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Nonlinear In-Plane Stability of Heterogeneous Curved Beams under a
Concentrated Radial Load at the Crown Point

L. Kiss, G. Szeidl

This paper is devoted to the stability problem of shallow curved beams provided that the beam is made of a het-
erogeneous material. It is assumed that (a) the radius of curvature is constant and (b) the Young’s modulus and
Poisson’s number depend on the cross-sectional coordinates. We have the following objectives: (1) derivation of a
model more accurate than those available in the literature, (2) determination of the critical load assuming that the
beam is subjected to a constant radial dead load at the crown point, (3) comparison of the results obtained with
solutions valid for homogeneous beams.

1 Introduction

It is well known that curved beams — shallow or deep — play an important role in various engineering structures
including for instance roof structures, bridges or stiffeners in aerospace applications. Research on the mechanical
behaviour of curved beams began in the 19th century — we remind the reader of a book by Bresse, (1854) who
found solutions to the horizontal and vertical displacements of a curved beam in terms of the axial force and the
bending moment. Books by [Love| (1892 and 1893) and [Love] (1906) also present some solutions — see Chapter
21 for details. [Hurlbrink| (1907-1908) determined the critical pressure for a clamped beam if the centerline is
inextensible. Extensibility of the beam is first taken into account in (Chwalla and Kollbrunner|(1938)). The most
important results achieved before the sixties are gathered in book Timoshenko and Gere| (1961) — see Chapter 7
for details. Work on stability issues became more intensive in and after the sixties. An exact analysis is provided
for a fixed shallow arch with rectangular cross-section in|Schreyer and Masur| (1965)). The paper by |DaDeppo and;
Schmidt (1969) is concerned with the determination of the critical load if a deep circular beam is subjected to a
vertical force. It is shown by assuming an inextensible beam that quadratic terms should be taken into account in
the analysis. These investigations are continued in paper |DaDeppo and Schmidt| (1974). Based on a continuous
model, papers Dym|(1973a) and [Dym| (1973b) are devoted to the buckling and post-buckling behaviour of pinned
shallow arches under dead pressure. A summary of these results is published in the book Dym| (1974, 2002).
The thesis by [Szeidl| (1975) uses analytical methods to determine the Green function matrices of the extensible
pinned-pinned and fixed-fixed circular beams and determines not only the natural frequencies but the critical loads
as well if the beam is subjected to a radial dead load provided that the Fourier series of the load is known. Finite
element solutions to the buckling problems are presented in various papers — see|Noor and Peters|(1981), (Calboun
and DaDeppo| (1983)), [Elias and Chen|(1988)) and [Wen and Suhendro|(1991). It should be remarked that the higher
order curvature terms are not included into the finite element models in the papers mentioned. The authors assume
that the membrane strain is a quadratic function of the rotation field while the bending moment is a linear function
of the generalized displacements. This fact was the reason for reconsidering the problem and for developing a
more accurate finite element model by Pi and Trahair| (1998). Analytical solutions to pinned-pinned and fixed-
fixed shallow arches subjected to a vertical dead load at the crown point are provided in [Bradford et al.| (2002)),
Pi and Bradford (2008). Paper [Pi et al.| (2008) generalizes the results achieved in [Bradford et al.| (2002) for the
case when the ends of the arch are rotationally restrained (are pinned and supported by torsional springs). Further
investigations are devoted to this problem by |Pi and Bradford| (2012)) under the assumption that the torsional
springs at the two ends of the arch are different. The paper by R. A. M. Silveira and Goncalves|(2013) should also
be mentioned, since it develops a new numerical strategy for the nonlinear equilibrium and stability analysis of
slender curved elements, such as arches, pipes and rings under unilateral constraints. It clarifies the influence of
the foundation position (above or below the structure) and its stiffness on the nonlinear behavior and stability of
curved structures. It is also worth mentioning the paper by Bateni and Eslami| (2014). In this work the fundamental
assumptions are the same as those in|Bradford et al.[(2002), except for one thing: the arch is made of a functionally
graded material.
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As regards the dynamical behaviour of curved beams it is worth citing survey papers Markus and Nanasi| (1981)),
Chidamparam and Leissal (1993)), Laura and Maurizi|(1987), in which a number of references can be found. Papers
by [Nieh et al.| (2003) and [Huang et al.| (2003 have dealt with the stability and vibration of circular and elliptic
arches subjected to a constant and uniformly distributed vertical load. The extensibility of the centerline is taken
into account in both papers. However shear deformation is considered for the circular beam only. The paper by
Szabd and Kiralyfalvi|(1999) is devoted, among others, to the issue how to take into account the fact in the stability
investigations that the body considered (a circular ring) can have a rigid body motion. In-plane static and dynamic
buckling of shallow pin-ended parabolic arches with a horizontal cable is investigated by (Chen and Feng| (2010).
The authors provide approximate solutions to the lower and upper dynamic buckling loads under step loads.

The main objective of the present paper is threefold: (1) we would like to clarify what the governing equations are
if the Young’s modulus and Poisson’s number depend on the cross-sectional coordinates (cross-sectional inhomo-
geneity). As regards the preliminaries in this respect we refer to papers Baksa and Ecsedi|(2009); |[Ecsed: and Dluhi
(2005) and Kiss|(2012). (2) Assuming shallow curved beams but using a more accurate model than that presented
in |Bradford et al.| (2002) and |Pi et al.| (2008)) we would like to investigate what the changes are in the final results
including the critical load. (3) In addition we shall examine whether the linear models can be used and if yes under
what conditions.

The paper is organized in eight Sections and an Appendix. Section 2 presents the fundamental relations. The
governing equations for the pre-buckling and post-buckling state are established in Section 3. Sections 4 and 5
provide formal solutions to pinned-pinned beams. Section 6 contains the most important computational results.
The effect of heterogeneity on the buckling load is demonstrated via an example in Section 7. The last section is a
conclusion in which a summary is given with an emphasis on the most important results.

2 Fundamental Relations
2.1 General Relations for the Pre-buckling State

At first we shall consider the fundamental relations for the curved beam in the coordinate system chosen for car-
rying out the necessary calculations and derivations. Figure |l| shows a part of the curved beam and the applied
curvilinear coordinate system, which is attached to the so-called E-weighted centerline (or centerline for

short) with constant initial radius p,. The local base is formed by
the unit vectors e¢ (tangent to the centerline), e,, (perpendicular
to the plane of the centerline) and e, (normal to the centerline).
As has already been mentioned in the previous section, the beam
has a cross-sectional inhomogeneity, i.e. the material parameters
— the Young’s modulus E' and the Poison’s number v — are func-
tions of the cross-sectional coordinates 7 and ( (that is they are
independent of &): E(n,() = E(-n,¢), v(n,¢) = v(—n,().
Otherwise the material of the beam is isotropic. The cross-
section of the curved beam is uniform and symmetric with re-
spect to the coordinate plane (&, ¢). The centerline along which
the coordinates £ = s are measured is assumed to remain in the
coordinate plane (&, (). In Figure the point in which the cen-
terline intersects the cross-section is denoted by C'. If the beam is heterogeneous this point does not coincide with
the geometrical center S of the cross-section. The position of the point C' can be obtained from the following
condition

Figure 1: The coordinate system

Qen:/AE(??,C)CdA:O, (1

which means that the F/-weighted first moment with respect to the axis 7 — this quantity is denoted by Q.,, and is
defined by the surface integral in the above equation — should vanish if the axis 7 passes through C. As regards
the kinematic relations we assume that the displacement vector at an arbitrary point of the cross-section prior to
buckling assumes the form

u=1u,+ %nCeg = wee¢ + (uo + wonC)ef ) 2



where u, = u,es +w,e¢ is the displacement vector of the centerline and ),,, is the rigid body rotation. As is well
known the latter can be expressed in terms of the displacements as

1 u, dw,

won:—i(uxV)koen Yle—g €y = oo s

3)

Observe that the above relation is valid in the linear theory only. When determining the axial strain ¢ we have to
use the Green-Lagrange strain tensor — Lagrangian description will be used throughout this paper — which consists
of two parts:

1
E=E*+EY, E*=_(uoV+Vou), EN:§(Vou)-(ro). (4)
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be the tensor of small rotations — validity of relations (3))2 3 follow from the kinematical hypotheses (2). We assume
that the tensor of small rotations is dominant in comparison to the linear strains
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Here ¢,¢ and €, are the linear and the nonlinear representations of the axial strain on the centerline, while &, is
the curvature.

We shall further assume that the elements of the second Piola-Kirchhoff stress tensor satisfy the inequality o¢ >
oy, 0¢c. Consequently o = E(n,()e¢ is the constitutive equation. With the knowledge of the stresses we can
determine the inner forces in the initial configuration. For the sake of further considerations, we shall introduce
three new quantities

Ap = Po A~ A=A
o /A Lo .0 /A E(n,¢)dA = A, (%)
_ Po 294 ~ 2 _
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Here A.p is referred to as the F-weighted reduced area, which is equal to the E-weighted area A, with a good
accuracy. The second quantity is denoted by I.r and is named as the E-weighted reduced moment of inertia. Its
value can be approximated by I.,, which is the E-weighted moment of inertia with respect to the axis 7. Finally
QR is the E-weighted reduced first moment.

Making use of Hooke’s law, the kinematic equations (7), (8), and utilizing then the notations introduced by equa-
tions (9) we get the axial force as

N = /EggdA /E dAsog—k/E < dA/<;0+/EdA Y2, =
Po ——
Aen=Ae Qer=—1en A

1 I I
= AeRf':oé + QeRHo + Ae§¢§n =~ Ae <€o£ + 2'4[]2”) - 7:/430 = Aeem - 7:"{0 . (10)
—_——

Em



As regards the bending moment, a similar line of thought yields
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We shall also change derivatives with respect to s to derivatives with respect to ¢ by using the following equation

dn(..)  1d™)
=g =" ez, (13)

This transformation is carried out everywhere without further remark. With the knowledge of the bending moment
one can check — see equation (A.T)) for details — that

N+% = Acep, . (14)
Po

2.2 General Relations for the Post-buckling State

As regards the post-buckling equilibrium state let us now introduce a new notational convention. Quantities de-
noted by an asterisk belong to the post-buckling equilibrium state, while the change (increment) between the pre-
and post-buckling equilibrium is denoted by a subscript ;. The change from the initial configuration to the pre-
buckling state is not denoted by any symbol. Following this rule of decomposition — a similar line of thought as
that applied in equations (3)-(8) — yields the increments in the kinematic relations. Presenting first formulae for
the rotation field and the change of curvature we can write

* Uob dwob « 1 duob deOb

wonzwon"_wontm wonb:;_ ds Ko = Ko + Kob Hob:g ds - ds? (15)

Based on equation (8) we can use the previous decompositions to obtain the strain increment
€ = 1+ < (505 +C"€o) + 9 (won) =&+ E¢os (16)

Po
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Observe that the rotational term quadratic in the increment has been neglected since we assume the applicability
of the inequality §¢2, , < Yontons.

