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Influence of electromagnetic Field Damping on the Vibration 
Stability of soft mounted Induction Motors with Sleeve Bearings, 
based on a Multibody Model 
 
 U. Werner 
 
 
The paper shows an analytical vibration model for stability analysis of soft mounted induction motors with 
sleeve bearings, especially focusing on the influence of electromagnetic field damping on the limit of vibration 
stability. The model is a multibody model, considering the electromagnetic influence – including the 
electromagnetic field damping effect –, stiffness and internal material damping of the rotor structure, stiffness 
and damping of the bearing housings and end shields, stiffness and damping of the foundation elements and 
stiffness and damping of the oil film of the sleeve bearings. The aim of the paper is to unite all these influences in 
a model and to derive a procedure for calculating the limit of vibration stability, with considering the 
electromagnetic field damping effect. Additionally, a numerical example is presented, where the influence of 
electromagnetic field damping on the limit of vibration stability is shown, as well as the influence of the 
foundation elements and of the internal damping of the rotor. The procedure and conclusions can also be 
adopted into finite-element analysis. 
 
 
1 Introduction 
 
For analyzing rotating machinery, it is important to know the limit of vibration instability, which is e.g. 
influenced by the oil film of the sleeve bearings and internal material damping of the rotor (rotating damping), 
described by Rao (1996), Gasch (2002) and Genta (2005). In electrical machines, also electromagnetic fields 
occur, which couple the rotor to the stator and influences the vibration behavior, described by Schuisky (1972), 
Früchtenicht et al. (1982), Seinsch (1992), Smith et al. (1996), Arkkio et al. (2000), Holopainen (2004) and 
Werner (2006). Especially in induction motors an electromagnetic field damping effect occurs, which itself 
influences the electromagnetic forces and therefore the vibration behavior, shown by Früchtenicht et al. (1982), 
Seinsch (1992), Arkkio et al. (2000), Holopainen (2004), Werner (2006) and Werner (2016). Sometimes large 
induction motors (1MW-10MW) with sleeve bearings and high speeds (3000 rpm-6000 rpm) are mounted on 
soft foundation elements (rubber elements) to decouple the motor from the foundation (Fig.1). However, a soft 
mounting influences the vibration behavior of the machine clearly, which is demonstrated by Kirk at al. (1974), 
Gasch et al. (1984) and Werner (2008). 

 
Figure 1. Soft mounted induction motor with sleeve bearings 

Up to now, electromagnetic field damping of induction motors is often not considered for vibration analysis in 
the industry. Therefore the aim of the paper is now to present an analytical vibration model of a soft mounted 
induction motor with sleeve bearings and to derive a practicable method to consider the influence of 
electromagnetic field damping on the limit of vibration stability. 
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2 Electromagnetic Field Damping 
 
An eccentricity �̂ between the shaft centre point W of the rotor and the centre of the stator bore leads to 
additionally electromagnetic eccentricity fields, which cause a radial magnetic force ��mr in direction of the 
smallest air gap (Fig. 2a). If the rotor angular frequency Ω is different to the angular frequencies of the 
eccentricity fields, these fields induce voltage into the rotor cage, which reduces the magnitude of origin 
eccentricity fields. Therefore, the radial magnetic force ��mr will be reduced and an additional magnetic force ��mt 
in tangential direction is caused (Fig. 2a).  

 
Figure 2. a) Electromagnetic forces; b) Magnetic spring and magnetic damper  

The following equations are fundamentally based on the investigations of  Früchtenicht et al. (1982) and Seinsch 
(1992). The radial magnetic force can be described by an electromagnetic spring element �md (Fig. 2b):                                   � > 1:     �md = �m� ∙ ��p+1 + �p-1� ;               � = 1:       �md = �m ∙ �p+1                                  (1) 

Where p is the number of pole pairs of the motor, �� electromagnetic spring element without electromagnetic 
field damping, and �p+1 and �p-1 are the real parts of the complex field damping value. Without electromagnetic 
field damping, the real parts of the field damping coefficients get �p+1 = �p-1 = 1. For 2-pole motors (p =1) the 
component �p-1 gets zero, neglecting the homopolar flux. 

