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Bifurcations of Relative Equilibria Sets of a Massive Point on Rough
Rotating Surfaces

A. Burov, E. Shalimova

Dynamics of a massive point on a rotating wire or surface under dry friction force action is considered. Existence,
stability and bifurcations of non-isolated relative equilibria sets of the point located

- on a sphere uniformly rotating about an inclined fixed axis;

- on a thin circular hoop rotating about an inclined fixed axis;

- on a paraboloidal bowl uniformly rotating about its axis

are studied. The results are represented in the form of bifurcation diagrams.

1 Introduction

Problems similar to those considered in the present paper arise when we study dynamics of mechanical systems
with rotating parts performing various operations such as mixing, grinding, drying, etc. of diverse substances
(Joshi et al. (1995)), as well as, self-compensating systems (van de Wouw et al. (2005)).

Modern advances in computer simulation (Fleissner et al., 2010; Alkhaldi et al., 2008) allow to investigate dy-
namics of systems with a large number of moving parts numerically. However it is usually difficult to perform the
qualitative analysis of the obtained results. That is why it is reasonable to consider some simple problems such
as the motion of a material particle on some mobile surface or curve under the action of a friction force. It turns
out that appropriate mechanical systems exhibit rather complicated behaviour even be considered in this simple
formulation.

One of the main points relates to existence of non-isolated equilibria, in particular, of relative equilibria. Though
existence of non-isolated equilibria for systems with dry friction has been known for a long time (cf. Kauderer
(1958); Magnus (1976)), systematic investigation of their stability properties and dependence on parameters at-
tracted attention of specialists much later (Pozharitsky, 1962; Matrosov and Finogenko, 1998; Leine and van de
Wouw, 2008; Ivanov, 2009; Burov, 2010; Biemond et al., 2012; Burov and Yakushev, 2014; Ivanov, 2015; Burov
and Shalimova, 2015, 2016; Várkonyi and Or, 2016)).

2 Formulation of problem and equations of motion in redundant coordinates

Consider a massive point P of mass m moving on a rotating surface A. Let O be an origin of a moving frame
Ox1x2x3 (MF). In this frame −−→OP = x = (x1, x2, x3)T , and the surface A is given as

ϕ = ϕ(x) = 0. (1)

Furthermore we assume that the point P is moving under the action of potential active forces with a potential

U ′(x) = mU(x). (2)

A Coulomb friction force F with a coefficient of friction µ appears between the point P and the surface A. This
surface is assumed being in rotation with an angular velocity ω = (ω1, ω2, ω3)T .
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The motion of the point can be described by

ẍ = FC + Fc + FN + N + F. (3)

Here, FC = 2ẋ × ω, Fc = (ω × x) × ω, FN = −Ux, N = λϕx = Nn and F are Coriolis force, centrifugal
force, potential force, normal reaction force and friction force, respectively;

n = ϕx |ϕx|−1 ,
(
ϕx

def
=

∂ϕ

∂x

)
is a unit external normal to the surface. All these forces are divided by m. A magnitude of the normal reaction
reads

N = (N,n) = λ (ϕx, ϕx) |ϕx|−1 = λ |ϕx| .

The multiplier λ can be determined via a standard way. It reads

λ = − (ϕx, ϕx)
−1

[(ϕxxẋ, ẋ) + (ϕx,FC + Fc + FN )] ,

(
ϕxx

def
=

∂2ϕ

∂x2

)
. (4)

The sign of λ determines the direction of the normal reaction.

Determining the friction force, one must distinguish two cases (see, for example, Levi-Civita and Amaldi (1930)).
In the case of slipping of the point P on the rotating surface the friction force F is perpendicular to the vector of
the normal reaction N, i.e. (ϕx,F) ≡ 0, and the direction of this force is opposite to direction of slipping.

