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Influence of electromagnetic Field Damping on the Vibration
Stability of soft mounted Induction Motors with Sleeve Bearings,
based on a Multibody Model

U. Werner

The paper shows an analytical vibration model for stability analysis of soft mounted induction motors with
sleeve bearings, especially focusing on the influence of electromagnetic field damping on the limit of vibration
stability. The model is a multibody model, considering the electromagnetic influence — including the
electromagnetic field damping effect —, stiffness and internal material damping of the rotor structure, stiffness
and damping of the bearing housings and end shields, stiffness and damping of the foundation elements and
stiffness and damping of the oil film of the sleeve bearings. The aim of the paper is to unite all these influences in
a model and to derive a procedure for calculating the limit of vibration stability, with considering the
electromagnetic field damping effect. Additionally, a numerical example is presented, where the influence of
electromagnetic field damping on the limit of vibration stability is shown, as well as the influence of the
foundation elements and of the internal damping of the rotor. The procedure and conclusions can also be
adopted into finite-element analysis.

1 Introduction

For analyzing rotating machinery, it is important to know the limit of vibration instability, which is e.g.
influenced by the oil film of the sleeve bearings and internal material damping of the rotor (rotating damping),
described by Rao (1996), Gasch (2002) and Genta (2005). In electrical machines, also electromagnetic fields
occur, which couple the rotor to the stator and influences the vibration behavior, described by Schuisky (1972),
Friichtenicht et al. (1982), Seinsch (1992), Smith et al. (1996), Arkkio et al. (2000), Holopainen (2004) and
Werner (2006). Especially in induction motors an electromagnetic field damping effect occurs, which itself
influences the electromagnetic forces and therefore the vibration behavior, shown by Friichtenicht et al. (1982),
Seinsch (1992), Arkkio et al. (2000), Holopainen (2004), Werner (2006) and Werner (2016). Sometimes large
induction motors (IMW-10MW) with sleeve bearings and high speeds (3000 rpm-6000 rpm) are mounted on
soft foundation elements (rubber elements) to decouple the motor from the foundation (Fig.1). However, a soft
mounting influences the vibration behavior of the machine clearly, which is demonstrated by Kirk at al. (1974),
Gasch et al. (1984) and Werner (2008).
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Figure 1. Soft mounted induction motor with sleeve bearings

Up to now, electromagnetic field damping of induction motors is often not considered for vibration analysis in
the industry. Therefore the aim of the paper is now to present an analytical vibration model of a soft mounted
induction motor with sleeve bearings and to derive a practicable method to consider the influence of
electromagnetic field damping on the limit of vibration stability.
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2 Electromagnetic Field Damping

An eccentricity é between the shaft centre point W of the rotor and the centre of the stator bore leads to
additionally electromagnetic eccentricity fields, which cause a radial magnetic force F,. in direction of the
smallest air gap (Fig. 2a). If the rotor angular frequency (2 is different to the angular frequencies of the
eccentricity fields, these fields induce voltage into the rotor cage, which reduces the magnitude of origin
eccentricity fields. Therefore, the radial magnetic force £, will be reduced and an additional magnetic force
in tangential direction is caused (Fig. 2a).
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Figure 2. a) Electromagnetic forces; b) Magnetic spring and magnetic damper

The following equations are fundamentally based on the investigations of Friichtenicht et al. (1982) and Seinsch
(1992). The radial magnetic force can be described by an electromagnetic spring element ¢4 (Fig. 2b):

p>1 cpg= C?m (ap+1 + ap.l); p=1 Cmd = Cm " Apt1 (1)

Where p is the number of pole pairs of the motor, c,,, electromagnetic spring element without electromagnetic
field damping, and a1 and a,, ; are the real parts of the complex field damping value. Without electromagnetic
field damping, the real parts of the field damping coefficients get a1 = @, ; = 1. For 2-pole motors (p =1) the
component a,, ; gets zero, neglecting the homopolar flux.

