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Torsional vibrations must be considered in the design of all high-power drive-trains including an induction 
motor. Electromagnetic (EM) field in the air gap of an induction motor generates additional magnetic stiffness 
and damping between the rotor and stator. The inclusion of these magnetic effects is limited by the availability of 
simple and portable motor models. The main aim of this paper is to introduce a motor model including the speed 
and torque variation. The presented model is based on the linearization of the common space-vector models of 
induction motors. The parameters of this model are identified for the rated operating condition. This motor 
model can be extended to include variable speed and torque operation. The numerical results demonstrate that 
this model describes accurately the magnetic effects over the large speed and torque range. In addition, the 
numerical results demonstrate the significance of magnetic stiffness and damping in variable speed motor-driven 
compressors with a soft coupling. 

1 Introduction 

Induction motors rotate process machines by converting electric energy to mechanical work. The power is 
transmitted by a drive train including couplings and optional gears and branches. An essential part of the drive 
train design is the torsional vibration analysis. This analysis requires the inertia and stiffness data of all the drive 
train components with loading and damping parameters. 
 
Increasing power density, together with increasing demands of reliability of industrial systems, has led to the 
increased requirements of calculation accuracy. With motor driven reciprocating compressors, this has resulted 
in the inclusion of magnetic stiffness and damping in torsional analysis (Anon., 2015). Due to this need, simple 
models, based on the motor characteristic data, have been presented for the evaluation of these magnetic 
parameters; see Knop (2012) and Hauptmann et al. (2013). These models are based on the space-vector theory, 
developed to describe the steady-state and transient motor behaviour, and used for the evaluation of magnetic 
stiffness and damping, see Concordia (1952), Jordan et al. (1979, 1980), Shaltou (1994) and Brunelli et al. 
(2015). Space-vector models, or the simplified versions of them, are well suited for the torsional analysis of 
drive trains. Using these models, the parameters required to describe the magnetic stiffness and damping can be 
calculated in advance by the motor manufacturer and submitted to the suppliers, e.g. compressor manufacturer, 
responsible for the drive train design. 
 
Simultaneously, numerical methods have been increasingly applied for the analysis of induction motors. This 
trend has been expanded also to the determination of magnetic stiffness and damping parameters (Repo 2008) 
and the effect of these has been evaluated in calculation examples of actual drive trains (Holopainen et al. 2010). 
 
The accuracy and modelling capability of numerical models exceeds clearly the potential of space-vector 
models. However, the accuracy is only one, though significant, requirement of feasible models for torsional 
analyses. A remarkable shortcoming of numerical models is the portability. The numerical models are usually 
non-linear and the application requires the integration of particular codes for electromagnetic fields. Thus, the 
portability of numerical motor models is poor, or at least limited. By contrast, the space-vector model is simple 
and the number of model parameters is small, and thus, the portability excellent. 
 
The main aim of this paper is to introduce a simple linearized motor model including the speed and toque 
variation. The second aim is to show the significance of the magnetic stiffness and damping particularly in 
motor-driven reciprocating compressors with a soft coupling. 
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This paper is based strongly on the methods and findings of two previous papers, see Arkkio et al. (2016) and 
Holopainen et al. (2016). The paper starts by reviewing the linearization of the space-vector model in the 
operating point. Next, the inclusion of the speed and torque variation is presented. These two parameters define 
the steady-state operation of an induction motor. After this, the developed models are applied for a 3.7 MW 
induction motor. The obtained magnetic stiffness and damping values are compared to the results calculated 
numerically by a refined finite element (FE) method with time-stepping analysis. Finally, the motor model is 
applied to evaluate the magnetic effects on a reciprocating compressor drive train. All the calculations are carried 
out with a steady-state sinusoidal voltage supply of the motor. Thus, all the effects induced by the frequency 
converter control are neglected and the scope is restricted purely to the motor. 
 
