and (18) in (9) the complementary strain energy after the increase of crack length is 
derived as  
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where  Uκ  and 

11nz are determined from equations (20) and (21).  
 
The complementary strain energy, *

bU , before the increase of crack length is determined by integrating the 

complementary strain energy density in a beam portion of length, a∆ , ahead of the crack tip. Obviously, *
bU  

can be obtained by applying formula (23). For this purpose, 1h ,  Uκ  and 
11nz  should be replaced with h2 , κ  

and 
33nz , respectively (κ  and 

33nz  are the curvature and the coordinate of neutral axis of cross-section of un-
cracked beam portion ahead of the crack tip). The same replacements should be done in equilibrium equations 
(20) and (21) in order to determine κ  and 

33nz .  Besides, 1h  should be replaced with h2  in (19).  
 
By substituting of *

aU and *
bU  in (8), it is derived 
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.                                                         (24)   

  
Formula (24) calculates the strain energy release rate for the two-dimensional functionally graded single leg four-
point bending configuration (Figure 1) when the mechanical behaviour of beam and the variation of material 
property, B, in the beam cross-section are described by formulae (1) and (2), respectively. It should be noted that 
at 1=n , EBB LU == , 00 =B  and hh =1  formula (24) transforms in 
 

     32

22

4
21

hEb
lFG = ,                                                                                                                                             (25) 

 
which is exact match of the expression for strain energy release rate in linear-elastic homogeneous single leg 
four-point bending configuration when the delamination crack is located in the beam mid-plane (Hutchinson and 
Suo, 1992).    
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In order to verify (24), an additional non-linear elastic analysis of the lengthwise fracture is performed by 
applying the J-integral approach (Broek, 1986) 
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where Γ is a contour of integration going from the lower crack face to the upper crack face in the counter 
clockwise direction, α is the angle between the outwards normal vector to the contour of integration and the crack 
direction, xp  and yp  are the components of stress vector, u and v are the components of  displacement vector 
with respect to the crack tip coordinate system xy (x is directed along the crack), ds is a differential element along 
the contour. 
 
The integration is carried-out by using the integration contour, Γ , which is shown with dotted line in Figure 1. 
Obviously, the J-integral is non-zero only in segments 1Γ  and 2Γ . Thus, the J-integral solution is written as 
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where 

1ΓJ  and 
2ΓJ  are the J-integral values in segments 1Γ  and 2Γ , respectively. The J-integral components 

in segment 1Γ  (this segment coincides with the cross-section of the upper crack arm) are written as  
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where 1z  varies in the interval ]2/,2/[ 11 hh− . By substituting of (12), (18) and (28) in (26) and integrating in 
boundaries from 2/1h−  to 2/1h , it is obtained  
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where 1y  varies in the interval [ ]2/,2/ bb− . Formula (29) can be used also to obtain the J-integral solution 

in segment, 2Γ , of the integration contour (Figure 1). For this purpose, 1h ,  Uκ  and 
11nz  should be replaced 

with h2 , κ  and 
33nz , respectively. Besides, the sign of (29) must be set to „minus” because the integration 

contour is directed upwards in segment, 2Γ . Finally, 
1ΓJ  and 

2ΓJ are substituted in (27) 
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.                                                         (30)   

 
It should be mentioned that formula (30) describes the distribution of the J-integral value along the crack front. 
The average value of the J-integral along the crack front is expressed as 
 

        ∫
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J .                                                                                                                                    (31)                                                                                                           

 
The formula derived by substituting of (30) in (31) is exact match of (24). This fact is a verification of the 
fracture analysis developed in the present paper.  
 

 
Figure 5.  The strain energy release rate in non-dimensional form plotted against UBB /0  ratio (curve 1 – for 

25.02/1 =hh , curve 2 - for 50.02/1 =hh  and curve 3 - for 75.02/1 =hh ) 
 

The influence of lengthwise crack position along the height of beam cross-section, the material gradient along the 
height as well as along width of beam and material non-linearity on the fracture behaviour of functionally graded 
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single leg four-point bending beam is investigated. For this purpose, calculations of the strain energy release rate 
are performed by using formula (24). It is assumed that b=0.02 m, h=0.005 m, l=0.1 m and F=50 N. The strain 
energy release rate is presented in non-dimensional form by using the formula, ( )bBGG UN /= . The crack 

location along the height of beam cross-section is characterized by hh 2/1  ratio. The material gradients along 

the beam width and along beam height are characterized by UBB /0  and UL BB /  ratios, respectively. The 

strain energy release rate is plotted in non-dimensional form against UBB /0  ratio at 5.0/ =UL BB  and n=0.8  

for three hh 2/1  ratios in Figure 5. It should be noted that in the calculations UB  is kept constant (thus, 0B is 

varied in order to generate various UBB /0  ratios). The curves in Figure 5 indicate that the strain energy release 

rate decreases with increasing of UBB /0  ratio (this is due to the increase of beam stiffness). It can also be 

observed in Figure 5 that the strain energy release rate decreases with increasing of hh 2/1  ratio. This finding is 
attributed to the increase of the upper crack arm stiffness (the lower crack arm is free of stresses).  

 
The effect of material gradient along the beam height is evaluated too. For this purpose, the strain energy release 
rate is presented as a function of UL BB /  ratio at 25.02/1 =hh  and 8.0/0 =UBB  in Figure 6. One can 

observe that the strain energy release rate decreases with increasing of UL BB /  ratio (Figure 6). The influence 
of non-linear behaviour of material on the fracture is also analyzed. The strain energy release rate obtained 
assuming linear-elastic behaviour of the functionally graded single leg four-point bending beam is plotted against 

UL BB /  ratio in Figure 6 for comparison with the non-linear elastic solution (it should be mentioned that the 
linear-elastic solution is derived by substituting of n=1 in formula (24)).  
 

 
Figure 6. The strain energy release rate in non-dimensional form presented as a function of UL BB /  ratio (curve 

1 – linear-elastic behaviour of material, curve 2 – non-linear elastic behaviour) 
    
It can be observed in Figure 6 that the material non-linearity leads to increase of the strain energy release rate. 
 
 
3 Conclusions 
 
A non-linear elastic fracture analysis of two-dimensional functionally graded single leg four-point bending beam 
configuration is performed. A lengthwise crack is located arbitrary along the height of beam cross-section. The 
fracture is studied analytically in terms of the strain energy release rate by using a power-law stress-strain 
relation. The material is functionally graded along the width as well as along the height of beam cross-section. 
The effects of crack location, material gradient and non-linear behaviour of material on the fracture are 
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elucidated. It is found that the strain energy release rate decreases with increasing of UBB /0  and UL BB /  
ratios (this finding indicates that the strain energy release rate can be regulated effectively by employing 
appropriate material gradients in the design stage of functionally graded structures). The analysis revealed also 
that the strain energy release rate decreases with increasing of the upper crack arm thickness. Since the non-linear 
behaviour of material leads to increase of the strain energy release rate, the material non-linearity has to be taken 
into account for an efficient and safe design of structural members and components made of two-dimensional 
functionally graded materials.  
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