TRl 52
2-ug8'" p

TR 5y
2-u0-6”. p (2)

p>1lc,= ; p=1 cm:;

Where R is the radius of the stator bore, [ is the length of the core, y, is the permeability of air, §" is the
equivalent magnetic air gap width — depending on mechanical air gap, saturation effects and CARTER-factors,
described by Seinsch (1992) —, Ep is the amplitude of fundamental air gap field. The tangential magnetic force
can be described by the electromagnetic damper element d,, (with wg # 0) (Fig. 2b):

p>Lidy=—— 2 (81 =6,,); p=1  dn= —wiF- Cm * Opt1 3)
Where wg is the whirling angular frequency of the rotor and 6,4 and &, ; are imaginary parts of the complex
field damping value. Without electromagnetic field damping, the field damping coefficients get 8,41 = 6,4 = 0.
For 2-pole motors (p =1) the component 6p_1 gets also zero, neglecting the homopolar flux. If electromagnetic
field damping has to be considered, the electromagnetic field damping coefficients a1, @, 1, 6p+1, 6,1 have to
be derived. With the ordinal number v = p + 1 for an eccentricity field wave, the electromagnetic field damping
coefficients can be calculated:

= L2 . = — . .
aV_l_KV SV 4 5\/_ K\) ﬂ\) Sv (4)
2 2
. R 1 ¢ 0K
with: g, = ——2—— and K, = —— - 20k
w1(LanytLlagy) BY +s2 1+%
2h,v

Where R, ,, is the resistance of a rotor bar and ring segment, w, is the electrical stator angular frequency, L,y is
the main field inductance of a rotor mesh, L, is the leakage inductance of a bar and ring segment, &gy is the
screwing factor and { , is the coupling factor, which are all described in detail by Seinsch (1992).
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The harmonic slip s,, can be described by:

S, =Y with: 2= %(1 —5) (5)

v

Where s is the fundamental slip of the induction motor, w; is the electrical stator angular frequency and w, /v
are the angular frequencies of the eccentricity fields, depending on the kind of eccentricity:

- Static eccentricity: w, = wq
- Dynamic eccentricity as a circular forward whirl: w, = w; + wg

- Dynamic eccentricity as a circular backward whirl: w, = w; + wg

To consider the electromagnetic field damping effect by a magnetic spring element c,,4 and by a magnetic
damper element d,, the compromise has to be made, that the calculation of ¢4 and d,, is here only based on
circular forward whirls. With this simplification, the electromagnetic influence is supposed to be higher than it
maybe in reality. If the absolute value of the harmonic slip |s,| is high — as it is for a circular backward whirl in
conjunction with a small fundamental slip s — which is usual for steady state operation — the damped magnetic
spring ¢4 gets very small as well as the magnetic damper d,,. In this case, the eccentricity fields induce strongly
in the rotor cage and so the eccentricity fields get clearly reduced due to the harmonic rotor currents. Therefore,
calculating ¢4 and d,, based on circular forward whirls presents the worst case regarding the height of the
electromagnetic influence, when considering electromagnetic field damping, shown by Werner (2016).

3  Vibration Model

The model is an enhancement to the model, described by Werner (2008), where no electromagnetic field
damping has been considered, no internal damping of the rotor, and no damping of bearing housings and end-
shields. The vibration model is a simplified plane vibration model (plane y, z). It consists of two main masses,
the rotor mass my,, concentrated in the shaft centre point W, and the stator mass mg, which has the inertia 6, and
is concentrated in the centre of gravity S (Fig. 3).
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Figure 3. Vibration model
Additional masses are the mass of the shaft journal m, and the mass of the bearing housing my,, which are

accounted separately, mostly to avoid zeros at the main diagonal of the mass matrix. Due to their low mass, their
influence is only marginal. The rotor rotates with the rotary angular frequency 2. The inertia moments of the
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rotor are not considered and therefore also no gyroscopic effects. The shaft journal centre point ¥ describes the
movement of the shaft journal in the sleeve bearing. The point B is positioned in the axial middle of the sleeve
bearing shell and describes the movement of the bearing housing. The rotor mass is linked to the stator mass by
the stiffness ¢ and internal damping d; of the rotor, the oil film stiffness matrix C, and oil film damping matrix
D, of the sleeve bearings, which are supposed to be equal for the drive side and the non-drive side, and the
bearing house and end shield stiffness and damping matrix Cy, and Dy, which are also assumed to be equal for the
drive side and the non-drive side. The stator structure is assumed to be rigid, compared to the soft foundation.
The foundation stiffness matrix Cy and the foundation damping matrix D¢ connect the stator feet, F (left side)
and Fy (right side), to the ground. The foundation stiffness and damping on the right side is the same as on the
left side and the foundation stiffness values cg, and cg, and the foundation damping values dy, and dy, are the
values for each motor side. The electromagnetism is considered by the electromagnetic spring and damper
matrix C,, and D, where also electromagnetic field damping is included. All used coordinate systems are fixed.