                             � > 1:  �m = �∙�∙��∙��∙��� ∙ ��p� ;                                  � = 1:          �m = �� ∙ �∙�∙��∙��∙��� ∙ ��p�        (2) 

Where � is the radius of the stator bore, � is the length of the core, �� is the permeability of air, ��� is the 
equivalent magnetic air gap width – depending on mechanical air gap, saturation effects and CARTER-factors, 
described by Seinsch (1992) –, ��p is the amplitude of fundamental air gap field. The tangential magnetic force 
can be described by the electromagnetic damper element �m (with �F ≠ 0) (Fig. 2b): 

                             � > 1: �m = − ��F ∙ �m� ∙ ��p+1 − �p-1�;        � = 1:         �m = − ��F ∙ �m ∙ �p+1                          (3) 

Where �F is the whirling angular frequency of the rotor and �p+1 and �p-1 are imaginary parts of the complex 
field damping value. Without electromagnetic field damping, the field damping coefficients get �p+1 = �p-1 = 0. 
For 2-pole motors (p =1) the component �p-1 gets also zero, neglecting the homopolar flux. If electromagnetic 
field damping has to be considered, the electromagnetic field damping coefficients �p+1,�p-1, �p+1, �p-1  have to 
be derived. With the ordinal number � = � ± 1 for an eccentricity field wave, the electromagnetic field damping 
coefficients can be calculated: 

                                                      �ν = 1 − �ν ∙ �ν�  ;     �ν = −�ν ∙ �ν ∙ sν                                                            (4) 

                                       with: �ν = ��,ν��(��h,ν���σ,ν)     and �� = ��ν���ν� ∙ �Schr,ν� ∙�K,ν�����σ,ν��h,ν   

Where ��,� is the resistance of a rotor bar and ring segment, �� is the electrical stator angular frequency, ���,�  is 
the main field inductance of a rotor mesh, ���,�  is the leakage inductance of a bar and ring segment, �����,� is the 
screwing factor and ��,� is the coupling factor, which are all described in detail by Seinsch (1992).  
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The harmonic slip ��  can be described by:                                                                            �ν = �ν� �����        with:   � = ��� (1 − �)                                                  (5) 

Where s is the fundamental slip of the induction motor, �� is the electrical stator angular frequency and �ν/� 
are the angular frequencies of the eccentricity fields, depending on the kind of eccentricity: 

- Static eccentricity: �ν = �� 
- Dynamic eccentricity as a circular forward whirl: �ν = �� ± �F   
- Dynamic eccentricity as a circular backward whirl: �ν = �� ∓ �F 

To consider the electromagnetic field damping effect by a magnetic spring element �md and by a magnetic 
damper element �m, the compromise has to be made, that the calculation of �md and �m is here only based on 
circular forward whirls. With this simplification, the electromagnetic influence is supposed to be higher than it 
maybe in reality. If the absolute value of the harmonic slip |�ν| is high – as it is for a circular backward whirl in 
conjunction with a small fundamental slip s – which is usual for steady state operation –  the damped magnetic 
spring �md gets very small as well as the magnetic damper �m. In this case, the eccentricity fields induce strongly 
in the rotor cage and so the eccentricity fields get clearly reduced due to the harmonic rotor currents. Therefore, 
calculating �md and �m based on circular forward whirls presents the worst case regarding the height of the 
electromagnetic influence, when considering electromagnetic field damping, shown by Werner (2016). 
 
3 Vibration Model 
 
The model is an enhancement to the model, described by Werner (2008), where no electromagnetic field 
damping has been considered, no internal damping of the rotor, and no damping of bearing housings and end-
shields. The vibration model is a simplified plane vibration model (plane y, z). It consists of two main masses, 
the rotor mass mw, concentrated in the shaft centre point W, and the stator mass ms, which has the inertia θsx and 
is concentrated in the centre of gravity S (Fig. 3). 