After having set up the kinematical relations we shall proceed with the derivation of those formulae, which provide
the inner forces. Recalling equation valid for the pre-buckling axial force and making use of the kinematic

equations (13)y, (13)3, (T74); and we can write

1 I L.
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The increment in the axial force N}, can be manipulated into its final form if we utilize (I2); (15)4; (T72)2 and
— see equation (A.2)) for details —
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Due to the presence of the term &,,,;, this result is nonlinear. It can be checked with ease by recalling (TT) that
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is the bending moment. With regard to equations and it follows from that
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3 Governing Equations
3.1 Equilibrium Conditions for the Pre-buckling State

Figure [2] shows the centerline of the beam considered in the initial configuration (continuous line) as well as in
the pre-buckling equilibrium state (dashed line) assuming symmetrical conditions. The beam has rotationally
restrained pins at both ends with a torsional spring constant (k¢)[k.,] at the (left) [right] end. The pre-buckling
state is symmetric if the equality k., = k.. = k, holds - this is an assumption. The loading consists of the
distributed forces f = fiec + fre¢ and a concentrated force P — the former is exerted at the crown point. The
central angle of the beam is 2¢). For the pre-buckling state the principle of virtual work can be written as

/‘/05655 dV = _PC 5wo|5:0 - k’yfwon(swon's(_g) - k’yr’(/)onéwon|s(q9) + /L (fn(swo + ft5u0> ds . (22)

The principle of virtual work can be mani-
pulated in a form which makes it possible to
find the equilibrium conditions, the dynamic
boundary conditions as well as the continu-
ity and discontinuity conditions at the crown
point. Details are presented in Section [A.1.2]
With a regard to the arbitrariness of the virtual
quantities du,, 0w, and d1),, in equation
we have the following equilibrium equations

Figure 2: A curved beam

dN—f—l[W—(N—kﬁ/[)%n}—i—ft:O, d[dM (N+]:[>won}—;v+fn:0. (23)

ds Po | ds o ds | ds o

It also follows from (A.5) that boundary conditions can be imposed on the following quantities

Nly(20) or Uolg(1p) - (24a)
dM M
— — | N+ ) Yo } or Wo|, , (24b)
{ds ( Po ! s(£0) | (0)
(M £ kyton)l 5 19) or Yonls(29) - (24¢)

The discontinuity condition

dM M
o (e ) v

for the shear force should also be satisfied.

— P =0 25)

M M
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3.2 Equilibrium Equations in Terms of the Displacements

s=—

In the sequel we focus on the problem for which there is only a concentrated dead load P, exerted at the crown of
the beam, i.e., the distributed force components f,, and f; are equal to zero. It is our aim to express the equilibrium



equations in terms of the displacements. As for (23)); let us first substitute relation (I4) for the inner forces. We

get
d

1
& (Aegm) - E (Aegmz/]on) =0. (26)

It can be assumed with a good accuracy that the product €,,%,, — being quadratic in the displacements, see (3)

and (8) — can be neglected when it is compared to the first term. Accordingly, the pre-buckling equilibrium can be
expressed in the following form

dem  deoe _

ds — ds

Hence (depending on which theory is applied) the nonlinear/linear strain on the centerline is constant.

0 — &m ey = constant. 27

Some manipulations should be made on equation (23));. These are detailed in Section Here the final form
on which the stability investigations will be based is presented only

WO+ P+ )W + W =x> =1, X’ =1—mep. (28)

Observe that we have introduced a new notation W, = w,/p,, which is referred to as the dimensionless displace-
ment. For the sake of brevity we have also introduced a new variable .

Equation (28) can now be compared with what Bradford et al. have used in their series of articles published
recently on stability problems of shallow arches — e.g. |[Bradford et al.| (2002); |Pi et al.|(2008)). This equation is of
the form

W+ (¢ - WP = x> -1 (29)

— compare it with equation (14) in [Bradford et al.|(2002). The effects of our keeping the additional terms will be
evaluated later in Section [f] However we hope that more accurate results can be obtained by utilizing equation
(28) in the stability investigations of shallow curved beams.

3.3 Equilibrium Conditions after the Loss of Stability

The principle of virtual work for the buckled equilibrium configuration assumes the form
/ ogber AV = —PF dw| _o + P¢ dupl_g — migowy| g — miigduy|,_o—
v
R il gy = R 0 o)+ [ (il £00) s, B0)

where w and u* are the second time derivatives of the two displacements.

Here it is assumed that the stability loss is a dynamical process characterized by a mass m placed at the crown
point of the beam (where the concentrated force acts). In other words the effect of the mass distribution on the
centerline is modelled by the concentrated mass at the crown point. We have not made any restriction concerning
the behaviour of the load, that is, it can either be a dead one, or a follower one. However we shall assume a dead
load later. Apart from these changes coincides formally with (22).

After some manipulations, which are detailed in Section|A.1.3] it can be shown that the arbitrariness of the virtual
quantities yield the equations

dN, 1 dM, 1 M 1 M
—— 4 — "—<N+)wonb—(Nw”)%nwftb:o, (31a)
ds pPo ds Po Po Po Po

M, N, d
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o
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which describe the post-buckling equilibrium. Moreover
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are the discontinuity conditions at the crown point. It follows from (A.12)) that boundary conditions can be imposed
on the following quantities

Noly(r0) or Uob| (19 > (332)
dM, M + M, M,
{ q b _ <N + Ny + b) Yonb — <Nb + b) 1/107]] or U/ob|g(:|:19) ) (33b)
S o o s(£9)
(M £ kython b)|5(j:19) or wonb|s(i19) . (33c¢)

Observe that we have kept the nonlinear terms in the boundary conditions as well.

3.4 Post-buckling Equilibrium Equations in Terms of the Displacements

Assume now — as in Subsection— that there is only a dead load, the force P exerted at the crown of the beam,
and there is no concentrated mass m at its point of application: fn, = fi = Pcy, = Pcp = m = 0. Observe that
the structure of equilibrium equation (3Ta)) is very similar to that of (23);. The exception is the fourth term in
(3Ta) as it does not appear in the pre-buckling relation. However it can be neglected since that product is quadratic
in the increments. Therefore repeating the line of thought presented in Subsection [3.2] now for the increments, it
follows that (both for the nonlinear and for the linear models) the change in the axial strain is constant:

d 1 dey, de,
= (Acemp) — ; (Acemtonp) =0 = ils LN Z;b =0 —  Emp 2 Egep = constant . (34)
<

it can also be neglected

Section [A.1.3]is devoted to the detailed manipulations on equilibrium equation (31b). The resulting relation of
these follows from (A.20)

WD+ 62+ WD £ 32 W, = mems [1 - (W§2> + W)} , (35)
where W, = wep/p, 18 the dimensionless displacement increment.

If we recall equation (39) in|Bradford et al. (2002)) for the stability investigation of shallow circular arches then we
get with our notations

Wi+ (= WD = meg (1 — W(EQ)) . (36)

The differences are easily noticeable if we compare with (33).

4 Solution to the Pre-buckling State
4.1 General Solution

The differential equations that describe the equilibrium state of the beam prior to buckling are gathered in Section
[3.2]— we refer back to equations and (28). The general solution satisfying equation (28] set up for the dimen-
sionless normal displacement is sought separately on the left (W, ,) and on the right (W, ,) half beam (due to the
discontinuity in the shear force) in the forms

X2 -1 A A

WOT.Z72+A1cos<p+A2sin<p——;)cosxgo——;sinxgo, (37a)
X X X
21 B B
W(,g:X 3 +Blcos<p—|—Bgsin<p——§cosx<p——gsinxgo. (37b)
X X X
Here A; and B; (i = 1,...,4) are undetermined integration constants. These can be determined with the knowl-

edge of the boundary conditions.



4.2 Pinned-pinned Beam

Since the geometry, the loading, and the supports (k. , = k., = 0) are all symmetric it is obvious that the radial
displacement is an even function of the angle coordinate: W, (¢) = W,(—¢). Therefore it is sufficient to consider,
say, the right half of the beam. As regards the boundary conditions, the tangential displacement and the rotation
are zero, and there is a jump in the shear force with magnitude P, /2 if ¢ = 0. In addition the displacement and the
bending moment are also zero at the right end of the beam. The corresponding boundary conditions are gathered
in Table [T}

Table 1: Boundary conditions for the pinned beam

Boundary conditions Boundary conditions in terms of W, .
Crown point ‘ Right end Crown point ‘ Right end
(1) _ _
Yonl,_ g =0 Worl,_g =0 G Worlymg =0
_dM ﬂ} =0 M -0 LW _ P (2) -0
[ ds + P) =10 |LP:19 en¥Vor =10 D) or P

After substituting the solution W, ,. into the boundary conditions we get a system of linear equations

0 X 0 —1 Ay 0
X P 2
0 0 0 1 A2 xX2—-1790 PC po’l9
. 1 1. = 2 , P=——= (38)
cos ) sin ¢ -3z cos v sin Az —X 2 Iy
—cost¥ —sind cos sin Ay 6<
in which P is a dimensionless force. Observe that the solutions
1 tand P P 1 P P
Al=———— - ———— =4 Ajg— Ay = ——— = —
1 cosd  x2—10 1+ 1279 2 210 2279 9
1 X tan xy9 P P x P P
Az = — — —=A Asg—, Ay = = Agpp—
3 cos XU 217 31 + 3279 4 2—10 1275

are decomposed into the sum of two parts depending on whether these are in relation with the loading (A;2) or not
(A;1). Now the closed form solution for the full beam can be constructed if we introduce the function