For deriving the damping coefficients, it is important to consider here, that natural vibrations with the angular
natural frequency wg,;, of the critical mode at the limit of stability with the rotary angular frequency ., has to
be analyzed. Therefore the whirling frequency wg becomes wgyp:
W = Wstap (6)

The oil film stiffness and damping coefficients c¢; and d; (i,j = z,y) of the sleeve bearing are calculated by
solving the Reynolds differential equation, shown by Tondl (1965), Glienicke (1966) and Lund et al.( 1987).

Cij :CU(.Q) and dU :dl]('Q) (7)
Referring to Gasch (2002), the internal material damping of the rotor d; is described here by the mechanical loss
factor tan 6; of the rotor, depending on the whirling angular frequency wg.

c-tan §j
di(wp) = ——

®)

WF

With the stiffness of the bearing housing and end shield (cy,; cy,y), the damping of the bearing housing and end
shield (dy,;dpy) is here also described by the mechanical loss factor tan 6,

Cpy'tan &y,

tan§
dy () = 225 dyy(wp) = = ©)
The damping of the foundation elements is also described by the mechanical loss factor tan &;:
-tan & cry'tan b
di,(wp) =2 dyy(wp) = = (10)

The electromagnetic stiffness coefficient ¢, and damping coefficient d,, are depending on the harmonic slip s,
and therefore also depending on the whirling angular frequency wy (see chapter 2).

Cmd = Cmd(wF) and dm = dm(wF) (11)
4 Mathematical Description

To calculate the limit of stability, it is necessary to derive the homogenous differential equation. Therefore,
d’ Alemberts method is applied to the vibration system in order to derive the equations of motion, leading to the
parts: a) rotor mass system, b) journal system, ¢) bearing house system and d) stator mass system — (Fig. 4).

Because of the small displacements of the stator mass (z, s, ¢s), compared to the dimensions of the machine (4,
b,¥ ), following linearization is possible: The machine feet displacements on the left side (zg, y) and the
machine feet displacements on the right side (zs, yr) can be described by the displacements of the stator (z,, s,

®;) by:

Zg, =Zs— Qs b, zZg =2+ Qs b, Yo =Yr=Ys—@s-h (12)
With the equilibrium of at each single system, the homogenous differential equation can be derived:
M-q+D-q+C-q=0 (13)
Coordinate vector q:
a=[2,:20: 00500305752 03] (14)
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Figure 4. Vibration model, cut free into sub-systems

Mass matrix M: (15)
(m, 0 0 0 0 0 0 0]
0 m, 0 0 0 0 0 0
0 0 m, 0 0 0 0 0
0o 0 0 m 0 0 0 0 0
M=0 0 0 0 @& 0 0 0 0
0 0 0 0 0 2m, 0 0 0
0o 0 0 0 0 0 2m 0 0
00 0 0 0 0 0 2m O
(0 0 0 0 0 0 0 0 2m
Damping matrix D: (16)
[2(d, +d,,)+d, -d, 0 0 0 0 -2d,, 0 0
-d, d, +d, 0 0 0 ~d, 0
0 0 2Md, +dy,)+d, -d, ~2d, -h 0 0 0 -2d,,
0 0 -d, d, +d, 0 0 0 ~d, 0
D= 0 0 ~2d,, -h 0 2dp+d,p?) 0 0 0 0
0 ~d, 0 0 0 2d,+d,  -2d, 2d,, -2d,,
-2d,, 0 0 0 0 -2d, 2(d,+d,) -2d, 2d,,
0 0 0 ~d, 0 2d,, ~2d, 2d +d,  -2d,
0 0 -2d,, 0 0 -2d, 2d,, ~2d,  2d,+d,)
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Stiffness matrix C: (17)

[2(c,, +¢,)=Coa Co 0 0 0 0 ~2c,, 0 0 ]
Cra c—Cpy 0 Qd, 0 —c 0 —Qd, 0
0 0 20cy+ey )= Cm ~2¢,h 0 0 0 ~2e,
0 —Qd, Cond c—Cpy 0 Qd, 0 —c 0
C- 0 0 ~2ch 0 2Ac B +ed) 0 0 0 0
0 —-c 0 -9Qd, 0 2c,, +c¢ -2c,, 2c, +0d, -2c,,
2, 0 0 0 0 -2,  2c,+c,) -2, 2,
0 Qd, 0 —c 0 2¢,, —0d, -2, 2c,, +c —2c,,
0 0 ~2¢, 0 0 ~2¢, 2, ~2, 2, +e,)

Due to the non-symmetric stiffness matrix — caused by the oil film and internal material damping of the rotor —
and due to a negative electromagnetic damping coefficient d,,, the vibration system will get instable, when the
limit of stability is exceeded (2 > (2,p). The limit of vibration stability 2, can be derived, by increasing the
rotary angular frequency {2, and analyzing the eigenvalues.