 
Figure 3. Vibration model 

 
Additional masses are the mass of the shaft journal �v and the mass of the bearing housing �b, which are 
accounted separately, mostly to avoid zeros at the main diagonal of the mass matrix. Due to their low mass, their 
influence is only marginal. The rotor rotates with the rotary angular frequency Ω. The inertia moments of the 
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rotor are not considered and therefore also no gyroscopic effects. The shaft journal centre point V describes the 
movement of the shaft journal in the sleeve bearing. The point B is positioned in the axial middle of the sleeve 
bearing shell and describes the movement of the bearing housing. The rotor mass is linked to the stator mass by 
the stiffness c and internal damping �i of the rotor, the oil film stiffness matrix Cv and oil film damping matrix 
Dv of the sleeve bearings, which are supposed to be equal for the drive side and the non-drive side, and the 
bearing house and end shield stiffness and damping matrix Cb and Db, which are also assumed to be equal for the 
drive side and the non-drive side. The stator structure is assumed to be rigid, compared to the soft foundation. 
The foundation stiffness matrix Cf and the foundation damping matrix Df connect the stator feet, FL (left side) 
and FR (right side), to the ground. The foundation stiffness and damping on the right side is the same as on the 
left side and the foundation stiffness values cfy and cfz and the foundation damping values dfy and dfz are the 
values for each motor side. The electromagnetism is considered by the electromagnetic spring and damper 
matrix �� and �m, where also electromagnetic field damping is included. All used coordinate systems are fixed. 

For deriving the damping coefficients, it is important to consider here, that natural vibrations with the angular 
natural frequency �stab of the critical mode at the limit of stability with the rotary angular frequency �stab has to 
be analyzed. Therefore the whirling frequency �F becomes �stab:  
                                                                                   �F = �stab                                                                           (6) 

The oil film stiffness and damping coefficients cij and dij  (�, � = �, �) of the sleeve bearing are calculated by 
solving the Reynolds differential equation, shown by Tondl (1965), Glienicke (1966) and Lund et al.( 1987). 
                                                                    ��� = ���(�)  and ��� = ���(�)                                                          (7) 

Referring to Gasch (2002), the internal material damping of the rotor �i is described here by the mechanical loss 
factor tan �i of the rotor, depending on the whirling angular frequency �F.                                                                                          �i(�F) = �∙����i �F                                                                          (8) 

With the stiffness of the bearing housing and end shield (�bz; �by), the damping of the bearing housing and end 
shield (�bz;�by) is here also described by the mechanical loss factor tan �b:                                                                            �bz(�F) = �bz∙����b �F  ;    �by(�F) = �by∙����b �F                                          (9) 

The damping of the foundation elements is also described by the mechanical loss factor tan �f:                                                                            �fz(�F) = �fz∙��� �f �F  ;    �fy(�F) = �fy∙����f �F                                            (10) 

The electromagnetic stiffness coefficient �md and damping coefficient �m are depending on the harmonic slip �ν, 
and therefore also depending on the whirling angular frequency �F (see chapter 2).  

                                                                   �md = �md(�F)  and �m = �m(�F)                                                  (11) 
 
4 Mathematical Description 
 
To calculate the limit of stability, it is necessary to derive the homogenous differential equation. Therefore, 
d’Alemberts method is applied to the vibration system in order to derive the equations of motion, leading to the 
parts: a) rotor mass system, b) journal system, c) bearing house system and d) stator mass system – (Fig. 4).  
 
Because of the small displacements of the stator mass (zs, ys, ϕs), compared to the dimensions of the machine (h, 
b,Ψ ), following linearization is possible: The machine feet displacements on the left side (zfL, yfL) and the 
machine feet displacements on the right side (zfR, yfR) can be described by the displacements of the stator (zs, ys, 
ϕs) by: 

                                         �fL = �s − �s ∙ �;    �fR = �s + �s ∙ �;    �fL = �fR = �s − �s ∙ ℎ                                 (12) 

With the equilibrium of at each single system, the homogenous differential equation can be derived: 

                                                                     � ∙ �̈ + � ∙ �̇ + � ∙ � = �                                                                (13) 

Coordinate vector �: 

                                                            [ ]Tyyzzyyzz bvbvswsws ;;;;;;;; ϕ=q                                                             (14) 
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Figure 4. Vibration model, cut free into sub-systems 

 
Mass matrix M:                                                                                                                                                    (15) 

                                              



































=

b

v

b

v

sx

w

s

w

s

200000000
020000000
002000000
000200000
00000000
00000000
00000000
00000000
00000000

m
m

m
m

Θ
m

m
m

m

M
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Stiffness matrix �:                                                                                                                                                (17)       
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Due to the non-symmetric stiffness matrix – caused by the oil film and internal material damping of the rotor – 
and due to a negative electromagnetic damping coefficient ��, the vibration system will get instable, when the 
limit of stability is exceeded (� > �����). The limit of vibration stability ����� can be derived, by increasing the 
rotary angular frequency �, and analyzing the eigenvalues.  
 