-1 ¢<0

40
1 >0 “0)

H(w)Z{

by the use of which

21 A A A
X + Aqq coscpficosx(er Ajscosp 4+ Agg H sinp — ﬁcosxgaf ﬁHsinxgp L 41)
X X X x? v

W, =

is the radial displacement. With this in hand
_ () W _ A As1
Yoy =Up — Wy = =W = Aj1sinp — — sin xo+
X
A A P
+ <A12 sin — Agsg H cos p — 222 gin X + 2 Hcos X(p) — =
X X 0
. . . . P
= Dy sinp + D3j sin x¢ + (D12 sin ¢ + Dag cos ¢ + Dsg sin x + Dy cos x¢) 3 (42a)

is the rotation field. Here we have assumed and in the sequel we shall assume that the tangential displacement has
a negligible effect on the rotation field. The constants D;; 4, j € [1,2, 3, 4] are defined by

A A ApH
Dy =An, Dig=An, Dyp=-ApH, D3 = *%7 D3y = *%, Dyy = % . (42b)

It follows from the equilibrium equation (27) that the axial strain (8] is constant on the centerline. Let us calculate
the mathematical average of this quantity. We have



1 P
o = g | coclo)e = 19/ (080 +We, ) dp = /Wordso = o+ D - @)

The above equation is linear in P and is nonlinear in €, ¢ — see the definition of x under (28)2 — now e,¢ = &y,
We remark that the integrals I, and Iy, are presented in a closed form in Section Equation (43) can be
rearranged as

P
0
If we assume that the axial strain is given by (§))3 then the procedure leading to (43) results in

Lw— 4+ 1ow — Eog = 0. 44)

1[0 1 [? 1 P P P2
m = = m(o)dp = = e+ =102 Vdo = Ly + Liw— + I, Ly— + Iy | = 45
€ 19/05 (p)de 79/0 (55‘1‘2%”) @ thwg + Loy + Ly g + 2w<19> (45)
or

P\’ P
Iy (19> + (L + D) 5+ (Tow + Loy = €m) = 0. (46)

This is a more accurate relationship between the load and the axial strain. The new integrals I, , I and I5y, are
again gathered in closed forms in Section[A.1.6

At the same time we remark that the integrations can be carried out numerically by using the subroutine DQDAG
from the IMSL Library under the Fortran90 programming language. We have come to the conclusion that the
accuracy of this routine is more than sufficient for this problem with its maximum error being less than 10~ 7.

5 Solutions to the Post-buckling State
5.1 General Solutions

After substituting the pre-buckling solution (#I)) into the right side of equation (33)) we get
1—x? 1
W(Sg) +(1+ XZ)WO(S) + Wy = —ma,an;C (1—X2 + Ascos x¢ + Agsin X(p) . 47

Recalling that the post buckling axial strain on the E-weighted centerline is constant and can be calculated as

- % /_1 (U + Wot + Gomithon ) d = % /_1 (U8 4+ Wan+ (Uor = W5") (U = WD) ) ~

1

1
219/ (U +Wo + WPW ) i @8)

we can observe that (i) Yo, ~ — [Sl) is an odd function of ¢, consequently (ii) if W, is an odd function of ¢ then
the above integral vanishes, that is, €, is equal to zero. (iii) Otherwise — practically if W, is an even function ¢
— emp 1s equal to a constant. We remark that these observations are naturally valid for the case of homogeneous

beams as well — see for instance [Bradford et al.|(2002) and |Pi and Bradford! (2008]).

Consequently: (a) if &,,;, = constant # 0 we have to solve equation (33)) (or, which is the same, equation (7)), (b)
if ,,5 = 0 we have to solve equation

WS+ (1 AW + W, = 0. (49)

It is also important to mention that after buckling every physical quantity is continuous through the interval ¢ €
[—¥; VY] because there is no increment in the loading at ¢ = 0 — we have assumed that P, = 0.

The general solution to the inhomogeneous differential equation takes the form

m 2 .
Wop(p) = Cy cosp + Co sin p + Cs sin xp + Cy cos xp — m; ;b ( + Aszpsinyp — Agp cos Xgo) , C;eR
X X
(50
while the displacement satisfying differential equation (@9) is sought in the form
Wop(¢) = E1cosp + Easing + Essin xp + E4cos ¢ ; E, eR. (51

Here C; and E; are undetermined integration constants.



5.2 Pinned-pinned Beam

5.2.1 Antisymmetric and Symmetric Buckling

After the loss of stability the shape of a pinned-pinned curved beam can either be antisymmetric or symmetric
with respect to the angle coordinate . If the post-buckling shape is [antisymmetric](symmetric) then [e,,;, = 0]
(emp # 0). These two possibilities are shown in Figure [3] where a continuous line represents the centerline of
the beam in the initial configuration, the dashed line is the pre-buckling shape, while the dotted line is the buckled
shape of the centerline.

Figure 3: Antisymmetric and symmetric buckling shapes of pinned-pinned beams

5.2.2  Solutions to Antisymmetric Buckling

The boundary conditions in terms of the increments are gathered in Table

Table 2: Boundary conditions in terms of W, for pinned-pinned beams

Boundary conditions
Left end \ Right end
Wob (0) lp=—0 =0 | Wop (¢)]p=9 =0
2 2
Wéb)(ﬂﬁ)’ _ =0 Wéb)(w)h: =0

After substituting solution (51)) into the boundary conditions of Table 2] we arrive at a system of linear equations

cos 0 0 cos xv Ey 0
0 sin ¢ sin xv 0 Es5 0

cosd 0 0 x? cos xv Es | |0 | (52)
0 sing  x2sin v 0 By 0

which is obviously homogeneous. Nontrivial solution exists if the determinant of the coefficient matrix is zero. In
this way we get
D =(1-x)*(1+x)? sinx? cos x¥ cos® sint =0 . (53)

Recalling the relation x? = 1 — me,, we can come to the following conclusions: (a) if 1 — x = 0 then y = 1,
consequently €, = 0; (b) if 1 + x = 0 then x = —1 and so €, > 0; (c) if sin x = 0 then y = 7 /¥ and (d) if
cos x¥ = 0 then y = m/2¢. We remark that cases (a) and (b) have no physical sense. There belongs no bifurcation
buckling to solution (d) since then W, (¢) = E4 cos 55, it follows from [@8)) that €,,,;, # 0. This means that the
critical axial strain for bifurcation buckling is

1

S A ®(0)

2
1-— (19) 1 , where &) =m. (54)

1
m

If we now substitute solution (c) back into the equation system we can easily check that £y = Ey = E4 = 0.
Consequently, it follows from the general solution (51) that the shape of the beam is

. T
Was(ip) = Bssin 0. (55)
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This function is antisymmetric in terms of the angle coordinate .

Note that if we neglect the effect of the angle of rotation on the axial strain then we shall change the notation &,
to Eogp-

5.2.3 Solutions to Symmetric Buckling

For symmetric buckling &,,,, # 0. When solving the differential equation (7) it is clearly sufficient to consider a
half of the beam. For the right half of the beam the boundary conditions are presented in Table 3]

Table 3: Boundary conditions for the pinned-pinned beam assuming a symmetric buckling shape

Boundary conditions
Crown point | Right end
1
W (9)] =0 | Wo (@)oo = 0
Wy (w)‘ =0 | Wy (@)‘ =0
©=0 =29

Upon substitution of solution (50) into the boundary conditions we arrive at the following inhomogeneous system
of linear equations

0 —2y3 —2x* 0 Cy
0 —2x —2x* 0 Cy |
cos sin ¢ sin xv cos xt Cs |
2x2cos? 2x?sind  2x*sinyd 2x* cos x¥ Cy
Ay
3A,

= MEmp (56)

% (% + Az¥sin x — Ay cos Xﬁ) )
Az (x9sin x9 — 2 cos x) — Ay (2sin x¥ + 9x cos x)

which can be solved in a closed form — the solutions are presented in Section[A.1.7] where the decomposition of
these constants into two parts, one independent of P and the other depending linearly on P, are also shown — see

equations (A.30), (A31)), (A-32) and (A33) for details.

The solution to W, can now be given in terms of the new constants C‘ij as follows — see equations (A.32) for
further details —

Wob = €mp [(ém + C11 cos + Ciy cos xp + Cs1p8in X@) +
P - A . A . ~ ~ . A
+5 (Clg cos i + Coo H sin ¢ 4+ Cs9 H sin xp + Cya cos x + Csesin x¢ + CgaHp cos Xgp)] . (57)

With the knowledge of the radial displacement we can determine the rotation increment
— Yonb Wo(zf) = Emp [Ku sin ¢ + Ky1 sin xp + K1 cos xp+

. ) . P
+ (K12sinp + Ko cos ¢ + K33 cos xp + Ko sin xo + Ksa0 cos x + Keaxe sin x¢) 19} , (58)

where
Ky =-Ch, Ky = Cs1 — Carx, K51 = Crix, Kip = —Cla, Ky = CpoH

. ) . . . . (59
K3y = CoHx + CeoH | Kyo = Csp — Caax s Kso = Cs2, Ky = —CeoH

are the coefficients that have been introduced for the sake of brevity. If we neglect the effect of the tangential
displacement on the angle of rotation — this is an assumption — then equation (48] can be rewritten as

1Y (1) 17-(1)
Emb = 5 / (Wob +wOwl )d<p. (60)
0

11



If we now substitute @2)), (57) and (58) into equation (60) then, after performing the integrations, we get

2
1= {101 + Pfoz] + |11+ gflz + <7;> 113]

v

or what is the same

P\’ P
E (19) +[IO2+I12]5+[101+111_1]:05 lijeR. (61)

Here the constants Ip; and I, follow from the first integral in , while the coefficients 11, 112 and I3 are from
the second one. We can therefore remark that closed form solutions of the integrals are again possible. Some details
just to provide the validity of this statement are gathered in Subsection[A.1.8] However, within the framework of
this article it is not possible to list all the part integrals, which constitute 113, /12 and ;3 since their closed forms
are long expressions requiring a bunch of space, which is not available. We also remark that we used an IMSL
subroutine — its name is DQDAG — to compute the value of the integrals in question when we determined the critical
load.

