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Modal Analysis of Rotors under Special Support Conditions 
 
G. Mikota 
 
 
Gyroscopic rotors in rolling element or tilting pad bearings assume a particular model structure if the bearing 
load directions coincide. For simple bearing models in suitable coordinates, the stiffness and damping matrix 
are free from cross-coupling terms. Under these conditions, a relationship between right and left eigenvectors is 
derived. The rows of the frequency response matrix are related to its columns, and the elements of the frequency 
response matrix are expressed in terms of eigenvalues and right eigenvectors. The results are illustrated by a 
numerical example. The theory can be used to facilitate advanced applications of modal testing for a special 
class of rotors. 
 
 
1 Introduction 
 
Modal testing of rotors has been complicated by the fact that the right and left eigenvectors do not coincide. If a 
rotor is excited in one degree of freedom and the vibration responses are measured in all degrees of freedom, the 
right eigenvectors can be obtained, which correspond to the vibration mode shapes (Nordmann, 1984). Advanced 
applications such as model correlation or modification prediction require a complete modal model; the left 
eigenvectors can be obtained by exciting the rotor in all degrees of freedom, but this is often too much effort and 
sometimes even impossible. It would be helpful if a relationship between right and left eigenvectors could be 
established in advance. Zhang et al. (1988) as well as Lee (1991) found such relationships for several cases of 
isotropic rotors. However, bearings are often anisotropic and thus do not meet the assumptions made by these 
authors. For undamped gyroscopic rotors, Meirovitch (1974) and Meirovitch and Ryland (1979) proved that the 
left eigenvectors are the complex conjugates of the right eigenvectors. Bucher and Ewins (2001) used a 
perturbation analysis for lightly damped systems that was developed by Wang and Kirkhope (1994a,b); for a 
special type of anisotropic bearings, they simplified the relationship between frequency response functions and 
modal parameters and concluded that a complete modal model can be obtained from an excitation at one point 
along the shaft in both the x- and y-directions. Nevertheless, a considerable amount of damping may be present in 
practice. For damped gyroscopic rotors, Gutierrez-Wing (2003) published a general method whereby left 
eigenvectors can be derived from right eigenvectors; however, this method involves some matrix algebra and the 
solution of two eigenvalue problems. 
 
As an alternative, one can take advantage of the model structure that is assumed by special types of bearings. 
Simple models of rolling element and tilting pad bearings indicate that in a coordinate system aligned with the 
load, the stiffness and damping matrix are free from cross-coupling terms. If bearing load directions coincide, 
this also applies for the contributions of bearings to the rotor’s overall stiffness and damping matrix. A multi-
degrees-of-freedom model of the rotor itself is, for instance, described in Genta (2005), where Timoshenko beam 
elements are used. With respect to the coordinate axes, the symmetric mass, damping, and stiffness matrices 
appear in separate blocks. The skew-symmetric gyroscopic matrix only contains symmetric off-diagonal 
submatrices. This leads to a special case of the vibro-acoustical model structure, for which a simple relationship 
between right and left eigenvectors is known. The rotor model may further include a skew-symmetric circulatory 
matrix from internal damping, which only contains symmetric off-diagonal submatrices. 
 
In this paper, the cross-coupling properties of rolling element and tilting pad bearings are extracted from 
literature. The vibro-acoustical model is expressed in velocity and pressure state variables in order to 
demonstrate the analogy to a special case of the rotordynamic model. This model is extended by a circulatory 
matrix to account for internal damping. Under these conditions, a simple relationship between right and left 
eigenvectors is derived. The rows of the frequency response matrix are related to its columns, and the elements of 
the frequency response matrix are expressed in terms of eigenvalues and right eigenvectors. The results are 
illustrated by a numerical example. The theory can be used to facilitate advanced applications of modal testing 
for a special class of rotors. 
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2 Cross-coupling Properties of Supports 
 
In rotordynamic models, bearings are often considered by 2×2 stiffness and damping matrices which need not be 
symmetric. These matrices can be split into symmetric and skew-symmetric parts, and principal axes can be 
found where the symmetric parts are free from cross-coupling terms. The skew-symmetric parts do not change 
with the angular position of the coordinate system, are cross-coupling in nature, and thus contribute to the overall 
circulatory and gyroscopic matrices. For journal bearings in general, the principal axes of stiffness and damping 
may differ among the individual supports of a rotor; any choice of coordinate system may lead to cross-coupling 
terms in the overall stiffness or damping matrix. The overall stiffness matrix could be decoupled for equally 
loaded identical journal bearings, but this is a somewhat unrealistic configuration. 
 