When a real part of one eigenvalue gets zero, the limit of vibration stability is reached. If the rotary angular
frequency 2 is increased furthermore, the real part gets positive and the vibration system gets instable. To find
the limit of stability, the homogenous differential equation has to be analyzed. To calculate the eigenvalues, the
state-space formulation is used here (with q; = q; Index h for homogenous):

;;J - [_M91 C _M—II.D]'[;;J (18)
x A X

With the formulation x = & - e*t, the eigenvalues can be derived from:
detfA—21-11=0 (19)
At the limit of stability, the eigenvalue A of the critical mode gets:
A= Astab = EJ * Wstab (20)

Knowing the eigenvalue A, the critical mode shape at the limit of stability can be derived. The real part of the
critical eigenvalue Agy, is zero and the whirling angular frequency wy is then identical to wg,p,, While the rotor is
rotating with . It has to be considered, that the coefficients d;, dy,, dyy, df;, dgy iy, Cmg are depending on the
whirling angular frequency wg, which has to be determined.

Referring to Werner (2016) — where a rigid mounted induction motor was investigated —, an iterative solution
has to be deduced, according to Fig. 5, for a soft mounted induction motor. First, the coefficients d;, dy,, dyy, d,
dy, dyy and cpq , which depend on the whirling angular frequency wg, are set to zero, so that only the non-
symmetric stiffness matrix of the oil film will cause instability. The eigenvalues are calculated according to (19),
depending on the rotary angular frequency {2.

To derive the limit of stability, the rotary angular frequency {2 is increased, till the real part of an eigenvalue gets
zero. At this limit, the rotary angular frequency is (g1 — index “1” for the first calculation — and the natural
angular frequency of the critical mode ws,p,; can be derived from the eigenvalue. Afterwards the coefficients d;,
dyz> dyy, diz» Ay, Ay and g are calculated with g = Wgap,1, and the limit of stability and the natural angular
frequency are calculated again, leading to {24y, » and wgp ;. Then the new calculated natural angular frequency
Wgtab,2 Will be compared to the origin natural angular frequency wg,p, 1. If the ratio is less than A — an arbitrarily
chosen value —, the calculation is finished and g, = Qgap2 and Wgap = Wgtap 2. If the ration is larger as the
chosen value A, a new calculation is deduced and the coefficients d;, dy,, dyy, dg, dfy, dp and cpg are now
calculated with wgp = wgp . With these new coefficients, the new limit of stability {2,417 and the natural
angular frequency wgp 41 are derived. Then again the new value wg,pn41 is compared to the previous value
Wstab 2- 1f the deviation is still too large, the loop in Fig. 5 will run through, till the deviation is less than A. With
this iterative process the limit of stability 2., can be derived, as well as the corresponding natural angular
frequency wq,;, of the critical mode. This procedure is useful, if the biggest influence on the limit of stability is
caused by the non-symmetric stiffness matrix of the oil film, which is usually the case for common induction
motors with sleeve bearings.
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Figure 5. Flow diagram to derive the limit of stability for a soft mounted induction motor
5 Numerical Example

The limit of vibration stability for a 2-pole induction motor (Table 1), mounted on soft rubber elements, and
driven by a converter with constant magnetization, is analyzed. The load machine is a pump and therefore the
load torque is a quadratic function of the rotor speed n. At rated speed, the load torque is identical to the rated
torque of the motor.