In the case of the resting point P with respect to the rotating surface the friction force is directed to the side,
opposite to direction of possible slipping. Its magnitude does not exceed the magnitude of the normal reaction,
multiplied by the coefficient of friction. It means that

Fc + FN + N + F = 0, and |F| ≤ µ |N| (5)

yieds

|Fc + FN + N| ≤ µ |N| , (6)

which determines a set of relative equilibria.

Further assume that coefficient of static friction is equal to coefficient of sliding friction.

2.1 Equations of relative equilibria in redundant coordinates

Inequality (6) gives the condition of existence of relative equilibria and depends, in particular, on the vector ω. It
allocates regions on the surface A, ‘filled’ by relative equilibria (RFbRE). By virtue of inequality (6) boundaries
Σ of these regions are determined as

f = 0, (7)

f = (Fc + FN + N,Fc + FN + N)− µ2 (N,N) =

= (ϕx × ((ω × x)× ω − Ux) , ϕx × ((ω × x)× ω − Ux))− µ2 (ϕx, (ω × x)× ω − Ux)
2
.

The curve Γ = Σ ∩ A bounds a set of relative equilibia. Equilibria correspond to points P : f ≤ 0 for all instants
of time.

Remark. The similar approach can be used for describing the sliding of the point P along a curve, if this curve is
given as an intersection of a couple of surfaces.
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3 A point on a sphere

3.1 Description of the mechanical system

A heavy material point P moves on the ‘standard’ sphere S2 under the action of dry friction force. The sphere is
rotating with a constant angular velocity ω about a fixed axis, passing through the center of the sphere O. Let α be
an angle of inclination of the axis. A dry friction force F with a friction coefficient µ acts between the point and
the sphere (Figure 1).
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Figure 1. A point on a rotating sphere.

Let Ox1x2x3 be a rectangular coordinate system fixed to the sphere with the axis Ox3 coinciding with rotation
axis. The position of the point in this system will be specified by two spherical angles ξ and η. Let ξ be an angle
between the axis Ox3 and−−→OP and η be an angle between the axis Ox1 and

−−→
OP′, where P ′ is the projection of the

point P onto the plane Ox1x2.

Now introduce dimensionless time t 7→ t
√
`/g and dimensionless parameter Ω2 = ω2`/g. The derivatives with

respect to the new time will be denoted by a stroke. Then the system of motion in the relative coordinate system
can be written as

sin2 ξη′2 + ξ′2 = (sin ξ sinα sin(ωt+ η) + cos ξ cosα)− Ñr − Ω sin2 ξ (Ω + 2η′) ,

ξ′′ − sin ξ cos ξη′2 = − (cos ξ sinα cos η sin(ωt+ η)− sin ξ cosα)− F̃ξ + Ω sin ξ cos ξ (Ω + 2η′) ,

sin ξη′′ + 2ξ′η′ cos ξ = − sinα cos(ωt+ η)− F̃η − 2Ω cos ξξ′,

(8)

where F̃ξ = Fξ/mg, F̃η = Fη/mg are dimensionless projections of the friction force on the coordinate axes ~eξ
and ~eη , Ñr = Nr/mg is a dimensionless normal reaction.

3.2 Sets of equilibria

Introducing the angle γ = η − π/2 + ωt, the equilibria can be found from these equations by supposing ξ′ = 0,
η′ = 0, ξ′′ = 0, η′′ = 0. If the point is in a state of equilibrium then

F 2
ξ + F 2

η ≤ µ2N2
r , (9)

Nr = sin ξ sinα cos γ + cos ξ cosα− Ω2 sin2 ξ,

Fξ = cos ξ sinα cos γ + sin ξ cosα+ Ω2 cos ξ sin ξ, Fη = sinα sin γ.
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Using these expressions and inequality (9) one obtains

(− cos ξ sinα cos γ + sin ξ cosα+ Ω2 cos ξ sin ξ)2 + sin2 α sin2 γ ≤

≤ µ2(sin ξ sinα cos γ + cos ξ cosα− Ω2 sin2 ξ)2.
(10)