Models of rolling element bearings include further restrictions. Krämer (1993) used 2×2 stiffness and damping 
matrices which are diagonal in a coordinate system aligned with the load. For a rotor whose bearing load 
directions coincide, this model does not contribute any cross-coupling terms to the overall stiffness or damping 
matrix. Dietl (1997) assembled 5×5 stiffness and damping matrices of rolling element bearings based on the 
stiffness and damping coefficients of the individual elasto-hydrodynamic lubrication contacts. One of his models 
describes the dry Hertzian contact with respect to stiffness and damping and uses an empirical law for elasto-
hydrodynamic oil-film damping. For radial, axial, and tilting loads in a plane through the rotor axis, this model is 
symmetric to that plane. If x denotes the radial load direction, it follows that the resulting stiffness and damping 
matrices do not include any coupling terms between the local displacement vectors 
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This conclusion still holds for a rotor whose bearing loads are confined to the x-z-plane. Such conditions may be 
realistic, especially if the load is constituted by the rotor’s own weight. 
 
Similar models are obtained for tilting pad bearings. According to Someya (1989), the cross-coupling stiffness 
and damping terms of four pad and five pad bearings disappear in a coordinate system aligned with the load. 
Dimond et al. (2011) stated that in tilting pad bearings, the cross-coupled stiffness terms are generally three 
orders of magnitude less than the direct stiffness terms. Experimental results for five pad and four pad bearings 
were published by Childs et al. (2011); cross-coupled stiffness and damping coefficients were always much 
smaller than direct ones. 
 
These considerations are summarized as follows. For 2×2 matrix models of rolling element or tilting pad 
bearings, cross-coupling can be avoided if the coordinate system is aligned with the load. If radial and tilting 
loads are confined to a plane through the rotor axis, this also holds for a 4×4 matrix model of rolling element 
bearings. 
 
 
3 From Vibro-acoustics to Rotordynamics 
 
According to Wyckaert et al. (1996), the vibro-acoustical model can be described by 
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with the structural displacement vector s, the sound pressure vector p, the vector of external force loading fs, the 
vector of acoustical source loading q, the structural mass matrix Ms, the structural damping matrix Cs, the 
structural stiffness matrix Ks, the fluid mass matrix Mf, the fluid damping matrix Cf, the fluid stiffness matrix Kf, 
the coupling submatrix Kc, and the fluid density ρ. Wyckaert et al. (1996) derived a simple relationship between 
right and left eigenvectors of such systems. If structural velocities v are chosen as state variables instead of 
structural displacements s, the vibro-acoustical model (2) becomes 
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Equation (3) is recognized as a special case of the linear time-invariant rotor model 
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which reads 
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The mass, damping, and stiffness matrix are partitioned into separate symmetric blocks Mx, My, Cx, Cy, Kx, and 
Ky, respectively; if bearing load directions coincide, this applies for the configurations summarized in Section 2. 
A skew-symmetric gyroscopic matrix G is taken into account; in the following, G0 need not be symmetric. The 
rotordynamic model (5) is extended to include a skew-symmetric matrix 
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where N0 need not be symmetric; this results in the model 
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under consideration. 
 
 
4 Eigenvector relations 
 
The right eigenvectors 
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of equation (7) satisfy the equation 
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with the n-th eigenvalue λn. This is equivalent to 
 

 .2
00

00
2

0θ
θ

KCMNG
NGKCM

=







−












+++
−−++

yrn

xrn

yynyn
TT

n

nxxnxn

λλλ
λλλ

         (10) 

 
Transposing equation (10) leads to 
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it follows that the left eigenvectors θln of equation (7) are related to the right eigenvectors by 
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5 Properties of the Frequency Response Matrix 
 
The rotor model (7) is transferred to the frequency domain by taking the Laplace transform and setting the 
Laplace variable s=iω. The Laplace transforms of the vectors x, y, fx, and fy are denoted as X, Y, Fx, and Fy, 
respectively. From the frequency domain model 
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it can be seen that the displacement vector is related to the force vector by 
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with the frequency response matrix 
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Equation (14) is equivalent to 
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From equations (13) and (16), it follows that 
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and this matrix is symmetric; this leads to the properties 
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of the frequency response matrix H(iω). 
 
Using equations (18), (19), and (20), each column of the frequency response matrix can be related to a row. For a 
column located in the left half of H(iω), the corresponding row is obtained from the transpose after changing the 
sign in the lower half of the column. For a column located in the right half of H(iω), the corresponding row is 
obtained from the transpose after changing the sign in the upper half of the column. 
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6 Modal Analysis 
 
In terms of eigenvalues and eigenvectors, the elements of the frequency response matrix H(iω) are expressed as 
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in which θrnj is the j-th component of the right eigenvector θrn, θlnk is the k-th component of the left eigenvector 
θln, an is a constant for each mode, and N is the number of degrees of freedom (Irretier, 1999); the bar above a 
symbol denotes the complex conjugate. Equation (21) shows that the right eigenvectors θrn can be identified from 
the k-th column of H(iω) if the values of θlnk/an are selected in advance; the left eigenvectors θln can be identified 
from the j-th row of H(iω) after selecting the values of θrnj/an. 
 