Table 1. 2-pole induction motor, mounted on soft rubber elements

Data of the motor:
- Rated power Py = 2400 kW
- Rated voltage Uy = 4160V (A)
- Rated frequency N = 60.15 1/s
- Rated speed ny = 3600 rpm
- Rated torque My = 6366 Nm
- Rated slip s = 0.0025
- Number of pole pairs p=1
- Undamped magnetic spring constant Cy = 7.0+ 10° kg/s?
- Masse of the stator mg = 7040 kg
- Mass inertia of the stator at the x-axis By = 1550 kgm?
- Mass of the rotor m,, = 1900 kg
- Mass of the rotor shaft journal m, = 10 kg
- Mass of the bearing housing my, = 80 kg
- Stiffness of the rotor c =1.8-108 kg/s?
- Height of the centre of gravity S h = 560 mm
- Distance between motor feet 2b = 1060 mm
- Horizontal stiffness of bearing housing and end shield Cpy = 4.8 108 kg/s?
- Vertical stiffness of bearing housing and end shield cy, = 5.7 - 108 kg/s?
- Mechanical loss factor of the bearing housing and end shield tan 8, = 0.04
- Mechanical loss factor of the rotor tan §; = 0.03
Data of the sleeve bearings:
- Bearing shell Cylindrical
- Lubricant viscosity grade ISO VG 32
- Nominal bore diameter / Bearing width d, =100 mm / b, = 81.4 mm
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- Ambient temperature / Supply oil temperature Toamp = 20°C / T, = 40°C
- Mean relative bearing clearance (DIN 31698) V= 1.6 %o
Data of the foundation elements (for each motor side):
- Vertical stiffness for each motor side ¢, = 2.0+ 107 kg/s?
- Horizontal stiffness for each motor side ey =1.0- 107 kg/s?
- Mechanical loss factor of the foundation elements tan 6 = 0.1

The oil film stiffness and damping coefficients of the sleeve bearings have been calculated with the program
SBCALC from RENK AG.

First, the coefficients d;, dy;, dpy, dfz, Ay, dm and ¢q are set to zero — according to the flow diagram in Figure
5 — and the real part and the imaginary part of the critical eigenvalue is analyzed. The critical vibration mode is
the mode, which will get instable (Fig. 6).

Figure 6 shows, that at a rotor speed of 4595 rpm the real part of the critical eigenvalue becomes zero. Increasing
the rotor speed, will lead to a positive real part and therefore to instability. So the limit of stability is reached at a
rotor speed of ngap 1 = 4595 rpm (2gap1 = 481.2 rad/s).
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Figure 6. Real and imaginary part of the critical eigenvalue, depending on the rotor speed, with the boundary
condition: d; = dy,, = dyy, = dg, = dgy = dpp, = €pg = 0; Critical mode shape at the limit of stability

At this rotor speed the imaginary part, which represents the whirling angular frequency wyg of the critical natural
mode, becomes wp = wgpy = 255.3 rad/s. According to the flow diagram this angular natural frequency
Wgiab,1 €an now be used to calculate the coefficients d, dy,,, dyy, dy,, dgy, diy and ¢q (Table 2).

Table 2. Coefficients d;, dy,, dpy, dg;, diy, dp and ¢ at a rotor speed of ngp, 1 = 4595 rpm and at a whirling
angular frequency of @p = @yup = 255.3 rad/s

Damping constant of the rotor d; = 2.12- 10*kg/s
Damping constant of bearing housing and end shield (horizontal direction) dyy =7.52- 10*kg/s
Damping constant of bearing housing and end shield (vertical direction) dy, = 8.93 - 10*kg/s
Damping constant of foundation elements for each motor side (horizontal direction) dy, =3.92- 10%kg/s
Damping constant of foundation elements for each motor side (vertical direction) dg, = 7.83 - 103kg/s
Electromagnetic damping constant d, =-617kg/s
Electromagnetic spring constant Cma = 4.82 - 10%kg/s?

The large difference between rotor angular frequency 2,1 = 481.2 rad/s and the whirling angular frequency
W = Wgan1 = 255.3 rad/s, leads in combination with a very small fundamental slip s = 0.0032 to a large
harmonic slip s, = —0.47, and therefore to a strong electromagnetic field damping, and the electromagnetic
coefficients d,, and c,q get very small. Fig. 7 shows, that the electromagnetic coefficients would be much
higher, if the whirling angular frequency wr would be close to the rotor angular frequency(2.
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Figure 7. Magnetic spring constant a) and b) and magnetic damper constant ¢) and d) for different whirling
angular frequencies and different rotor angular frequencies