6 Computational Results
6.1 Pinned-pinned Beam

As it has already been mentioned that pinned-pinned circular beams can buckle in an antisymmetric mode (with
no strain increment) and also in a symmetric mode (given that the length of the centerline changes during the
phenomenon). Our aim is to compare the outcomes of our model to those derived in [Bradford et al.| (2002).
Since the present model keeps some terms the cited authors have neglected, we expect improved results for the
critical loads and an extended range of applicability with regard to the central angle of the beam. The results of
Bradford et al.[(2002) — in a comparison with finite element calculations — seem to be fairly accurate as long as
¥ < 7/4. However, we are evaluating the cited model for greater central angles as well to make the differences
more spectacular. To facilitate the evaluation process — following the footsteps of Bradford et al. — let us introduce

the parameter
A p?
A= /%%92 = Vmd?, (62)
en

which is referred to as the modified slenderness ratio of the beam.

Altogether we can distinguish four different intervals regarding the stability of pinned-pinned shallow beams.
The endpoint of each interval is a function of the parameter m as A = A(m). For the most shallow beams
(which behave like columns) there is no loss of stability, i.e. such structural members act as straight beams loaded
transversally. With X increasing emerges the possibility of symmetric (or limit point or snap-through) buckling:
Wop(p) = Wep(—¢). After that both symmetric and antisymmetric (or bifurcation) buckling might occur but
meanwhile in the third notable interval the symmetric shape governs, in the fourth one (with even greater values of
A) antisymmetric buckling is the dominant type. Based on what has been mentioned, in Table 4] we have collected
the typical ranges (with limits rounded to two decimal numbers) for four different magnitudes of the parameter m
in terms of A.
Table 4: Buckling modes of pinned-pinned beams

m
1000 10000 100 000 1000000
A < 3.80 A < 3.87 A< 3.89 A < 3.90 no buckling
380 <A<T90 387T<A<T796 389<A<797 390<A<7.97 limit point only
790 < A <968 796 <A<10.06 7.97<A<10.18 7.97< X< 10.23  bifurcation point after limit point
A > 9.68 A > 10.05 A > 10.18 A >10.23 bifurcation point before limit point

The approximative polynomials defining the boundaries of all these intervals are presented in the forthcoming and
are compared to those achieved by Bradford et al. The results of them do not depend on the parameter m. The
lower limit for antisymmetric buckling is obtained from the condition that the slenderness must be real, i.e. by

12



setting the discriminant of (46) to zero when x1) = m, therefore

7.9756 + 5.4 -107"m — 2.15/m""® if m € [1000;10000]
A(m) =4 7.9714 4 1.33-10"%m — 118.14/m — 6.636 - 10~ m? if m € [10000; 1000 000]
7.96 by [Bradford et al.|(2002)) p. 714.

The difference to the previous model is significant if m is small, otherwise they almost coincide when m > 5 000.

Proceeding with the lower limit of symmetric buckling we can write the approximative polynomial as
3.9031 4+ 8.14 - 10~ 8m — 3.05/m°5 if m € [1000; 10 000]

11.3-10° 357
Alm) = § —=5— — =— +3.897471 +9.1725 - 10" m — 5.295 - 10> m? if m € [10000; 1 000 000]
m m
3.91 by Bradford et al.
It is again close to that achieved by Bradford et al. when m > 3 000, and it turns out that the limit value is actually

the same.

For pinned-pinned shallow curved beams there is an intersection point of the symmetric and antisymmetric buck-
ling curves. At this point the critical load for symmetric and antisymmetric buckling coincide, i.e., there is a switch
between limit point and bifurcation buckling. The equation of the fitting curve is

—271/m 4+ 9.923 +2.84-10°m — 1.2 - 10~ m? if m € [1000;10000]
7.162-105 2144

A(m) = —— — —— +10.2003+7.7- 1078 m — 4.549 - 10~ m? if m € [10000; 1000 000]
9.8 by Bradford et al.

The limit value of our solution is A =& 10.2 if m is sufficiently great, and this is again close but different by 4%
from the limit of the earlier model.

6.1.1 Antisymmetric Loss of Stability

Pinned-pinned shallow beams may buckle in an antisymmetric (bifurcation) mode for which there is no strain
increment. The loss of stability occurs when the strain reaches the lowest critical strain level, which is y© = .
Substituting it into the pre-buckling equilibrium equation we can solve it for the dimensionless critical load.
The numerical results are presented graphically in Figure [] for four different magnitudes of m. Our results are

P
6
—F KK P e S e e =
5.5 )F/ o© s QS: j/ij'-* * 4—-*"\;' .
o o
d AF V‘/ YYYY VT ¥ g *\
51 )I 4 v/ 5 *
/ 14 .
4.5 ¢ ¥ 3
A
4 9’ -! v N
; / /
) : v
35 ° { " *  New model, m =1 000 000
3 ! | o o  New model, m = 100 000
[ '," Y +  New model, m = 10 000
95 b | h ¥  New model, m =1 000
9 ° T v Bradford et al., m =1 000 000
9 ! l il Bradford et al., m = 100 000
) | J — — — Bradford et al., m = 10 000
+ A — Bradford et al., m =1 000
1.5+ x © ! — —— Bradford et al. if 3 = /4
1 | | .
0 0.2 0.4 0.6 0.8 1 1.2 14

Figure 4: Antisymmetric dimensionless buckling load against the semi-vertex angle
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------ Linearized model, m = 100 000
v Linearized model, m = 10 000
24 T 0 E e Linearized model, m = 1 000
v
1 T T T T T
0 0.6 0.8 1 1.2 1.4 9

Figure 5: Antisymmetric buckling load — nonlinear versus linearized model

compared to those of Bradford et al.[(2002). It can clearly be seen that for any fixed parameter m the two models
yield similar results around the lower limit of antisymmetric buckling. It is also visible that the limit values for the
two models are not functions of m. That is the reason why we have drawn only the asterisk symbols throughout
the plotted interval. The maximum difference is at most about 4.7% from each other if ¥ = 7/4 (so the beam is
still shallow) and it is approximately 14% if # = 1.4 (the beam is not shallow). What is of more importance is that
the new model yields quite the same or lower buckling loads — i.e. the earlier model generally overestimates a bit
the load such structural members can bear.

We have to mention that in [Bradford et al.| (2002) a formula is published — see equation (59) in the paper cited —
which approximates the critical load if ¢ > 7 /4. It turns out to be a function of the central angle only. In their
article Bradford et al. mention that it coincides well with finite element calculations for any investigated value
of m. We have also plotted this relation in Figure d] Compared to our model it yields greater critical loads if
¥ € [0.78;1.23]. After the intersection point at ¥ = 1.23 this tendency changes and at the right end of the interval
the difference reaches up to 15%. We must however mention that it is not clear how and under what assumptions
Bradford et al. have obtained this polynomial.

The curves shown for the critical load in Figure[d]— antisymmetric stability loss — can be approximated with a good
accuracy by the following functions:

0.850 + 5.615 — 1.66 - 107° /9% — 1.321 - 107*2/9*° if 4 € [0.09;0.2]
P(m = 1000000,9) = ) ) . 3a)
—0.0042/9? + 5.85 — 0.459 if 9 €[0.21;1.5]
—1.5-107%/9® +5.13 + 1.629 if o €[0.158;0.34]
P(m = 100000, 9) = ) , (63b)
—0.061/9 + 5.93 — 0.48 9 if 9 €[0.341;1.5]
—7.5-1077/912 —1.96/9°° +8.33 if o € [0.281;0.465
P(m = 10000, 0) = / / ' [ ] (63¢)
—0.64/9 + 7.55 — 1.539 if ¥ €[0.466;1.5]
—7.6-107°/9'® — 3.44/9°° + 9.24 if € [0.498;0.75]
P(m =1 000, 19) = 0.5 —4 15
—3.15360 + 13.8884 — 5.424/9%5 — 4.034 - 1074 /915 if ¥ €[0.76;1.5] .
(63d)

It might be interesting to check what results the model that is linear in P returns for the critical load. Since the
critical strain x© =  is still valid for this case, upon substituting it into the linearized and averaged strain
we can carry out the evaluation. As can be seen from Figure [5the buckling limits are different and the linearized
model generally overestimates the buckling load. The difference is always less than 8% when it is compared to the
nonlinear model and it decreases as ¢ increases.
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6.1.2 Symmetric Buckling and FEM Verifications

A symmetric buckling shape can only occur with a strain increment different from zero. This problem is a little
more difficult than the previous one since we are neither aware of the critical axial strain €, (or what is the same
the critical x) nor of the critical load P. Equation (61I) for the post-buckling state is valid only for symmetric
buckling while the pre-buckling relation (6] always holds. Consequently, these two nonlinear equations should

be solved together to get the two unknowns.

P
4.5+
* o
4+ * o ++ v
Q ' M
o j v/
3.5 o L v,
Q + v.
Q +/ A\
3 N Y v
9 + v/
Q +/ v.
Q /
257 9 j/ e % New model, m = 1 000 000
é,’ Y v/ o New model, m = 100 000
9] 9 J v + New model, m = 10 000
g ¥ ’Y v New model, m = 1 000
S J v’ Bradford et al., m = 1 000 000
1.5 ] + vY o e Bradford et al., m = 100 000
— — — Bradford et al., m = 10 000
----- - Bradford et al., m = 1 000
1+ T T T 9
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 6: Symmetric buckling load against the semi-vertex angle

Results between the lower and upper endpoints of the corresponding intervals, in which a symmetric buckling
shape governs, are shown in Figure [6] It is clear that if m is sufficiently great there is hardly any noticeable

difference between the two models (except the endpoints). However, if m = 1 000 the maximum difference is up
to 10%, which is substantial as the length of this interval is only ~ 0.22 in . It is interesting to remark that this

time the more accurate model always predicts greater critical loads.