 
2 Methods 

 
2.1 Space-vector Model of Induction Motor 

 
A single-cage space-vector model for an induction motor written in a reference frame rotating at the synchronous 
angular speed �� is 
 

 

�s = �s�s + d�sd� + j�s�s           0 = �r�r + d�rd� + j(�s − �)�r�e = ���Im�� s*�s�                        (1) 

 
where �s, �s and �s are the space vectors of stator voltage, stator current and stator flux linkage, �r and �r are the 
space vectors of rotor current and rotor flux linkage, �s is the stator resistance, �r is the rotor resistance, � is the 
angular speed of the rotor, � is the number of pole pairs, j is the imaginary unit, and asterisk denotes complex 
conjugation. The angular speeds are given in electrical radians, i.e. � = ��, where � is the mechanical 
rotational speed. 
 
The linear relation between the flux linkages and currents is 
 

 
�s = �s�s + �m�r�r = �m�s + �r�r  (2) 

 
where �s and �r are the self-inductances of the stator and rotor windings and �m is the mutual inductance 
between them.  
 
 
2.2 Linearization of Space-vector Model in Operation Point 

 
The system of equations (1) is non-linear because of the product of angular speed and rotor flux linkage in the 
second equation. In addition, the electromagnetic torque in the third equation is non-linear due to the product of 
stator flux linkage and stator current. However, the torsional vibrations are manifested by small oscillations 
around the equilibrium point. Thus, the calculation of torsional vibrations can be carried out by linearizing the 
equations at the operation point. The linearized system of equations in the synchronously rotating reference 
frame is (Arkkio et al. 2016) 
 

 

∆�s = �s∆�s + �s d∆�sd� + j�s�s∆�s + �m d∆�rd� + j�s�m∆�r0  =   �r∆�r + �m d∆�sd� + j(�s − ��)�m∆�s + �r d∆�rd� +  +j(�s − ��)�r∆�r − j��m�s0 + �r�r0�∆� ∆�e = �� ��mIm�� r0* ∆�s + �s0∆��∗�                                        
 (3) 
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where the currents have been chosen as the free variables, ∆ denotes a small variation from the steady state 
value, i.e. a linearized variable, and �s0, �r0 and �� are the steady-state stator current, rotor current and angular 
speed. 
 
The resistance and inductance parameters of the non-linear and linearized space-vector models, (1) and (3), were 
obtained from a time-harmonic FE analysis (Repo et al. 2006). A non-linear effective permeability of operating 
point was used to get the parameters to calculate the steady-state currents of equation (1). A differential 
permeability was used to get the linearized parameters for equation (3).  
 
 
2.3 Improved Space-vector Models 

 
The simple space-vector model of equations (1) and (3) can be improved to include skin effect of rotor bars by 
increasing the number of rotor branches. Figure 1 shows a steady-state equivalent circuit having three rotor 
branches or cages. The corresponding dynamic space-vector model is (Arkkio et al. 2016)  
 

 

�s = �s�s + d�sd� + j�k�s              0  =  �r�r + d�rd� + j(�s − �)�r 0  = �q�q + d�qd� + j(�s − �)�q0  = �p�p + d�pd� + j(�s −�)�p�e  = ���Im�� s*�s�                         
  (4) 

 
where subscripts q and p refer to the second and third rotor branches. A double- and triple-cage linearized model 
can be constructed in a similar way as the single-cage model above. Again, the resistance and inductance 
parameters were obtained from a time-harmonic FE analysis (Repo et al. 2006)  
 

 
 

Figure 1. Steady-state space-vector equivalent circuit with three rotor branches (Arkkio et al. 2016) 
 
The number of real-valued parameters, i.e. original and linearized model resistances and inductances, is 10, 18 
and 26 in single-cage, double-cage and triple-cage models, respectively. The number of complex-valued 
variables, i.e. electromagnetic degrees-of-freedom, is 2, 3 and 4 in single-cage, double-cage and triple-cage 
models, respectively. Because the number of variables in a typical FE model used for the identification of 
parameters is thousands, the reduction grade is remarkable. 
 
