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Experimental Study on the Velocity Dependent Drag Coefficient and
Friction in an Automatic Ball Balancer

L. Spannan, C. Daniel, E. Woschke

The paper presents the evaluation of experiments on the drag and friction forces in an automatic ball balancer,
which raceway is embodied by the outer ring of a ball-bearing. Due to the throughout contact between the balls
and the raceway while operating the ball balancer, effort has been made to characterise the flow conditions of the
surrounding fluid by determining the drag coefficient CD as a function of the Reynolds number Re. By the use
of fluids with different viscosities and the postulation of continuity in the run of CD(Re), coefficients for different
friction models, e.g. Coulomb friction and rolling friction deduced from Hertzian surface pressure equation can
be derived.

1 Introduction

With automatic ball balancers the vibrations due to process dependent variable unbalances, e.g. in centrifuges, can
be reduced. Free movable balls are located in a raceway, which geometric center OG is coinciding at rest with the
center of rotation OR. While rotating at super-critical speeds, the residuals of normal forces FN and centrifugal
forces Fcf on the balls move them towards their stable stationary position opposite to the unbalance location, which
results in the reduction of the overall unbalance in the rotor, fig. 1.

Figure 1: Schematic representation of a ball balancer
at super-critical speed in the rotating reference frame.

Figure 2: Rotor with a ball balancer suspended by
linear springs and dampers in the inertial reference
frame.

The efficiency of automatic ball balancers depends on several parameters, which are chosen in the design process.
The maximum unbalance, which can be compensated, is determined by the mass mb of the balls, the radius Rb ofthe balls’ centroidal track and the accuracy with which the ideal stationary position can be reached. The latter is
influenced by friction between the balls and the raceway as well as shape and positional deviations of the raceway
compared to an ideal circle with its center on the shaft axis.
Another aspect of the design process is the choice of the fluid in which the balls are environed. The kinematic
viscosity �fl and the density %fl of the fluid, the friction as well as the flow conditions, e.g. drag and displacement
forces, determine the speed with which the stationary position is attained. Because the balls are forced in the
direction of unbalance at sub-critical speeds and therefore worsening the unbalance situation, a compromise has
to be met with respect to the run-up process. Depending on the acceleration of the run-up, the aforementioned
parameters should be chosen in a way, that the balls lag behind the rotor speed at sub-critical speeds and catch up
to the rotor speed reaching the stationary position quickly at super-critical speeds (Ryzhik et al. (2003)).
In order to simulate the run-up and identify suitable fluid properties, models for drag and friction as well as proper
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coefficients are necessary. The presented study identifies the velocity-drag correlation for the presented rotor and
derives friction coefficients from the experimental data.

2 State of Research

Stationary solutions of the dynamics of automatic ball balancers with a focus on stability (e.g. Green et al. (2006),
Ishida et al. (2012), Kim and Na (2013)) often use the linear correlation to model the viscous coupling between the
rotational speeds '̇R and '̇b of the rotor and the ball and the drag moment
MD = � ⋅ ('̇R − '̇b) .

The difficulty lies in the quantitative identification of the parameter �. A physically motivated approach based on
the drag force

FD =
1
2
%fl ⋅ Ā ⋅ CD ⋅ v2rel ⋅ sign(vrel) (1)

and therefore

MD = FD ⋅ Rb =
1
2
%fl ⋅ Ā ⋅ CD ⋅ v2rel ⋅ Rb ⋅ sign(vrel) (2)

was used by Huang et al. (2002). Ā, CD, vrel describe the balls cross-sectional area, the drag coefficient and the
flow velocity, respectively. The latter can be approximated by
vrel ≈ Ω ⋅ Rb (3)
for d∕Rb << 1.
As can be seen from varying flow velocities detected in run-up experiments (Spannan et al. (2017)), the assumption
that the drag coefficient CD is constant should be discarded in favor of a flow velocity dependent formulation
depending on the Reynolds number Re. Due to the continuous contact between the ball and the raceway, the
empirically determined correlation of Jan and Chen (1997),

CD(Re) =

⎧

⎪

⎨

⎪

⎩

322∕Re if Re ≤ 10
103.02−1.89 log(Re)+0.411(log(Re))2−0.033(log(Re))3 if 10 < Re ≤ 20000
0.74 if Re > 20000 ,