Here we present the approximative functions for the symmetric buckling load of pinned-pinned beams. These are
valid till the intersection point of the symmetric and antisymmetric buckling curves is reached

0.546/9 — 16.8 + 1549 if m = 1000000
0.98/9 — 16.98 + 87.4¢ if m = 100000
P(m,d) = i (64)
1.8/9 — 1753 +50.49 if m = 10000
3.4/9 — 18.8 + 30.29 if m=1000.

It would be again possible to compare the former results to those available via the linearized model governed by
relations (@3] and (A.38). This simplified model however yields such critical loads, which are considerably greater
than the more accurate ones. Therefore it makes no sense to compare them numerically.

Some control computations were carried out for the in-plane symmetric snap-through buckling of curved beams
using the commercial finite element softwares Abaqus 6.7. and ADINA 8.9. The cross-section considered is
rectangular with 0.01 [m] width and 0.005 [m] height and the Young’s modulus is 2 x 10! [Pa]. In Abaqus we
have used B22 elements and the Static,Riks step. In ADINA 2-node beam elements and Collapse Analysis have

been applied. All the numerical results are gathered in Table [5] Our results coincide with or are very close to
those of Abaqus and ADINA and are more accurate in this comparison than the results published in Bradford et al.

(2002).

15



Table 5: Comparison with FE calculations — symmetric shape

m A PNew model PBTCLdfOTd etal. PAbaqus PADINA
1000 4.56 1.63 1.62 1.68 1.7
1000 5.84 2.09 2.02 2.11 2.12
1 000 7.76 3.03 2.8 2.97 3
1000 8.72 3.55 3.28 3.43 3.49
1 000 9.36 3.87 3.62 3.72 3.82

1000 000 4.48 1.66 1.6 1.66 1.66
1000000 5.44 1.95 1.88 1.95 1.95
1000 000 7.36 2.77 2.62 2.77 2.77
1000000 9.6 3.86 3.76 3.87 3.86

A few control calculations for the antisymmetric buckling load were also performed under Abaqus. We have used
the same cross-section, material, element type and step as before. Initial geometric imperfections were introduced
to the model via the first antisymmetric buckling mode of the beams, obtained from the Linear perturbation, Buckle
step. All the corresponding data are collected in Table[6] We can conclude that our model and that of Abaqus show
a good correlation for the tested beams. The new model generally allows lower loads, but the difference is always
below 6, 5%, even when A is greater.

Table 6: Comparison with FE calculations — antisymmetric shape

m A PNew model PBTadford et. al PAbaqus imperfection

1 000 487.38 5.11 5.18 5.19 1.275-10~%
1000 1096.62 5.28 5.70 5.46 1.912-107*
1000 1713.47 5.05 5.78 5.40 5.73-107%
1000000 121.85 5.76 5.82 5.82 1.975-107°
1000000 761.54 5.49 5.83 5.61 3.686 - 1073
1000000 1492.63 5.17 5.83 5.38 1.85-1072

6.1.3 Load-crown Point Displacement Curves

P 3- A = 3.5, m = 100 000 P 3-—— A=6.6,m = 100000 —
2.5+ 2.5
e 2
15 / —— New model |, -
.0 1.5 4
** =+ Abaqus
11 14
0.5 0.5
0 :  Woc 0 - Woc
0 0.5 1 1.5 2 0 0.5 1 1.5 2
¢ Antisymmetric buckling
O Symmetric buckling
P4 A=838, m = 100 000 P 5- A =111, m = 100 000
3 H
34
94
924
14
14
0 T T T Woc 0 T 1 Woc
0 0.5 1 L5 2 0 0.5 1 1.5 2

Figure 7: Dimensionless load versus displacement of the crown point

Choosing m = 100000 we have drawn the primary equilibrium paths for four different values of A, or what is
the same, four different semi-vertex angles were picked. The reason is that there belongs a different path type to
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each geometry. In Figure [7] the dimensionless concentrated force P is plotted against the dimensionless vertical
displacement W, at the crown point. The former quantity is obtained upon dividing the displacement by the
initial rise of the curved beam so that

W, =0

Woe = —— .
© (1 — cos®)

(65)

If A = 3.5 (¢ >~ 0.105) the slope of the corresponding curve is positive for any P > 0 and so there is no buckling.
When A is 6.6 (9 ~ 0.144) symmetric limit point buckling occurs at P ~ 2.4. The condition of finding this
point is OP/0W,c = 0. If A = 8.8 (¥ ~ 0.166) it can be seen that a bifurcation point appears but on the
descending branch of the deflection curve. Thus the critical behavior is still represented by the limit point. Finally,
for A = 11.1 (9 ~ 0.187) shortly before the limit point there is a bifurcation point, so we expect an antisymmetric
buckled shape. The bifurcation and limit points coincide when A\ ~ 10.18 (9 >~ 0.179). The results are almost
identical with those obtained by Abaqus.

Figure shows how the dimensionless load varies with the ratio &,, /&, ¢r, o When m = 100 000. Here &, ¢y, o 18
the critical strain for antisymmetric buckling. For A = 3.5 there are two different values of P, which only occur
once for any &,,. The strain ratio is always less than the critical value. When ) is 6.6 starting from the origin we
can see a point in which, 9P /0(em /€m, era) = 0, so the tangent is zero. To this point belongs symmetric snap-
through buckling. The critical antisymmetric strain is, however, out of reach. When A\ = 8.8 we experience that
the path crosses the critical antisymmetric strain, but before that there is a limit point so the latter one dominates.
Finally, for A = 11.1 the bifurcation point comes prior to the limit point and, thus, antisymmetric buckling shape
is expected. It is also worth pointing out that independently of A one branch always starts from the origin while
the other one commences somewhere between P(A) ~ 2.9...3.1. At the point where P ~ 7/2 and 9 ~ 0.248,
the branches intersect each other.

P m = 100 000
5.0
W T =35
0N NN = A=6.6
2.0+ — — 1=8.8
1.0 A=11.1
0.0
gm/gm,cr,u
-1.0
-2.04 ¢ Antisymmetric buckling
0 Symmetric buckling

-3.0

Figure 8: Dimensionless load — strain graphs

7 The Effect of Heterogeneity on the Buckling Load

In this section we would like to demonstrate how heterogeneity affects the buckling load of bilayered beams with
rectangular cross-section, given that the overall geometry remains unchanged. As can be seen in Figure [9] the
upper layer has a Young’s modulus of E; and a height of y. The height is a parameter — it varies in the interval
[0,0]. When y = 0, the beam is homogeneous with a Young’s modulus of F5 and a heterogeneity parameter mo.
If y = b, the homogeneous cross-section has a Young’s modulus E; and a heterogeneity parameter m;. For any
other (and obviously heterogeneous) distributions, this time, we use the notation mio. Making use of equations
(©a), and (T2)), we can plot the fraction mj2/mo — which is a function of Fy/FE; only if y is fixed — against
y/b. Some results are shown in Figure
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Figure 10: The effects of y on the inhomogeneity parameter m

We now present some simple numerical examples to find out the influence of the heterogeneity on the antisym-
metric buckling load. We chose antisymmetric buckling, because it is the dominant mode for the majority of
pinned-pinned beams. Let Eo/E; be 4. Then the quotient m 12 /moy has a maximum at y = 0.383, that is ~ 1.4324
— we refer back to Figure[T0]

Further, let mo be 1000 — we remark that mo belongs to the homogeneous beam. Given that the geometry of the
beam is unchanged (except for the height of the layers), the maximum of m2 due to the heterogeneity is 1432.4.
We now evaluate how the critical load depends on the heterogeneity according to the nonlinear theory. We have
chosen two distant semi-vertex angles (0.55 and 1.2) to briefly demonstrate the effects of ). These are close to the
endpoints of the corresponding curve in Figure [ and, therefore, might illustrate well the range in which the load
can vary.

For both semi-vertex angles we find that the heterogeneity has a massive effect on the critical load — see Figure[TT]
in which, P¢yom is the critical load of homogeneous cross-section, and P 1,e¢ denotes that of the heterogeneous
bilayered cross-section. We can conclude that the greater the heterogeneity is, the greater its effect on the buckling
load is. At the maximum of mq3/mo, that is, at 1.432, the critical load has a minimum: it decreases to the
(52...58)% of the critical load valid for homogeneous beams with the investigated central angles.
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Figure 11: The effect of heterogeneity to the critical load when mgs = 1000

We have also checked the case when ms is 1 000 000. We picked ¥ = 0.1 and 1.2, for the same reason as before.
Compared to the previous geometries, very similar computational results were obtained. These are provided in

Figure[12]

P 14 \
P hom 0.95 N —————————————— —m 9=0.1
. \\ — = 9=12
0.85 S
0.8 S~
0.75 s

d m12

05 T T T T T 1 m2

T T T
1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.43

Figure 12: The effect of heterogeneity to the critical load when my = 1 000 000

The latter two figures illustrate well how huge impact heterogeneity on the admissible load of pinned-pinned curved
beams can have.

8 Concluding Remarks

Under the assumption of cross-sectional inhomogeneity we have derived differential equations both for the pre-
buckling radial displacements — see equation (28] — and for the post-buckling radial displacements — see equation
(33) for symmetric buckling and equation @9) for asymmetric buckling. The cross-sectional inhomogeneity is
implied in these equations via the parameter ;, i.e., via the parameter m — compare equations (9), (IZ) and (28)s.
We remark that equations (28) and (33)) are more accurate than equations (29) and (36) solved by Bradford et al.
(2002). Though we neglected the effect of the tangential displacement on the angle of rotation — paper by Bradford
et al.| (2002) also makes this assumption — we had expected, with a regard to the more accurate problem (formu-
lation) set up that the results for the critical load would be more accurate than those published in [Bradford et al.
(2002) and we also hoped that they would be valid for greater central angles.

According to the computational results, there are four intervals in which (a) there is no buckling, (b) limit point
buckling occurs, (c) there is a bifurcation point after the limit point, (d) the bifurcation point precedes the limit
point. The endpoints of these intervals are not constant but depend on A. The difference with respect to the
previous model is considerable if m is small, otherwise the endpoints almost coincide with those published by
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Bradford et al.|(2002)) if 1 > 5 000.