 
2.4 Variable Speed and Torque Operation  
 
A large share of the new motors is used in variable speed applications. In these applications the motor speed and 
torque is adjusted according to process requirements. A common approach is to keep the fundamental flux of the 
machine constant independently of the actual speed and torque. This means that the supply voltage is directly 
proportional to the supply frequency up to the field weakening point, which is often above the maximum speed. 
It can be mentioned that modern frequency controllers may adjust the torque based on the feedback. However, 
all the calculations of this paper are carried out with a steady-state sinusoidal voltage supply of the motor, and 
thus, all the effects induced by the frequency converter control are neglected. 
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In this paper, the model parameters, i.e. inductances and resistances, are identified for the rated operating 
condition. These model parameters are extended to an arbitrary speed and torque by adjusting first the supply 
voltage according to the constant flux approach 
 

 �s = �s�s,��� ∙ �s,rat  (5) 

 
where the subscript “rat” refers to the rated values. The rotational speed and torque are connected by the slip of 
the rotor with respect to the rotating magnetic field  
 

 � = (�s − ��) �s⁄   (6) 

 
This slip must be solved iteratively from the non-linear equation (1) using the pre-set values of speed and torque. 
In addition, the inductances of the linearized model, equation (3), must be divided by the synchronous speed 
ratio �s �s,rat⁄ . All other parameters of the non-linear and linearized models remain unchanged.  
 
 
2.5 Calculation of magnetic Stiffness and Damping 
 
The analytical expression for the frequency response function for the single-cage space-vector model is obtained 
from equation (3) by replacing the small variations by phasor variables of oscillation frequency �d and solving 
the relation between the torque and rotation angle of the rotor.  
 
The magnetic stiffness �m and damping coefficients �m can be associated with the real and imaginary parts of 
the frequency response function �frf 
 

 
�m = −Re��frf(�d)�        �m = −Im��frf(�d)� �d⁄   (7) 

 
where �d is the angular frequency of oscillation. 
 
  
2.6 Reference results by Finite Element Analysis (FEA) 

 
In the 2D FEA models, the magnetic field in the core region of the motor is assumed to be two-dimensional. 
End-winding impedances are added to the circuit equations of the windings to approximatively model the 3D 
end-winding fields. The field and circuit equations are discretized and solved together (Arkkio 1990). Moving-
band technique in the air gap of the machine is used for rotating the rotor (Davat et al. 1985). The torque is 
computed using Coulomb’s method (Coulomb 1983). The resistive losses of the windings were included in the 
model when solving the field equations within FEA. 
 
The frequency response function was needed for the reference result. Two time-stepping simulations in steady-
state are used. In the first one, the rotor is rotated at a constant speed. In the second one, the rotation speed is 
forced to oscillate at a frequency �d and small amplitude around the constant speed of the first simulation. The 
results of the two simulations, particularly the electromagnetic torque and the rotation angle of the rotor, are 
subtracted from each other. The component varying at frequency �d is extracted from the torque and rotation 
angle differences by complex Fourier analysis, and finally, the complex value of the frequency response function 
at frequency �d is obtained by dividing the Fourier components of the torque and rotation angle. This process 
was repeated at about 30 different excitation frequencies between 10 Hz and 100 Hz to collect data for the 
comparison of the analytically and numerically obtained frequency response functions. 
 
Another way to get the frequency response function numerically is to excite the machine by a single pulse in the 
rotation angle (Repo 2008). In this way, all the interesting frequencies can be obtained from two simulations, one 
with the pulse and another one without it. This method is applied to obtain the reference results for the variable 
speed and torque comparison.  
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3 Results 
 
3.1  Magnetic stiffness and damping 
 
A 3.7 MW induction motor is used in all the calculation examples. The main parameters of this motor are shown 
in Table 1.  
 

Table 1. Rated parameters of the example motor. 

 
 
Figure 2 shows the magnetic stiffness and damping calculated by an analytic formula presented by Hauptmann et 
al. (2013), by single- and triple-cage models with parameters based only on the non-linear models, and FEA 
results. The FEA results are assumed to be most accurate and will be used here and later as reference values. In 
this case, the analytic equation underestimates the EM stiffness and damping and neglects the effects close to the 
supply frequency. Similarly, all the cage models underestimate the EM stiffness and damping. The triple-cage 
model gives the best prediction. 
 