Figure 2 represents the bifurcation diagrams for different values of the inclination angle α and µ = 0.7. The
equilibria sets can be obtained by a rotation of the angle 2π around an axis that coincides with the rotation axis.
When α = 0 the diagram represents a half of a ‘fat fork’, denoted with F , and a equilibrium set in a form of a
‘needle’, denoted with G, near the axis ξ = 0 that converges to zero when ω → ∞ (Figure 2a, see also Burov
(2010)). With increasing of the angle α the area G and the middle ‘prong’ converge to zero and ξ = π respectively
(Figure 2b), then if α = α? there is only one point between the ‘prongs’ (Figure 2c), and when α > α? there is
only the bigger jag left (Figure 2d) that straightens itself with the further increase of α (Figure 2e). When ω →∞
the bifurcation diagram for every α is a strip with the boundaries ξ = π/2− α? and ξ = π/2 + α?.

Figure 2. Bifurcation diagrams for α = 0, α = arctan(0.7)− 0.1,
α = arctan(0.7), α = arctan(0.7) + 0.1, α = π/2.

4 A bead on a circle

4.1 Description of the mechanical system

The motion of a heavy beadP of massm on a circular hoop with radius `with its center at the pointO is considered.
The hoop rotates with a constant angular velocity ω about an inclined axis lying in its plane and passing through
its center. The angle of inclination of the axis α is constant. A dry friction force F with a friction coefficient µ acts
between the bead and the hoop (Figure 3).
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Figure 3. A bead on a circular hoop.

SupposeOx1x2x3 is a moving coordinate system (MCS) with origin at the center of the hoop, the x3 axis of which
is directed along its axis of rotation, the x2 axis lies in the plane of the hoop and the x1 axis is perpendicular to this
plane.

In the MCS, the bead position is given by coordinates (x1, x2, x3). For the sake of convenience, represent the
constraints restricting its motion as

f1 =
1

2

(
x22 + x23 − `2

)
= 0, f2 = x1 = 0. (11)

Suppose vr = (ẋ1, ẋ2, ẋ3) is the bead velocity in the MCS, vr = (vr,vr)
1/2 , and the transfer velocity ve =

(−ωx2, ωx1,0). The kinetic energy of the system, free from constraints, and the potential energy in the MSC are
given by the relations

T =
m

2
((ẋ1 − ωx2)2 + (ẋ2 + ωx1)2 + ẋ3

2),

U = mg(x1 sinωt sinα+ x2 cosωt sinα+ x3 cosα).
(12)

Putting

x1 7→ x′1`, x2 7→ x′2`, x3 7→ x′3`, t 7→ t′

√
`

g
, ω 7→ ω′

√
g

`

λ1 7→ λ′1m
g

`
, λ2 7→ λ′2mg, L 7→ L′mg`, Fx2 7→ mgF ′x2

, Fx3 7→ mgF ′x3
.

(13)

where λ1, λ2 are Lagrange multipliers:

λ1 = −(ẋ1
2 + ẋ2

2)− ω2x22 + x2 cosωt sinα+ x3 cosα, λ2 = −2ωẋ2 + sinωt sinα, (14)

and dropping the strokes we obtain the equations of motion in the form:

ẍ2 = ω2x2 − cosωt sinα+ λ1x2 + Fx2
, ẍ3 = − cosα+ λ1x3 + Fx3

, (15)

According to Amontons-Coulomb law

F 2 = F 2
x2

+ F 2
x3
≤ µ2

(
λ21 + λ22

)
. (16)

4.2 Sets of equilibria

If the point is in equilibrium, then the friction force compensates the sum of the tangential components of the
gravitational force and the centrifugal force, so

F = ω2x2x3 − x3 cosωt sinα+ x2 cosα.

Then condition (16) can be rewritten as

(ω2x2x3 − x3 cosωt sinα+ x2 cosα)2 ≤ µ2(x2 cosωt sinα+ x3 cosα−ω2x22)2 + µ2 sin2 ωt sin2 α.(17)
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For equilibria this inequality must be fulfilled identically for all time instances.