(4)

was checked as a suitable approximation. In the tests an outer ring of a ball-bearing 6926 is used as the raceway
and the bearing balls are used as the counterbalancing masses leading to a concave contact surface and low friction.
Furthermore, the dimensions of the cross-section of the annulus, which contains the fluid and the balls, are in the
magnitude of the ball diameter, which can influence the drag due to the close boundaries. The following experi-
mental results show the correlation CD(Re) for the specific discoidal rotor in use, whose half-section is depicted infig. 3 and dimensions are given in tab. 1.
One method to model the friction between the ball and the raceway is the Coulomb friction force FR = �FNproportional to the normal force and acting in the contact point opposing the direction of movement. However,
as stated by Ishida et al. (2012), the Coulomb friction model is not capable to explain all characteristics in a ball
balancer. A rolling friction model based on the Hertzian surface pressure was derived by Chao et al. (2005),

Mf (�0) =
3
16
F

4
3
N ⋅

(

3
d2

)
1
3
⋅ �0 ⋅

(

1 − �2
E

)
1
3
, (5)

modelling the balls as rigid bodies and the raceway as a flexible flat yielding surface with Young’s modulus E and
Poisson’s ratio �. The factor �0 serves as a fitting parameter to account for example for the surface roughness.
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Table 1: Properties of the ball balancer under consideration.

description symbol dimension
ball diameter d 12.3mm
radius of the ball’s centroidal track Rb 76.95mm
height of the annulus cross-section H 20mm
width of the annulus cross-section W 13.8mm

d

Rb

W

HOG

Figure 3: Half-section of the discoidal rotor containing the outer ring of a ball-bearing.

3 Conducted Experiments

In order to derive the velocity-drag correlation for the presented ball balancer, the rotor is mounted on a horizontal
shaft, which is driven by an electric motor, fig. 4. An incremental encoder is used to measure the rotor speed Ω.
The rotor speed is changed quasi statically, leaving the ball in an equilibrium between the gravitational force, the
drag and the friction at a specific angle 
 . The rotor speed was varied in such a way that the equilibrium angle 

covers the sector from 0° to 90°.

Ω

ball




temperature

rotational
frequency

Figure 4: Setup of the test rig.

Depending on the chosen friction model, fig. 5 and fig. 6, either balance of force and moment at the contact point
f can be evaluated to gain the correlation between the drag coefficient CD and the Reynolds number

Re =
vrel ⋅ d
�fl

≈
Ω ⋅ Rb ⋅ d

�fl
. (6)

The buoyancy is considered by a reduced mass of the steel balls
meff =

�
6
d3 ⋅ (%b − %fl) .
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Figure 5: Forces on the ball with Coulomb friction. Figure 6: Forces on the ball with Hertz rolling friction.

Evaluation of the balance equations leads with eq. (1) and eq. (2) respectively to

CD =
2 ⋅ meff ⋅ g ⋅ sin(
)
%fl ⋅ Ā ⋅Ω2 ⋅ R2b

neglecting friction, (7)

CD =
2 ⋅ meff ⋅ g(sin(
) − � cos(
))

%fl ⋅ Ā ⋅Ω2 ⋅ R2b
with Coulomb friction and (8)

CD =
2(meff ⋅ g ⋅ d2 ⋅ sin(
) −Mf )

d
2 ⋅ %fl ⋅ Ā ⋅Ω

2 ⋅ R2b
with rolling friction. (9)

Different fluids were used in order to cover a broader range of Reynolds numbers, tab. 2, according to eq. (6).
Two motor oils, whose kinematic viscosities at room temperature were derived from their viscosity indices, and
two silicone oils with nominal kinematic viscosities �fl = 0.65mm2 s−1 and 50mm2 s−1, respectively. The set wassupplemented by blendings of the silicone oils aiming at kinematic viscosities of �fl = 2, 5, 10, and 20mm2 s−1,
starting with the least viscous oil (�fl = 0.65mm2 s−1) and adding the high viscous oil subsequently. The necessaryblending fractions were derived from the Arrhenius equation for the viscosity of ideal binary mixtures (Zhmud
(2014))
ln(�12%12) = x1 ln(�1%1) + (1 − x1) ln(�2%2) . (10)
With %12 ≈ %1+%2

2 the necessary blending fraction in order to obtain the desired kinematic viscosities yields

x1 =
ln(�12

%1+%2
2 ) − ln(�2%2)

ln(�1%1) − ln(�2%2)
. (11)

The final blend aiming at �fl = 20mm2 s−1 was checked with a viscometer resulting to �fl = 23mm2 s−1, which
supports the approximation eq. (11) and the conducted blending procedure. On the basis of these fluid properties
different sectors of Reynolds numbers are covered, which are overlapping each other partially.