 

 
 
Figure 2. Magnetic stiffness and damping in rated operating condition with non-linear model parameters in 

cage models. 

Parameter Value Unit
Power 3551 kW
Frequency 60 Hz
Speed 895.3 rpm
Number or poles 8
Connection star
Voltage 4000 V
Current 620 A
Rated torque 37.88 kNm
Breakdown torque 82.71 kNm
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Figure 3. Magnetic stiffness and damping in rated operating condition with linearized space-vector model. 
 
Figure 3 shows the magnetic torsional stiffness and damping in the rated operating condition calculated by 
linearized space-vector models and by FEA. The parameters of the space-vector models are identified for the slip 
frequency 1.2 Hz (Holopainen et al. 2016). As can be seen the single-cage model underestimates the stiffness 
and damping. In the contrary, the double- and triple-cage models overestimate somewhat the stiffness and 
predict the damping accurately. The difference between the double- and triple-cage models is small.  
 
 
3.2 Effect of Speed and Torque 
 
The synchronous speed range of the example motor in the variable speed operation is 450 – 900 rpm. This 
corresponds roughly to the supply frequency range 30 – 60 Hz. The field weakening point of this motor is at 60 
Hz and the load torque of reciprocating compressors depends on the process medium and pressure ratio, and is 
independent of the speed. Thus, it is assumed that the torque varies between 50 – 100 % of the rated torque. 
Table 2 shows the calculation points. These points are the corner points of the speed-torque domain. However, 
for simplicity the calculation points are defined by the supply frequency and electric power. The slip, torque and 
speed values in table 2 are calculated by iteration during the space-vector and FEA solutions. 
 
Figure 4 shows the magnetic stiffness and damping for these four operating points calculated by the linearized 
triple-cage space-vector model. It can be clearly seen that both the speed and torque affects the magnetic 
parameters.  
 
Figure 5 shows the same information in the form of the complex frequency response functions (FRFs) between 
the torque and rotor oscillation, see equation (5). In this figure, the FRFs are plotted as functions of the relative 
oscillation frequency. This presentation format gives a better overview of the speed and torque effect on the 
magnetic stiffness and damping. It can be seen that the effect of speed (50% reduction) is slightly larger than the 
effect of torque (50% reduction). In addition, it can be seen that the change of torque changes the real part of the 
FRF, i.e. magnetic stiffness, but leaves the imaginary part of FRF, i.e. magnetic damping, almost intact.  
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Table 2. Calculated operation points of the example motor used in FEA. 
 

 
 
 

 

 
 

Figure 4. Magnetic stiffness and damping calculated by the linearized triple-cage space-vector model. 
 
Figure 6 shows the corresponding frequency response functions for the example motor calculated by the FEM in 
time domain and the pulse method (Repo 2008). It can be concluded that the behaviour of the linearized space-
vector model (Figure 5) and the FE model (Figure 6) correlates well over the whole speed range.  
 
 
3.3  Motor driven reciprocating Compressor 
 
The example motor drives a reciprocating compressor. The drive train consists of the following components: 
Motor, flexible coupling, flywheel and reciprocating four-cylinder compressor. This compressor can be used in 
direct-on-line operation with constant speed 895 rpm and in variable speed operation (450 – 900 rpm) supplied 
by a frequency converter. The mechanical drive train was modelled with 26 inertias with connecting torsional 
stiffness elements. The viscous damping was added to the motor and compressor cylinder locations. The 
damping induced by the flexible coupling was neglected due to the missing input data. 
 

Case
Slip Torque Speed Slip Torque Speed

[Hz] [kW] [%] [kNm] [rpm] [%] [kNm] [rpm]
1 60 3729 0.546 39.78 895.1 0.543 39.78 895.1
2 60 1864 0.257 19.83 897.7 0.259 19.83 897.7
3 30 1864 1.114 40.01 445.0 1.108 40.00 445.0
4 30 932 0.518 19.88 447.7 0.521 19.88 447.7

Freq. FEASpace-Vector ModelPower
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Figure 5. Frequency response function between the magnetic torque and rotor oscillation calculated by the 
linearized space-vector model. The real parts of the complex valued functions are below and the imaginary 

parts are up. 
 