If the buckling is antisymmetric then for (a) m = 1000 and ¢ € (0.7,1.4), (b) m = 10000 and ¢ € (0.47,1.4),
(c) m = 100000 and ¥ € (0.4,1.4), (d) m = 1000000 and ¥ € (0.3,1.4) our results are different from those
published in [Bradford et al.[(2002) — see Figure |4{ for details. The greater 1 is the greater the difference is. The
maximum difference is about 14% if ¥ = 1.4 . We also remark that the new model yields the same or lower
buckling loads —i.e. the earlier model generally overestimates a bit the load such structural members can bear.

It is worth mentioning that the model linearized in P provides similar results, which are, in general, greater than
the results of the nonlinear model — see Figure 5] for a comparison.

If the buckling is symmetric then — as can bee seen from Figure [6] - our results are closer to those published by
Bradford at al. If m = 1 000 the maximum difference is up to 10%, which is substantial as the size of this interval
is only ~ 0.22 in 9. It is also interesting to remark again that this time the more accurate model always predicts
greater permissible loads.

Figures[TT|and[I2]illustrate well how great effect heterogeneity can have on the critical load of bilayered rectangular
cross-sections.

More accurate models. In what follows we mention two possibilities.
(i) First we remind the reader of the fact that we have neglected the last term in the equilibrium equation

AN, | 1dM, 1 M
==L = =[N+ = )thops =0 (66)
ds Po ds Po Do

A

— for the sake of a comparison see equation that follows from (31a). It is also worth mentioning that the
negligence mentioned is generally accepted in the literature. In what follows we shall keep this term.

If we recall equation (31b) in which we neglect the terms quadratic in the increments (f,,;, = 0 for our problem)
and assume here and in what follows that A.e,,, is constant, then we have

d2M, N, MY by M, \ de d M,

M N (o 2L Wone (o M) Do D (y —0. 67

i e () S (e ) T v (e 52 0
Aecem AecEmp AeEmp

Substitute the derivative dNy,/ds + dM;/(pods) from equation into the last term on the left side of this
equation and ignore the resulting cubic term. If we derive the equation obtained in this way with respect to s we
get

d3 M, dnN, MY A2, M\ d2y, dv,, d M,
Podsgb_dsb_p0<N+p) (;/;27717_/)0<Nb+pb) dfzn"‘po gsn(LS(Nb'Fb) =0. (68)

Acem AcEmp Acemp

The last term on the left side is again a cubic one therefore it can be neglected — the reasoning is the same as before.
If we drop this term and add the result

dsMb dNb —p < M> d2¢m]b
o

—_ = N+ — =0 69
Po™qs3 ds + po ) ds? ©9)

AceEm AecEmp

Mb d2 1;[}07]
ds?

_po(Nb+

o

to equation (66) then we have

M, 1dM, 1 M M\ 2o My d2%

ot — — — [N+ = )tbonp — po| N+ — UL Al % —0. (70

p d53 + po dS ,0(; + po ’(/} 7]b p + po d52 p b + po d52 ( )
——— ——— ————

Acem Acem Acemb

For antisymmetric buckling we can assume that €,,,, >~ €o¢t = U, 0(;) + Wy, = 0. Utilizing now the kinematic
equation (I3) for ¢),,, and Hooke’s law (20) for M;, we get

(U + UG )+ = mem) (U5 + UD )+ zmem, (U5 +Un) =0 1=mem =2, 82 = —mem (71)
1+82 B?
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The differential equation is associated with homogeneous boundary conditions, which together define an
eigenvalue problem with ¢, as the eigenvalue. This eigenvalue problem can be solved either semi-analytically
taking into account that

1 1 & &
Uy =E1cosp+Exsingp+E3 (2<psin<p + cos (p) —&4 <2<pcos<p — sin<p> + 1 —562 cos B+ # sin B
(72)
(the undetermined integration constants are denoted by &;, ¢ = 1,...,6) or numerically by following the pro-

cedure applied in the paper by Burmeister| (2013)) for the stability investigations of shell-stiffened circular plates.
With the knowledge of the eigenvalue ¢,,, = &,,, (¢) the critical load can be computed from equation (46).

(ii) One can also assume that the rotation of the cross-sections is finite. This affects the kinematic hypotheses. Un-
der this assumption one can also set up either a linearized model or a quadratic one for the buckling phenomenon.
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A.1 Detailed Manipulations

A.1.1 Formula for the Axial Force

Making use of the kinematic relations (8)) and inequality we can transform equation into the form

due Wo 15 Iy d dw, Uo
N:Ae - a 7 T — - =
<d8+po+2¢°’>+po dS(ds po>

€m

Iy [(Acp? 1) () 1 o (Acpl Ieq
- {(?71 (uo +wo)+wo |+ Ui (T 1+1) 2 =

%Aepg/fen—l

Ien Aep2 1 (1) 1 2 1. (2)
= —=re _1 — ( o o) S Yo 2 ( o o) =
2 (Ie'q s Uy’ +w +2¢":—p2 wy +w,

Em —M/po

2
= Len LEPO —1)em— M ~ AcEm — M . (A
2
po Ien o pO

A similar line of thought for the increment N;, — see equation (18] — results in

1 I I 1
Ny = A (&.gb + YonWonb + 5Pay b) + = (wgi) — uﬁ?) + L wop — S wep, =
2 Po Po Po
]577 Aepz Aepg 1 2 Ie'q (2)
= pg |:( Ien -1 Eo{b"_ [E,] d}onwonb + 51/]07717 + p% ('U)Ob +wob) ~

Iey ((Acpl 1 I I, I,
5 (32 o oot S ) B

(wﬁ)erob). (A2)

A.1.2 Transformation of the Principle of Virtual Work — Pre-buckling State

Substituting the corresponding kinematical quantities from (3)-(8) into the principle of virtual work (22)) and taking the relation

dV = <1 + i) dsdA (A.3)

Po

(which provides the infinitesimal volume element) into account the left side of the principle can be rewritten as

/Vagasgdvz/[:A<1+;i)ag

dAds =

1 ddu, =~ dw, ddrpor,
C( U n w, +<L
1—|—Z ds

L B
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ddu, = dw, ddv, ¢ ou,  dow,
= A A 14+ = A, — =
/g{/AU{d (ds " p0>+ACU§d ds +/A( +po)agd w"(/)o ds >}d8
:/ {N <d5uo n éwo) +Md(51/Jo,, . (N-I— %) o (5uo B déwo)] ds, (Ad)
r ds Po ds Do Do ds

where formulae (T0)-(T2)) for the inner forces have also been utilized. Apply now the integration by parts theorem and make
the result obtained equal to the right side of (22). After some rearrangement we get

dN  1dM 1 M 2M N d M
- - - 5 _ - — N - O o - - - = 3 N - [ n o -
/g<ds+pods po< +po)¢"+ft>%ds /g<d82 Po dS( +po>w"+f>&Uds
dM M dM M
- |: - <N + 7) 1/]07]:| (51,00 + [ - (N + i> won:| 611}0
ds Po s(=0) ds Po

dM M dM M
+{ [@ B (“ z) M o [K B (“ z) M ‘P<} Dwelsm

- N5Uo|s<ﬂ9> + N(Su"ls('ﬁ) + (M + k’Y’“wOU”s(ﬁ) 51/Jon|s<79> - (M- kvflpon)'s(—ﬁ) 5¢on|s<ﬂ9> =0. (AS)

+
s(9)

Observe that [|s=—0](|s=+0) denote the [left](right) side limit of the expression preceding the symbol |.

A.1.3 Transformation of the Principle of Virtual Work — Post-buckling State

First resolve the quantities denoted by an asterisk in (30) into two parts — we should apply the resolutions presented in the
first paragraph of Subsection[2.2] Then take into account that the kinematical quantities in the pre-buckling state are known,
consequently, there belong no virtual quantities to them. Recalling formulae (T3); and (T6) for the virtual rotation and strain

we can write
Ouop,  dowop

Po ds

61/};7 = 61/10771) = (A.6)

and

* 1
565 =0 (ec+eep) =0eep = 5 (00t b + CKob) + Yon 0oy b + Yon b6thons =
Po ¥

14
56?’17
55£b
1 d5uob 5wob dd onb
= 1 T < ( ds + o + C fsn ) + 'l/}ondwonb + 1/107;1:511)07,5 . (A7)
2 §sévb
sek

£b

On the basis of all that has been said we can rewrite the principle of virtual work @) into the form
N L N
0= —/ Ug(SEgde — / U§b565bdv — / ng(SEéde — P(b 6w0b|s:0 =+ Pgb 6u0b|8:0 —
v v v

— mwob6w0b|5:0 - maobéuoblszo - k'yl¢on b6wonb|s(,19) - k'y r"pon b5¢onb‘5<19) +/ (fnb(swob + ftbéuo b) ds.
L
(A.8)

Observe that the three integrals require further manipulations based on the integration by parts theorem as detailed in the sequel

/ oedeg,dV = / / (1 + i) oedegydAds :/ <N+ %> Yon b (M‘)b - d5w0b> ds =
\% cJa Po c Po Po ds

1 M d M M
= / - (N + *> won bduobds +/ |:* (N + 7) ¢on b:| 5wobd3 - (N + 7) wonb 57-006‘3:0 +
Lz Po Po c Lds Po Po

M M
+ (N + 7) /l/)on bawob - (N + 7) won bdwob
Po s(—9) Po

(A.9)

s(9)

Furthermore

/0555€£bdvz// (1+£)U§b
\% £JA Po

:/ N, dduep n dWop n Mbi OUob _ ddwep (N M, Do OUob _ ddwep ds —
r ds Po ds Po ds Do Po ds

dN,
= —/ 7(1 béuobds - Nb(suobls(,ﬁ) + [Nb|s:70 - Nb's:JrO] 6u0b‘s:0 + NbéuOb‘“ﬁ) +
C S

dAds =

1 d(5 o (5 o d(s o
S ( i “ob C ’(/) nb
—+ 70

ds Po ds ) +Wondtono
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1 dM, d®M
/ 25w,y ds — / 77;5%“15 / =5t 0wopds + My0tbons|, gy — Mbdtbons|
dM, dM, dM, dM,
- d b(swob + d b - d b 6wob‘5:0 + d b(stb +
s s(—9) S ls=—o0 S ls=+0 o 5(9)
d M, ()
(Nb + ) d)on} dwopds — (Nb + , ) PondWob (A.10)
o s(=9)