Table 2: Properties of the fluids used in the experiments.

fluid density %fl [kgm−3] kinematic viscosity �fl [mm2 s−1]
Ravenol® 80W 886 214 nominal
ADDINOL® SD-Oil B 5W 836 31 nominal
silicone oil 0.65 760 0.65 nominal
silicone oil 50 950 50 nominal
silicone oil 2 800 2 as of eq. (10)
silicone oil 5 844 5 as of eq. (10)
silicone oil 10 876 10 as of eq. (10)
silicone oil 20 939 23 measured

4 Results

The correlation between the drag coefficient CD and the Reynolds number Re are derived from the measured ro-
tational frequency and equilibrium angle 
 and equations (6) and (7-9). The results are depicted in figures 7 to 9.
The dashed line represents the speed dependent drag on a sphere in a free flow environment, published by Morrison
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(2013). The solid line depicts the correlation for a sphere in contact with a flat surface, eq. (4). By neglecting any
form of friction the experimental data shown in fig. 7 results from eq. (7). The data shows an adequate agreement
with the flat surface contact condition but the overlap of the different data sets is not satisfactory.
The results at high velocities are not coinciding with the low velocity data of the subsequent data set due to the
neglect of friction. Because of higher normal forces FN at lower speeds (small angles 
) the influence of friction
is most significant at small Reynolds numbers for each data set. The influence of friction can be seen clearly from
fig. 8 where equations (8) and (9) are evaluated with overestimated friction coefficients � for the Coulomb friction
model and �0

(

1−�2
E

)
1
3 for the Hertz rolling friction model.

By fitting the friction coefficients a satisfying overlap of the experimental data sets can be accomplished, fig. 9.
Remaining deviations are still present for the data with large angles 
 , which show decreasing trends of drag. It
is assumed that, due to small radial forces at angles near 90°, the lift forces cause the ball to detach from the
raceway leading to a gap, which reduces the drag. This assumption coincides with the observations made during
the experiments.

5 Conclusions

The main focus of this work was to obtain a CD –Re relation for the flow conditions in automatic ball balancers.
Concluding from the experimental data, the drag resulting from the flow around a ball in the automatic ball balancer
can be described approximately by equation (4). Residual deviations to higher drag forces due to the concave contact
and the annulus geometry may be considered by correction factors, if necessary. This will be the case for smaller
balancer dimensions in relation to the ball diameter, presumably.
Furthermore, friction has to be considered in order to interpret the data and obtain continuous experimental results
in the CD –Re diagram. Approximations for the friction coefficients are determined in order to meet this criterion.
In comparison to the friction coefficients provided by Chao et al. (2005), the presented coefficient exceeds by a
factor of 1000, tab. 3. The discrepancy is assumed to result from the relatively small normal forces acting on the
ball. In relation to gravitational forces acting on the ball, the presented setup can only provide normal forces with a
factor of FN∕(mb ⋅ g) ≤ 1, whereas possible applications deal with centrifugal forces between 100 g and 100 000 g,tab. 3. Nevertheless, the presented data can be used to validate simulation models of ball balancers at low speeds
with a focus on the drag characteristics.

Table 3: Evaluation of the derived friction coefficient with respect to the normal forces.

determination application
present study Chao et al.

(2005)
Spannan

et al. (2017)
CD-ROM
drive

micro
centrifuges

superspeed
centrifuges

FN∕(mb ⋅ g) 0 . . . 1 1166 38 950 20 000 100 000

�0
(

1−�2
E

)
1
3 1.5 × 10−4 0.8 × 10−7

6 Future prospects

Providing the verified drag relation between the fluid and the ball in an automatic ball balancer, transient simulations
can be modelled more precisely. Based on the broad range of viscosities and densities of the fluid medium used,
these simulations can enhance the design process of efficient automatic ball balancers.
Based on the presented modelling approach for the viscous coupling between the rotor and the balancing masses,
transient simulations will be conducted and compared to ball movements extracted from video recordings of run-up
experiments in subsequent studies.
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Figure 7: Drag coefficient of flow around a ball for different kinematic viscosities �fl in an automatic ball balancer
with a bearing raceway. Friction is neglected according to eq. (7).
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Figure 8: Influence of overestimated friction coefficients on the run of the drag coefficient.
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Figure 9: Run of the drag coefficient with fitted friction coefficients.
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