When a real part of one eigenvalue gets zero, the limit of vibration stability is reached. If the rotary angular 
frequency � is increased furthermore, the real part gets positive and the vibration system gets instable. To find 
the limit of stability, the homogenous differential equation has to be analyzed. To calculate the eigenvalues, the 
state-space formulation is used here (with �� = �; Index ℎ for homogenous): 

                                                                ��̇��̈����̇ = � � �−��� ∙ � −��� ∙ �����������������A ∙ ����̇����                                                  (18) 

With the formulation � = �� ∙ ��∙�, the eigenvalues can be derived from: 

                                                 det[� − � ∙ �] = 0                                             (19) 

At the limit of stability, the eigenvalue � of the critical mode gets:  

                                              � = �stab = ±� ∙ �stab                                             (20) 

Knowing the eigenvalue �stab, the critical mode shape at the limit of stability can be derived. The real part of the 
critical eigenvalue �stab is zero and the whirling angular frequency �F is then identical to �stab, while the rotor is 
rotating with �stab. It has to be considered, that the coefficients �i, �bz, �by, �fz, �fy �m, �md are depending on the 
whirling angular frequency �F, which has to be determined.  
 
Referring to Werner (2016) – where a rigid mounted induction motor was investigated –, an iterative solution 
has to be deduced, according to Fig. 5, for a soft mounted induction motor. First, the coefficients �i, �bz, �by, �fz, �fy,�m and �md , which depend on the whirling angular frequency �F, are set to zero, so that only the non-
symmetric stiffness matrix of the oil film will cause instability. The eigenvalues are calculated according to (19), 
depending on the rotary angular frequency �. 
 
To derive the limit of stability, the rotary angular frequency � is increased, till the real part of an eigenvalue gets 
zero. At this limit, the rotary angular frequency is �stab,1 – index “1” for the first calculation – and the natural 
angular frequency of the critical mode �stab,1 can be derived from the eigenvalue. Afterwards the coefficients �i, �bz, �by, �fz, �fy,�� and �md are calculated with �F = �stab,1, and the limit of stability and the natural angular 
frequency are calculated again, leading to �stab,2 and �stab,2. Then the new calculated natural angular frequency �stab,2 will be compared to the origin natural angular frequency �stab,1. If the ratio is less than Δ – an arbitrarily 
chosen value –, the calculation is finished and �stab = �stab,2 and �stab = �stab,2. If the ration is larger as the 
chosen value Δ, a new calculation is deduced and the coefficients �i, �bz, �by, �fz, �fy,�m and �md are now 
calculated with �F = �stab,2. With these new coefficients, the new limit of stability �stab,n+1 and the natural 
angular frequency �stab,n+1 are derived. Then again the new value �stab,n+1 is compared to the previous value �stab,2. If the deviation is still too large, the loop in Fig. 5 will run through, till the deviation is less than Δ. With 
this iterative process the limit of stability �stab can be derived, as well as the corresponding natural angular 
frequency �stab of the critical mode. This procedure is useful, if the biggest influence on the limit of stability is 
caused by the non-symmetric stiffness matrix of the oil film, which is usually the case for common induction 
motors with sleeve bearings. 
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Figure 5. Flow diagram to derive the limit of stability for a soft mounted induction motor 

5 Numerical Example 
 
The limit of vibration stability for a 2-pole induction motor (Table 1), mounted on soft rubber elements, and 
driven by a converter with constant magnetization, is analyzed. The load machine is a pump and therefore the 
load torque is a quadratic function of the rotor speed n. At rated speed, the load torque is identical to the rated 
torque of the motor. 

Table 1. 2-pole induction motor, mounted on soft rubber elements 
Data of the motor: 
- Rated power �N = 2400 kW 
- Rated voltage �N = 4160 V  (∆) 
- Rated frequency �N = 60.15  1/s 
- Rated speed �N = 3600 rpm 
- Rated torque �N = 6366 Nm 
- Rated slip � = 0.0025 
- Number of pole pairs � = 1 
- Undamped magnetic spring constant �m = 7.0 ∙ 10� kg/s� 
- Masse of the stator �s = 7040 kg 
- Mass inertia of the stator at the x-axis �sx = 1550 kgm� 
- Mass of the rotor  �w = 1900 kg 
- Mass of the rotor shaft journal �v = 10 kg 
- Mass of the bearing housing �b = 80 kg 
- Stiffness of the rotor  � = 1.8 ∙ 10� kg/s� 
- Height of the centre of gravity S ℎ = 560 mm 
- Distance between motor feet 2� = 1060 mm 
- Horizontal stiffness of bearing housing and end shield �by = 4.8 ∙ 10� kg/s� 
- Vertical stiffness of bearing housing and end shield �bz = 5.7 ∙ 10� kg/s� 
- Mechanical loss factor of the bearing housing and end shield tan �b = 0.04 
- Mechanical loss factor of the rotor  tan �i = 0.03 