For rotors modelled by equation (7), the j-th row of H(iω) is obtained from the j-th column using the properties 
(18), (19), and (20). This means that the left eigenvectors can be identified from a column of the frequency 
response matrix, which only requires an excitation in one degree of freedom. 
 
Alternatively, the left eigenvectors can be determined from the right eigenvectors using the relationship (12). If 
equation (12) is inserted into equation (21), the elements of H(iω) become 
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σ=1 for b=x and σ=-1 for b=y; θxrnj, θxrnk, θyrnj, and θyrnk are the j-th and k-th components of θxrn and θyrn, 
respectively. 
 
From equation (22), it follows that 
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Thus, the properties (18), (19), and (20) of the frequency response matrix have been rederived, and it is obvious 
that they are also valid separately for each mode. 
 
 
7 Numerical Example 
 
To illustrate the theory, the example of a rigid rotor supported by two identical anisotropic bearings is taken from 
Lee and Joh (1993) and described by the coordinates used in this paper. A schematic view of the rotor is given in 
Figure 1. 
 
The system submatrices appearing in equation (7) are given as 
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Figure 1. Rigid rotor-bearing system 
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where m is the rotor mass, It and Ip are the transverse and polar mass moments of inertia about the centre of 
gravity of the rotor, Ω is the rotational speed, and the distances L, L1, and L2 are depicted in Figure 1; cxx, cxy, cyx, 
cyy and kxx, kxy, kyx, kyy are the damping and stiffness coefficients of the bearings. Due to the fact that cyx=−cxy and 
kyx=−kxy, the rotor under consideration complies with the model structure (7). For model parameters according to 
Table 1, the right and left eigenvalue problems are solved, and the resulting eigenvalues and eigenvectors are 
listed in Table 2. It is obvious that each pair of corresponding right and left eigenvectors satisfies the relationship 
(12). Moreover, the frequency response functions Hxy11(iω) and Hyx11(iω) are depicted in Figure 2 and apparently 
satisfy the property (25). For the rotor under consideration, all modal parameters can be identified exactly from 
one row or column of the frequency response matrix even though the bearings are not isotropic. 
 
 

Table 1. Model parameters of the rigid rotor-bearing system. 
m 8 kg 
L1/L 0.5 
L2/L 0.5 
It/L2 0.45 kg 
Ip/L2 0.15 kg 
Ω 10 000 rpm 
cxx 300 Ns/m 
cyy 300 Ns/m 
cxy 20 Ns/m 
kxx 3 900 000 N/m 
kyy 4 100 000 N/m 
kxy 50 000 N/m 
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Table 2. Modal parameters of the rigid rotor-bearing system (complex conjugates not included). 
mode eigenvalue λn(s-1) right eigenvector θrn left eigenvector θln 
1 backward −38.9+988.0i 1 1 
  1 1 
  0.2524+0.1184i −0.2524−0.1184i 
  0.2524+0.1184i −0.2524−0.1184i 
1 forward −36.1+1010.5i 1 1 
  1 1 
  3.2220−1.5459i −3.2220+1.5459i 
  3.2220−1.5459i −3.2220+1.5459i 
2 backward −165.2+1922.1i 1 1 
  −1 −1 
  −0.0011+0.8564i 0.0011−0.8564i 
  0.0011−0.8564i −0.0011+0.8564i 
2 forward −168.2+2297.1i 1 1 
  −1 −1 
  −0.0012−1.1387i 0.0012+1.1387i 
  0.0012+1.1387i −0.0012−1.1387i 
 
        

 
Figure 2. Selected frequency response functions of the rigid rotor-bearing system. (a): real part of Hxy11(iω), (b): 

imaginary part of Hxy11(iω), (c): real part of Hyx11(iω), (d): imaginary part of Hyx11(iω). 
 
 

8 Conclusion 
 
For rolling element and tilting pad bearings, the stiffness and damping matrix of the rotor are free from cross-
coupling terms if bearing loads are confined to a coordinate plane through the rotor axis. Under these conditions, 
a simple relationship between right and left eigenvectors has been derived; the rows of the frequency response 
matrix have been related to its columns, and the elements of the frequency response matrix have been expressed 
in terms of eigenvalues and right eigenvectors. The results allow for advanced applications of modal testing even 
if the rotor can only be excited in one degree of freedom. 
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