1d M,
+ / (Nb + b) won(suobds + / [
P clds

po ds
The third integral is formally the same as the first one if we change o¢ to o¢ s, therefore

>"¢)mlb (5uob _ d5w0b> ds =
p ds

o

/ oedetydV = / / (1 + £) oepdefydAds = / (
\% Po r
1 M, d M,
/ ( b> wo’q b(suobds +/ [dS <Nb + ) won b:| 5wobd3 - (Nb + ) ¢onb 6wob‘5 0 +
M,
( ) d)on béwob
s(=9)

Po
As a summary of these manipulations the principle of virtual work that is equation (30) can be rewritten in a final form as

dM,
b <Nb + 7) Yon b:| + ftb) 0o pds—

dNy 1 M 1
A G R ke G

M + M,
g) wonb + ( ) won:| + fnb) (5U}0bd$—

(A.11)

s(9)

My
) won bawob

d*M, N, d
AG (G R
dM, M + M, M,
- > - N+Nb+g d}onb* Nb+7 'l/)on dWob +
ds po s(=9)
dM, M + M,
+ i R N+ Ny + + b 1,[)01713_ Nb"’_i wD’U éw‘)b +
ds o (9
dM, M + M,
+{[ b—<N+Nb+7+ b)wm,b—<Nb+ )w,} -
ds Po s5=—0
MJr M, d2
71)) wonb* (Nb+7> ”l/)on:| 7+0+m W O} 5w0b|s:07

Po

ds
d2
— Nyouo| —o) T |:Nb|s:70_N|s yot Pep+m a© .
(Mb - k’«/ﬂ/)on b)|s(779> 51/Jonb|s(779) =0

dM
- {—” - (N+Nb+
:| 5uob|5:0+ Nbéuobls(ﬁ)‘f'

+ (Mb + k’yrwon b)lﬂ 61/]07]1)'5(19) (Alz)

A.1.4 Pre-buckling Equilibrium in Terms of the Displacements

It follows from equation (23)- that
d*M

o N

a2 Vg ( +

Substitute here now equations (I2) and (T4), which give the inner forces in terms of the displacements. The first and third terms
require no further manipulations at this point. The second one, however, vanishes — compare (I4) and (Z7). As for the fourth

dd)on_ﬁ_o
ds Po

o) (v

Po

one some transformations need to be carried out as detailed here
2
M I I 2
en m+%(()+w).
o

N A . M ey Acp, . -
_——=— _—— = _— _— = m
po o P3P Ly " P2 PR
Consequently, the equilibrium condition can now be rewritten as
Iy Acp? °) e I
n 2P ey — Jmsm - (wf) + wo) =0.
I Po

Iey ( (1) (2))
—_ 1! wo +w0 _ 1
Iz P ey

(A.13)

Multiplying this formula with —p3 /I, we have
( 5,4) + w£2)) + pomem ( ((,? + 1) + (wf) + wo) =0.

If we substitute 1),,, from (3) and ul" from ( 1 into the expression poem (1 + 1/)((,1,)) and utilize 3 then we arrive at the

following result (the quadratic term is neglected when that is compared to the others)
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1 1 1
PoEm (1 + %i,)) = PoEm [1 + p— (uf,l) — wff))] = Po€Em [1 + ; (poam — Wo — §¢Snpo — wf))}

R poem(l+em) — €m (wo +w( >) R PoEm — Em ( ) —l—wo) . (A14)

~1

Upon substitution of the above equation into (A-13) we have that the pre-buckling displacement w, should satisfy the differen-
tial equation

wi + 20 + we — mem (w£2> - wo) = —Mpocm . (A.15)

A.1.5 Post-buckling Equilibrium in Terms of Displacements

We shall assume that f,,;, = 0. It follows from a comparison of equations (T4) and @7) as well as ZT)) and (34) that

LI NATIEL A A VL)
ds Po ds o
Consequently, equation (31B) assumes the form
d°M, | N M\ di, dy,
M N (o MY Wy (M) Do (A.16)
ds? Do Do ds ° ds
— —
Acem Acemp

where we have neglected the terms quadratic in the increments. As regards the last two terms some transformations with the
aid of (12), (T4) and ZI) need to be carried out

d¢o b dwm Ie dwo b dwm
Ae m 1 Ae m I = i m —2 Emb ! . A.l
™ ds T AeEm ds mn 02 (8 ds te ds (A7)

Substitute now M;, from 20), N, from @I) (utilizing again @)) into (A-16) and take equation (I2) into account. In this way
we have

Iey Iey Iey
o ( &+ w(Q)) +— ( &+ wob> + mln Lemy +m—g Evnwo?b + mi 5mb¢<1) =0. (A.18)
Po Po I I I
Let us multiply the former expression by p3/I.,,. After some minor arrangements we obtain
W) + 2w + wop, + MPocms (1 + wéi,’) + mpaamwéz)b =0. (A.19)
Now repeating the line of thought leading to (A.T4) — but now by formally changing €, to £, — We can write that
1
MPoEmb (1 + ¢t(71])) = MPoEmb |:1 - ( @ +w >:| = MPoEmb — MEmb (ng) + wo) .
Po
In a similar way (with the omission of the unit) the previous procedure can be applied as well to the last term in @[}
mposmwm]b > —MEm (wé? + wob) .

Altogether
w((;i) +(2—mem)w ( ) + (1 — mem) Wob = —MPoEmb — MEmb (ng) + wo) , (A.20)

which is the post-buckling equilibrium equation in terms of the displacements.

A.1.6 Calculation of the Pre-buckling Strain

For a pinned-pinned beam substitution of W, from @I)) into [#3) results in

1 9 1 —1 Az
50525/0 WOTd(p:E{A (XX +A11COS<P_X7COSX@>d‘p+

®
A: A
+ / <A12 cos @ + Agasinp — —322 cos X — —422 sinxcp)] dapz = Ilow + IM,B,
0 X X v 9
where 9 9
1 tan tan x 1 1 1 1
Tow=1— — — , he=—o (1 A21
x2 9 X309 ! I (x2—-1) ( x2 cos?  x2cos Xﬂ) ( )
Consequently,
x2—1  (x—1)%(x+ 1) sindsin x0 1 x(cos® —1)sinx¥ + (1 — cos x¥) sin ¥
Low = _ D T = — . (A22)
x? X319 D U2 D
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To calculate the nonlinear strain we need to know the square of the rotation. Recalling equation (42) we have

. . . . P’
1[12,7 ~ | D11 sin ¢ 4 D31 sin x¢ + (D12 sin ¢ + D22 cos ¢ + D3z sin xp 4+ Dag cos x@) 5] =

. . . . . . P
= (D11 sin ¢ + D3 sin xtp)2 + 2 (D11 sin ¢ + D3y sin x) (D12 sin ¢ + Da2 cos ¢ + D3z sin X + Daz cos xp) 5—1—

. . P\?
+ (D12 8in ¢ + Das cos ¢ + D3z sin x + D42 cos X(p)2 <5> . (A23)

Accordingly, we can now calculate the missing terms in (#3)). These are sought in the form

171 P P\?
5/0 57/)371 (p)de = Ioy + Ly-g +I2v (5) : (A24)
Here
1 v . . 2 -1
Toy = %/0 (D11 (sing) + D31 (sin xyp))” de = WX
x {D%IX (sin 20 — 29) 4 S Dax[sin X?i O (cosxO)sin¥] | p2, ((sin2x) - Qﬁx)} - (A25)

To simplify the evaluation it is advisable to decompose [14;:

1 . : . .
Iy = 3 / (D11 sin@ + D3y sin xp) (D12 sin@ 4+ Dag cos ¢ + D3 sin xp + Daa cos xp) dp =
0

1 /7 . . .
=3 / D11 (sin ) (D12 sin g + Dag cos ¢ + Dsa sin x¢ + Dz cos x¢) de +
0

Inya

I : . :
+ 3 / D31 (sin x) (D12 sin ¢ + D2z cos ¢ + D3z sin x + Daz cos xp) dp = Iiya + Ligys - (A.26)
0

Iiyp
The first part of the integral I, can be written in the form
_Dll
W1 — )
+ 4 D33 [(sin x¥) cos ¥ — x (cos x3) sin 9] + 4 D4z [(cos x¥) cos ¥ + x (sin x9) sind — 1]} . (A.27a)

Liya = {D2 (1 - Xz) (sin 29 — 29) 4+ D22 (1 — X2) (cos29 — 1)+

As regards the second part of the integral /1, we have

D3,

(=) {4x D12 [x (cos x¥) sin ¥ — (sin x) cos ¥] + 4x D22 [(sin x9) sin ¥ + x (cos x¥) cos ¥ — x] +

Liyp =
+ D3z (1 — x%) [20x — (sin2x9)] + Daz (1 — x*) [1 — (cos2x9)]} . (A.27b)

Moving on now to the calculation of Iy in (A.24) it is again worth decomposing the factor in question but for this time into
four parts

I . .
Iyy = % /0 (D12 sin ¢ + Das cos ¢ + Dsa sin o + Dya cos x)? dp =

17 . . .
=3 / (D12 sin @ + Daa cos ¢ + D3z sin x¢ + Daa cos xp) D12 (sin) de+
0

Ioypa
1[0
+ 59 (D12 sin g + Daa cos ¢ + Dsa sin x¢ + Daz cos x¢) Daz (cos ) dp +
0
IoyB
1[0
+ 29 (D12 sin g + Dag cos ¢ + Dsa sin x¢ + Dz cos x¢) D32 (sin xp) dp+
0
Inyc

I . :
+ 29 / (D12 sin @ + Daa cos ¢ + D3z sin x¢ + Daa cos xp) Daa (cos xp) dp =
0

Inyp
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= Ioya + loyB + Ioyc + I2yp . (A.28)
The first term in this sum is

ﬁ {Dy2 (1 - )(2) [20 — sin20] 4+ Daa (1 — X2) [1 — cos29] +

+ 4D3; (x (cos x¥) sin® — (sin x1¥) cos ) +4D4z [1 — (cos x¥) cos ¥ — x (sin x¥) sind]} . (A.29a)