Data of the sleeve bearings:  
- Bearing shell Cylindrical 
- Lubricant viscosity grade  ISO VG 32 
- Nominal bore diameter / Bearing width db = 100 mm / bb = 81.4 mm 

, h
b, c, 

Loop

Loop passed?
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- Ambient temperature / Supply oil temperature Tamb = 20°C / Tin = 40°C 
- Mean relative bearing clearance (DIN 31698) Ψm = 1.6 ‰ 

Data of the foundation elements (for each motor side):  
- Vertical stiffness for each motor side ��� = 2.0 ∙ 10� kg/s� 
- Horizontal stiffness for each motor side ��� = 1.0 ∙ 10� kg/s� 
- Mechanical loss factor of the foundation elements tan �� = 0.1 

The oil film stiffness and damping coefficients of the sleeve bearings have been calculated with the program 
SBCALC from RENK AG.  

First, the coefficients  ��, ���, ���, ���, ���,�� and �md  are set to zero – according to the flow diagram in Figure 
5 – and the real part and the imaginary part of the critical eigenvalue is analyzed. The critical vibration mode is 
the mode, which will get instable (Fig. 6).  

Figure 6 shows, that at a rotor speed of 4595 rpm the real part of the critical eigenvalue becomes zero. Increasing 
the rotor speed, will lead to a positive real part and therefore to instability. So the limit of stability is reached at a 
rotor speed of �����,� = 4595 rpm (�����,� = 481.2 rad/s).  

 
Figure 6. Real and imaginary part of the critical eigenvalue, depending on the rotor speed, with the boundary 

condition: �i = �bz = �by = �fz = �fy = �m = �md = 0; Critical mode shape at the limit of stability 

At this rotor speed the imaginary part, which represents the whirling angular frequency �F of the critical natural 
mode, becomes �F = �stab,1 = 255.3 rad/s. According to the flow diagram this angular natural frequency �stab,1 can now be used to calculate the coefficients �i, �bz, �by, �fz, �fy,�m and �md (Table 2).  

Table 2. Coefficients �i, �bz, �by, �fz, �fy,�m and �md at a rotor speed of nstab,1 = 4595 rpm and at a whirling 
angular frequency of ωF = ωstab,1 = 255.3 rad/s 

Damping constant of the rotor �i = 2.12 ∙ 10�kg/s 
Damping constant of bearing housing and end shield (horizontal direction) �by = 7.52 ∙ 10�kg/s 
Damping constant of bearing housing and end shield (vertical direction) �bz = 8.93 ∙ 10�kg/s 
Damping constant of foundation elements for each motor side (horizontal direction) �fy = 3.92 ∙ 10�kg/s 
Damping constant of foundation elements for each motor side (vertical direction) �fz = 7.83 ∙ 10�kg/s 
Electromagnetic damping constant �m = −61.7 kg/s 
Electromagnetic spring constant �md = 4.82 ∙ 10�kg/s�  

 
The large difference between rotor angular frequency �stab,1 = 481.2 rad/s and the whirling angular frequency �F = �stab,1 = 255.3 rad/s, leads in combination with a very small fundamental slip � = 0.0032 to a large 
harmonic slip �ν = −0.47, and therefore to a strong electromagnetic field damping, and the electromagnetic 
coefficients �m and �md get very small. Fig. 7 shows, that the electromagnetic coefficients would be much 
higher, if the whirling angular frequency �F would be close to the rotor angular frequencyΩ.   
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Figure 7. Magnetic spring constant a) and b) and magnetic damper constant c) and d) for different whirling 