The sets of relative equilibria depend on three parameters (µ, α, ω). Let us now introduce an angular coordinate
ϕ, measured clockwise from the Oz axis of the MCS (Figure 3). Then x2 = sinϕ, x3 = cosϕ, and the condition
(17) reads

(ω2 sinϕ cosϕ− cosϕ cosωt sinα+ sinϕ cosα)2 ≤

≤ µ2(sinϕ sinα cosωt+ cosϕ cosα− ω2 sin2 ϕ)2 + µ2 sin2 ωt sin2 α.
(18)

Putting in (18) cosωt = 1 and cosωt = −1, respectively, one obtains the regions Σ+ and Σ− in the (ϕ, ω) plane.
These regions are bounded by the curves Γ+ and Γ− respectively. The intersection Σ+ ∩ Σ− is a set of relative
equilibria.

The part of the (ϕ, ω) plane enclosed between the lines ϕ = 0 and ϕ = π is shown in Figure 4. The relation
between the equilibrium positions and the angular velocity of rotation of the sphere ω is depicted in this figure for
different values of the inclination angle of the rotation axis, assuming the friction coefficient µ = 0.7. The Σ+

regions are denoted by the lightest shading, the Σ− regions are denoted by the darker shading, and their intersection
is distinguished by the darkest shading. It has been shown by Burov (2010) that, when α = 0, the set of relative
equilibria is the half region F of the ‘bold-face fork’ that is symmetrical about the axis ϕ = π, and also the region
of equilibriaG in the form of a ‘needle’ stretched along the line ϕ = 0 that converges to zero when ω →∞ (Figure
4a). When α is increased, the regions Σ+ and Σ−, which coincide when α = 0, diverge (in Figure 4b the case of
α = arctanµ − 0.04 was chosen for purposes of convenience), and, when α = arctanµ, the region G vanishes
and only one point of the middle prong of the ‘fork’ remains (Figure 4c). When arctanµ < α < π/2− arctanµ
these prongs split completely and diverge (Figure 4d). When α > π/2−arctanµ a new region I appears for small
ω (Figure 4e) that becomes larger as α increases (Figure 4f) and it joins the region F when α = π/2. In this case
the bifurcation diagram is a strip.

Figure 4. Bifurcation diagrams for different angles of inclination α, µ = 0.7.
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5 A point on a paraboloidal cup

5.1 Description of the mechanical system

A heavy material point P moves on the surface of a paraboloidal cup under the action of a dry friction force. The
cup is rotating with a constant angular velocity ω about its symmetry axis (Figure 5). The coefficient of dry friction
is µ.

Figure 5. A point in a paraboloidal cup.

Let Ox1x2x3 be a moving frame, uniformly rotating about an axis Ox3 directed along the upward vertical. In this
system the position of the point is given by the coordinates (x1, x2, x3), and the constraint restricting its motion is
defined by the relation

f = x3 −
1

2

(
x21
a1

+
x22
a2

)
= 0. (19)

5.2 Relative equilibria sets

Introduce dimensionless variables and parameters

x1 =
√
a1a2 x

′
1, x2 =

√
a1a2 x

′
2, x3 =

√
a1a2 x

′
3,

p′ =
√
a1a2 p, p = ω2/g, b1 =

√
a1/a2, b2 =

√
a2/a1, (0 < b1 ≤ 1 ≤ b2).