Ioya =

The second one can be expressed as

—Daa 2 2 .
Lyp = go———{D —1) (cos29 —1) = D 1) (sin 20 + 2
B = 39 (x2-1) {D12 (x ) (cos29 — 1) 22 (x ) (sin 29 4 209) +
+ 4Ds2 [x (cos X) cos ¥ + (sin x) sin # — x] + 4Daz [(cos x9) sin ¢ — x (sin x9) cosJ]} . (A.29b)
Moreover, for the third part, the integration yields

D32

S0 (1 —x9) {4D12x [x (cos x¥) sin ¥ — (sin x) cos 9] + 4Daax [(sin x9) sin ¥ + x (cos x) cos ¥ — x] +

Ioyc =
+ D32 (1 — XQ) [20x — sin 2x9] + Das (1 — XQ) [1 — cos 2x19]} (A.29¢)

and finally, for the the last one we have

Dy2

SN2 =1) {4D12x [(cos x¥) cos ¥ + x (sin x¥) sin ¥ — 1] + 4Da2x [x (sin x3¥) cos ¥ — (cos x¥) sin 9]

Ioyp =

+2D32 (x* — 1) sin® x9 + 2Daz (x* — 1) [x¥ + (sin x9) cos x0]} . (A.29d)
A.1.7 Manipulations on the Displacement Increment

The solution to equation system (36) is as follows:

—Ascosx¥ + A4 (xsind —sinxd) — 1

= - m ) A.
C1 MEmb 20— 1) cosd (A.30a)
Ay (3x* —1) A4
= mEmp——t = —mep X — )8 A.
CQ me bX (X2 — 1) 03 MEmb 9 1 (X2 — 1) ( 30b)
Cu = _mSbe [9 (1 —x?) sinx¥ + 2x cos x¥] Az + (1 — x?) [sin x¥) — 9x cos xV] As + 2 . (A300)

2x* (x%2 — 1) cos x¥

It is advisable to decompose each of these into two parts: one in relation with the loading and the other not. Recalling and
substituting here As and A4 from (39) we obtain after some arrangements that

Aszycosxd +1 Asz cos x9 — As2 (xsin® — sin x9) P A A~ P
—en ) =en =), a3l
Ci=e b(m(XQ—l)XQCOSﬂJFm (x?2 — 1) x2cos? 9 Emb CHJFCH# ( 2)
A P A P (1 — 3X2) Asz P A P
—e D Gl Cy=em Z =G A31b
Co=c¢ bm(X2 e € b02219 C3 = empm N E—1) 7 € bC3219 ( )

2+ As1 [x9 (1 — x?) sinx9 + 2x° cos x¥]
2x* (1 — x?) cos x¥

P Ass [x19 (1 — X2) sin x® + 2x2 cos Xﬁ] + Aga (X2 — 1) (x¥ cos x¥ — sin x¥) (
+ Empm— = Emb

04 = EmbMm

A - P
Cu + 042*)

) 2x* (1 — x?) cos x¥ )
(A3lc)
with new constants defined by
A Aszycosyd + 1 A Asz cos x99 — Auz (x sind — sin 1)
- i S Nl = A.32
G mx2 (x2 =1)cos® "’ Ciz =m X2 (x? — 1) cosd ’ ( 2)
A Aygo A (1 — 3X2) Ayo
BT T ) (A
. 2+ Asix [9 (1 — x?) sin x9 + 2x cos x|
_ A32
Ca=m 2x% (1 — x?) cos x¥ ’ (A-32¢)
Clay = mAng [19 (1 - X2) sin x¥ + 2x cos Xﬁ] + Aso (X2 - 1) (x¥ cos x¥ — sin x¥#) . (A32d)

2x* (1 — x?) cos x¥
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In order to be able to rewrite the solution W, in a desired form the particular solution in (30) should be manipulated into the
following form

m 2 .
—Embs 3 (f + Aspsin xp — Aspcos xw) =
2x% \x

m 2 m P m P
= —embs 5 —Embs—g | Ast + Asa S | s mbs—s | As2 =
5 b2X3X e b2X3( 31 + 3219><psmxnp+s b2X3( 4219)gacosx<p

m  Azim . Azom .
=Emb |1 — s-esinxe + | — 3 psinxe +

A42m COSs B =
x* X 2x P CIa Y A

A A . A . A P
= Empb [001 + Cs18in xp + (C’52<p sin x + Ce2p cos ti) 5] , (A33a)

where 4 4 4
A m A 31m A 32 A 421
Cop = —— Cey = — = — = A.33b
01 X 51 " 52 SR 62 95 ( )
Making use of the constants 6’01, e Cé2 solution

m

Wop = C1 cosp + C2H sin p + C3 H sin xp 4+ C4 cos xp — Emby 3
X

2

(f + Aspsin xo — AsHp cos Xgo)
X

can be manipulated into a more favorable form as

Wob = €mp [6'01 + C11 cos ¢ + Cui cos xp + Cs1psin xp+

|

+ (C‘lg cosp + Cao H sin ©+ Cs2H sin X + Cua cos X + C’52<p sin xp + C’szHga cos Xap) ] . (A34)

As regards the expression for the rotation we need the derivative of the former relation, therefore
— Yomp WO%) =Emb [—C‘n sin p + (6'51 - C’41x) sin xp + C‘slxgo cos xp + (—élg sin p + Ca2H cos o+
+ (C’gzx + 6’62> H cosxp + (6’52 — C’4gx) sin xp + 6'52)(90 cos X — C‘ngxgo sin xgo) %}
or what is the same
— Yonp Wé? = emp [K11 8in ¢ + Ku1 sin x¢ + Ks1 cos xp+

. . . P
+ <K12 sin ¢ + Ka2 cos ¢ + K32 cos xp + Kazsin xp + Ksap cos xp + Kea¢ sin xp) 5} . (A.35)

A.1.8 The Averaged Strain Increment

As already mentioned in Subsubsection@it is possible to obtain closed form solutions to the integrals (constants) Io1, lo2,
I1, Ia, 113 in (61). Here we shall present the value of some. Recalling the formula for the averaged axial strain we have two
terms to deal with

1 [° P
5/ Wordp = €mp 1025-5-101 ; (A.36a)
0
L P\’ P
5/ WOWN dp = e |:[13 <5> +5ha+1n (A.36b)
0

Starting with the first one let us integrate that part of the displacement increment, which does not contain the loading P.
Therefore it follows that

1 (7. . . .
Ioy = 3 / (C’m + Ch1 cos p + Ca1 cos xp + Cs18in ch) dp =
0

= XTlﬁ [X2 (6’0119 + C11 sin 19) + C’41X sin ¥ + Cs1 (sin x¥ — x¥ cos Xﬁ)] . (A.37a)

Integrating the remainder of the displacement increment yields

1 (7 x A A A A . A
Io2 = 3 / (012 cos ¢ + Caz sin ¢ + Cs2 sin xp 4+ Claz cos xp + Csap sin xp + Cea2 cos ti) dy =
0

= X%g [X2 ((3“12 sin? + (1 — cos ¥) C‘zz) + Csa sin x0 + (cos x9 — 1) Coa+
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Ty ((1 — cosx9) Oz + Caz sin X9 — G209 cos O + Co29 sin Xﬁ)] . (A37b)

Observe that Ip1 and o2 are the only integrals (constants) that appear in the part of the axial strain increment, which is obtained
by neglecting the effect of the square of the rotation field — the corresponding equation

P
1025 +1Io1 =1 (A.38)

is linear in P.

As for the second integral in (A-36) let us recall formulae (38) and (39) providing the rotations and then separate the terms
depending on the power of (P /). Consequently

%/019 Yonthon vdep ~ %/00 (_chu) (_W;;>) do =

I . :
= —gmbg/ [(Ku sin @ + K41 sin x¢ + K51 @ cos xp) +
0

P . . .
+5 (K12 sing + Kaa cos ¢ + K3z cos xp + Kaz sin xp + Ksap cos x¢ + Keap sin Xgp):| X

. . . . P
X {Du sin ¢ + D31 sin xp + (D12 sin ¢ + D2z cos ¢ + D3z sin x¢ + D42 cos xp) 5] de =

1 /?
= —Emba / [(K11sing + Kq1sin x¢ + Ks1 ¢ cos xp) (D11 sin ¢ + D3 sin xp) +
0

. . . . P
+ (K11 sinp 4+ Ka1 sin xp + Ks1 @ cos x¢) (D12 sin ¢ + Do cos ¢ + D3z sin xp + Dasz cos x@) 5—&—

. . . . . P
+ (K12 sin @ + Kaz cos ¢ + K3z cos xp + Kaz sin xp + Ksap cos x¢ + Ke2psin xp) (D11 sin ¢ + D31 sin xp) 5+
+ (K12 sin ¢ + Kaz cos ¢ + K32 cos xp + Kaz sin xp + Ks2¢ cos x + Keag sin x¢p) X

. . P\°
X (D12 sin ¢ + Dag cos ¢ + D3 sin xp + Daz cos x¢) (5> :| de

in which o
1 . . i i
hi=—y5 / (K11 sinp + Kui sin x¢ + Ks1 ¢ cos x¢) (D11 sing + Dsi sinxp) dy , (&.39)
0
1
I = -3 (D11 sin + D3y sin xp) X
0
x (K12 8in @ + K2z cos ¢ + K3z cos xp + Kaz sin x¢ + Ksap cos x¢ + Kea¢ sin xp) dp—
17 . . - i
) (K11 sing + Kai1 sin xe + Ks1 @ cos ) (D12 sin ¢ + Daz cos ¢ + D3z sin x¢ + Daz cos x¢) dg,
0
(A.39D)
1 ®
I3 = -3 (D12 sin + Dag cos ¢ + Dsg sin xp + Dasz cos xp) X
0

X (K128in @ + Kaz cos p + K3z cos xp + Kaz sin xp + Ksap cos xp + Keapsin xp)de . (A39¢)

It can now be accepted that it is in fact possible to obtain closed form solutions. We omit them from being presented here as
these are very complex and would require a lot of space. Mathematical softwares like Maple 16 or Scientific Work Place 5.5
can cope with these constants easily. Our aim is just to demonstrate the possibility of such solutions.
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