angular frequencies and different rotor angular frequencies 

With the basic coefficients from Table 2, the limit of stability is calculated again according to the flow diagram. 
To clarify this additional calculation, the index “2” is used instead of index “1”. So the limit of vibration stability 
is reached now at a rotor speed of �stab,2 = 4554 rpm and the whirling frequency is �F = �stab,2 = 255.6 rad/s. According to the flow diagram a third calculation is not necessary, because �stab,2 differs only marginal from �stab,1 (+0.12%). Therefore, the values for the limit of stability are ����� = �����,� = 4554 rpm; ����� =�����,� = 255.6 rad/s. Now different cases are investigated. Table 3 shows, that the electromagnetic damper �� 
and the electromagnetic spring constant ��� influence the limit of vibration stability only marginal (case b and 
c), because the large harmonic slip at the limit of stability causes a strong electromagnetic field damping and 
therefore leading to low values for ��  and ���. Without considering electromagnetic field damping (case d), the 
magnetic spring value gets maximal (��� = ��) and the magnetic damper coefficient gets zero (�� = 0). For 
this case, the limit of stability will be clearly reduced from 4554 rpm to 4377 rpm, which means -3.9%. When 
neglecting the internal damping of the rotor (case e), the limit of stability will be increased (+2.0%).  

Table 3. Limit of stability for different cases 
Case       Description ����� [rad/s]  �����  [rpm] 

∆ of ����� 
to  a) [%] 

a)  Data Table 2 (Basic conditions) 255.6 4554 0 
b)  Data Table 2 with �� = 0 256.5 4556 +0.04 
c)  Data Table 2 with ��� = 0 256.5 4566 +0.26 
d)  Data Table 2 with �� = 0; ��� = �� (no electromagnetic field damping) 248.1 4377 -3.9 
e)  Data Table 2 with �� = 0 (no internal damping of the rotor) 255.7 4645 +2.0 
f)  Data Table 2 with ��� = ��� = 0 (no damping of the bearing housing and end shield) 256.5 4509 -1.0 
g)  Data Table 2 with ��� = ��� = 0 (no damping of the foundation elements) 256.1 4537 -0.37 
h)  Data Table 2 with ��� = ��� → ∞ (motor rigid mounted) 226.4 3922 -13.9 
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However, neglecting the damping of the bearing housings and end-shields (case f) will lower the limit of 
stability (-1%), as well as neglecting the damping of the foundation elements (-0.37%). The low influence of the 
damping of the foundation elements is caused by their low stiffness, which leads in conjunction with the loss 
factor to low damping values, which can be seen in Table 2. Figure 8 shows, that if the foundation element 
stiffness would be e.g. 4 times higher and the mechanical loss factor of the foundation elements would be the 
same (tan �f = 0.1), the limit of stability would increase from 4554 rpm to 4880 rpm (+7.2%). However, for a 
low loss factor (tan �f = 0.01) the limit of stability would only increase to 4730 rpm (+3.9%). 

 
Figure 8. Influence of the foundation element stiffness on the limit of stability n����� 

Figure 9 shows the influence on the limit of stability and on the whirling angular frequency �����, for stiffness 
variation of the foundation elements in a range of ��� = 1 ∙ 10� … 4 ∙ 10�kg/s�; ��� = 1 ∙ 10� … 8 ∙ 10�kg/s� . 

 
Figure 9. Influence of the arbitrary stiffness of the foundation elements on a) the limit of stability �limit and on b) 

the whirling angular frequency �stab; with a loss factor of tan �� = 0.1 for the foundation elements 

If the motor would be rigid mounted (case h), which means �fy = �fz → ∞, the limit of stability would be reached 
already at 3922 rpm, and the whirling frequency at the limit of stability �stab would be 226.4 rad/s instead of 
255.6 rad/s, shown by Werner (2016). Therefore, putting here the motor on the soft foundation elements 
increases the limit of stability clearly (+16.1%), compared to the rigid mounted induction motor. 

 
6 Conclusion 
 
In the paper a multibody vibration model and a procedure are presented for stability analysis of soft mounted 
induction motors, with sleeve bearings. The focus of the paper is on the influence of electromagnetic field 
damping, regarding the limit of stability. After the mathematical coherences have been derived, a numerical 
example was presented, where the limit of stability was analyzed. It could be shown, that neglecting 
electromagnetic field damping leads to a lower limit of stability. Additionally the influence of the foundation 
elements and of the internal damping of the rotor on the limit of stability could be demonstrated. Although, the 
vibration model is a simplified multibody model, the procedure and conclusions can be adopted into finite-
element analysis. 
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