Dropping the strokes over the symbols and using (6) with FN = mg for determination of relative equilibria, we
obtain the boundary of the equilibria sets as follows:

(
p2
(
x21 + x22

)
+ 1
)(x21

b21
+
x22
b22

+ 1

)
−
(
1 + µ2

)(
p

(
x21
b1

+
x22
b2

)
+ 1

)2

= 0. (20)

At first we consider the symmetrical case, i.e. b1 = b2 = b. If x > 0 : x2 = x21 + x22 is a new coordinate, then the
boundary of the equilibria sets can be rewritten as

P (x, p, b, µ) = x2
(

1− µ2x
2

b2

)
p2 − 2(1 + µ2)

x2

b
p+

x2

b2
− µ2 = 0. (21)

Consider this expression as an equation on y = x2. It is possible to show that this equation has only one root if

p = p± =

(√
1 + µ2 ± µ

)2
b

=
1± sinα?
b(1∓ sinα?)

.

The relative equilibria sets on the (p, x)-plane are depicted on Figure 6. If p = 0 the set of equilibria is a disk that
contains the point (x1, x2) = (0, 0). If 0 < p < p− the set of equilibria is a plane except for an annulus, the center
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of which is the point (x1, x2) = (0, 0). The radius of the outer circle of the annulus increases indefinitely when
p 7→ 0. If p− < p < p+, then the whole cup becomes the set of equilibria. When p > p+ the set of equilibria is
again a whole cup except for an annulus. When p 7→ ∞ the radius of the inner circle of the annulus converges to
zero and the radius of an outer circle approaches

√
b/µ.

Figure 6. Relative equilibria sets in the symmetrical case.

Now, consider the asymmetrical case. Since Ox1 and Ox2 are symmetry axes of the boundary of equilibria sets, it
is reasonable to study topological restructuring of the equilibria sets on these axes.

Let

p±k =

(√
1 + µ2 ± µ

)2
bk

=
1± sinα?

bk(1∓ sinα?)
, k = 1, 2

be parameters, similar to p± used above.

Consider a section of sets of equilibria by a plane x2 = 0. This section is a curve

P (x1, p, b1, µ) = 0. (22)

This curve bifurcates for p = p±1.

Similarly, the section of sets of equilibria by a plane x1 = 0 is

P (x2, p, b2, µ) = 0. (23)

This curve bifurcates for p = p±2.

Topologically, there are four types of “regular” sets of equilibria and three types of “singular” sets in this problem.
The regular, topologically coarse, sets are

– D : a disk;

– D ∪ 4T : a disk and four tongues;

– Si ∪ 2Tj : a strip and two tongues;

– C : a cross.

These sets are structurally stable.

The singular sets are

– S2Si ∪ 2Tj : a strip with 2 straps;
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– C2Si : a cross with 2 straps;

– C4S : a cross with 4 straps,

respectively. Quarters of sets of these types are depicted in Figure 7.

Figure 7. Possible types of equilibria sets.

It is supposed that b1 < b2, so p+1 > p+2 and p−1 > p−2. Thus there are three possible cases of mutual
arrangement of p−1 and p+2, and so there are three possible ways of the evolution of equilibria sets:

1) p+1 > p−1 > p+2 > p−2,

D →D ∪ 4T →S2S2 ∪ 2T1 →S2 ∪ 2T1 →S2S2 ∪ 2T1 →D ∪ 4T →S2S1 ∪ 2T2 → S1 ∪ 2T2 →
S2S1 ∪ 2T2 →D ∪ 4T

2) p+1 > p−1 = p+2 > p−2

D → D ∪ 4T → S2S2 ∪ 2T1 → S2 ∪ 2T1 → C4S → S1 ∪ 2T2 → S2S1 ∪ 2T2 → D ∪ 4T

3) p+1 > p+2 > p−1 > p−2

D →D∪4T →S2S2∪2T1 →S2∪2T1 →C2S1 →C →C2S2 → S1∪2T2 →S2S1∪2T2 → D∪4T

6 Conclusions

In this paper three problems of motion of a heavy point on rotating surfaces under the action of dry friction force
were considered. For these problems the equations of motion were obtained and the condition of equilibrium and
its dependence on parameters of the system was studied. The evolution of relative equilibria sets was represented
graphically.

Investigation is partially supported by RFBR, grant no. 16-0-00625a.
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