 
 

Figure 6. Frequency response function between the magnetic torque and rotor oscillation calculated by the 
FEA. The real parts of the complex valued functions are below and the imaginary parts are up. 

 
Table 3 shows the natural frequency and damping ratio for the lowest modes without and with magnetic effects. 
The calculations are carried out by adding the magnetic stiffness and damping to the mechanical model. The 
calculation was carried out iteratively in order to use the magnetic stiffness and damping values corresponding to 
the natural frequencies. The first mode without magnetic effects is the rigid body mode. The main deformation 
of the second mode occurs in the flexible coupling. The third mode is an internal mode of the coupling, and in 
the fourth mode the flywheel and the compressor line are in the opposite phase without angular displacement of 
the motor.  
 
Table 3 shows that the electromagnetic interaction increases clearly the natural frequency and damping ratio of 
the two first modes. The effect on modes 3 and 4 is negligible. This is logical due to the modal amplitudes of the 
modes 1 and 2 in contrast to the amplitudes of the modes 3 and 4.  
 
Due to the variation of supply frequency, the magnetic stiffness and damping changes though the torque is 
assumed to be constant. Figure 7 shows the natural frequency and damping ratio of the two lowest modes as a 
function of the motor speed. In addition, the first and second order excitations are shown in this Campbell 
diagram. It can be seen that the natural frequency and damping ratios are only slightly dependent on the speed 
above 300 rpm. Below that speed the effects of the supply frequency on the second mode are clearly visible.   
Actually, the damping factor is negative in the speed rage 140 – 190 rpm. The second mode crosses the first 
order excitation frequency at about 600 rpm. The response of the system on this torsional critical speed depends 
on the first order excitation amplitude and the total damping. In this case the damping factor is predicted to be 
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8.6%. The amount of damping provided by the electromagnetic system is significant compared to the mechanical 
damping (Table 3). 
 

Table 3. Natural frequency and damping ratio for the four lowest modes without and with electromagnetic 
coupling at rated operation. 

 

 
 

 
 

 
 

Figure 7. Natural frequency and damping ratio of the motor compressor train. 
 
 
4  Discussion and Conclusions 
 
The obtained results show that the linearized space-vector models can be used to predict the magnetic stiffness 
and damping of induction motors. Particularly, the prediction capability of the double- and triple-cage models in 
the rated operating condition is good. However, there seems to be a difference in magnetic stiffness compared to 
the FEA results. The triple-cage model yields about 5% higher stiffness values than the FEA. The origin of this 
discrepancy is not known.  
 
The parameters of the presented non-linear and linearized space-vector models are obtained from the time-
harmonic FEA. The number of parameters is 10, 18 and 26 in single-cage, double-cage and triple-cage models, 

Mode

f  [Hz] ζ  [-] f  [Hz] ζ  [-]
1 0.00 0.00 4.14 10.09
2 6.35 1.60 10.03 8.63
3 37.27 0.01 37.29 0.02
4 130.29 0.92 130.29 0.92

With
Magnetic Effects

Without
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respectively. Because the number of variables in a typical FE model, used for the identification of parameters, is 
thousands, the reduction grade is remarkable. More importantly, the space-vector model is portable to be a part 
of standard torsional analyses without direct coupling to solvers of electromagnetic fields. 
 
The calculation results indicate that the space-vector model can be extended to variable speed and torque 
operation. The results of the simple three-cage model are well compatible to the results obtained by the non-
linear FEA in the time domain.  
 
The calculation example for a reciprocating compressor train shows that the inclusion of magnetic effects is 
significant with flexible coupling. This follows from the two effects: The magnetic stiffness increases the natural 
frequencies and the magnetic damping decreases the oscillation amplitudes of torsional modes. The magnetic 
damping is particularly advantageous and can be exploited in the design of torsional drive trains. 
 
The calculations were carried out with a steady-state sinusoidal voltage supply of the motor. Thus, all the effects 
induced by the frequency converter control are neglected and the scope is restricted purely to the motor.    
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