With the basic coefficients from Table 2, the limit of stability is calculated again according to the flow diagram.
To clarify this additional calculation, the index “2” is used instead of index “1”. So the limit of vibration stability
is reached now at a rotor speed of ng,,, = 4554 rpm and the whirling frequency is wp = Wgap, = 255.6 rad/
S. According to the flow diagram a third calculation is not necessary, because wg,p,, differs only marginal from
Wstapy (10.12%). Therefore, the values for the limit of stability are ngp = Ngeap 2 = 4554 TPM; Werap =
Wstabz = 255.6 rad/s. Now different cases are investigated. Table 3 shows, that the electromagnetic damper d,
and the electromagnetic spring constant c,,q influence the limit of vibration stability only marginal (case b and
¢), because the large harmonic slip at the limit of stability causes a strong electromagnetic field damping and
therefore leading to low values for d,,, and c,,q. Without considering electromagnetic field damping (case d), the
magnetic spring value gets maximal (c,q = ¢y,) and the magnetic damper coefficient gets zero (d,, = 0). For
this case, the limit of stability will be clearly reduced from 4554 rpm to 4377 rpm, which means -3.9%. When
neglecting the internal damping of the rotor (case e), the limit of stability will be increased (+2.0%).

Table 3. Limit of stability for different cases

Case Description Wstab | Mstab | A Of Ngpap
[rad/s] |[rpm]| to a) [%]

a) | Data Table 2 (Basic conditions) 255.6 | 4554 0
b) | Data Table 2 with d,,, = 0 256.5 | 4556 | +0.04
c) | Data Table 2 with cyg = 0 256.5 | 4566 | +0.26
d) | Data Table 2 with d,, = 0; cng = ¢ (n0 electromagnetic field damping) 248.1 | 4377 -3.9
e) | Data Table 2 with d; = 0 (no internal damping of the rotor) 255.7 | 4645 +2.0
f) | Data Table 2 with dy,y, = dp; = 0 (no damping of the bearing housing and end shield) 256.5 | 4509 -1.0
g) | Data Table 2 with dgy, = df, = 0 (no damping of the foundation elements) 256.1 | 4537 -0.37
h) | Data Table 2 with ¢, = ¢g, = o0 (motor rigid mounted) 226.4 | 3922 -13.9
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However, neglecting the damping of the bearing housings and end-shields (case f) will lower the limit of
stability (-1%), as well as neglecting the damping of the foundation elements (-0.37%). The low influence of the
damping of the foundation elements is caused by their low stiffness, which leads in conjunction with the loss
factor to low damping values, which can be seen in Table 2. Figure 8 shows, that if the foundation element
stiffness would be e.g. 4 times higher and the mechanical loss factor of the foundation elements would be the
same (tan §; = 0.1), the limit of stability would increase from 4554 rpm to 4880 rpm (+7.2%). However, for a
low loss factor (tan §; = 0.01) the limit of stability would only increase to 4730 rpm (+3.9%).

4900 -

Nyjimie for tan 6g = 0.1
4850 - - = = = Mjjmj¢ for tan g = 0.01

4800 -

4750 - .
Rated stiffness
4700 -|
4650 -|

4600 -

Limit of stability njjp;¢ [rpm]

4550 -

4500 T I T T T
0 0,5 1 15 2 2,5 3 3,5 4 4,5

Stiffness factor for the foundation elements [—]
Figure 8. Influence of the foundation element stiffness on the limit of stability ny;p;;

Figure 9 shows the influence on the limit of stability and on the whirling angular frequency wg,p, for stiffness
variation of the foundation elements in a range of cg, = 1-10° ... 4 - 107kg/s?; cp, = 1-10°...8 - 107kg/s? .
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Figure 9. Influence of the arbitrary stiffness of the foundation elements on a) the limit of stability ny;,;; and on b)
the whirling angular frequency ws,y; with a loss factor of tan §; = 0.1 for the foundation elements

If the motor would be rigid mounted (case h), which means c¢g, = ¢, — oo, the limit of stability would be reached
already at 3922 rpm, and the whirling frequency at the limit of stability wg,, would be 226.4 rad/s instead of
255.6 rad/s, shown by Werner (2016). Therefore, putting here the motor on the soft foundation elements
increases the limit of stability clearly (+16.1%), compared to the rigid mounted induction motor.

6 Conclusion

In the paper a multibody vibration model and a procedure are presented for stability analysis of soft mounted
induction motors, with sleeve bearings. The focus of the paper is on the influence of electromagnetic field
damping, regarding the limit of stability. After the mathematical coherences have been derived, a numerical
example was presented, where the limit of stability was analyzed. It could be shown, that neglecting
electromagnetic field damping leads to a lower limit of stability. Additionally the influence of the foundation
elements and of the internal damping of the rotor on the limit of stability could be demonstrated. Although, the
vibration model is a simplified multibody model, the procedure and conclusions can be adopted into finite-
element analysis.
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