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Glide Mechanisms for Bundle- and Plate-like Structures

R. Glige

In this article, the slip mechanisms card deck glide and pencil glide are recaptured. These mechanisms are useful
simplifications when several slip systems in crystals, bundle- or plate-like structurs share a common shear plane
n or a common shear direction d. It is pointed out that a third glide mechanism for slip systems with a common
plane of shear k = d x n exists. For this second pencil glide mechanism, its properties are examined, a flow rule
is derived, and the push-forward of k in case of large elastic strains is discussed. It turns out that the second pencil
glide mechanism leads to a plane strain Prandtl-Reuss-like flow rule. Thus, unlike the pencil and the card glide
mechanism, there is no accompanying lattice spin.

1 Introduction

Notation Throughout the work, a direct tensor notation is preferred. Vectors are symbolized by lowercase bold
letters v = v;e;, second-order tensors by uppercase bold letters T' = T;;e; ® e;, where e; with i = {1,2,3}
denotes the base vector of an orthonormal basis. The second order identlty tensor is denoted by I. The dyadic
product is defined as (a ® b) - ¢ = (b ¢)a. A dot represents a contraction. If more than one contraction is carried
out, the number of dots corresponds to the number of vector pairs that are contracted, thusa @ b® c--d® e =
(b-d)(c-e)a,a = A-- B. When only one contraction is carried out, the dot is frequently omitted, e.g. A = BC.
The Euklidean norm of a vector and its counterpart for a second-order tensor, the Frobenius norm, are conveniently
written as |a| = /a - a and ||A|| = VA --A. The transpose of a second order tensor A is denoted by A”, and
defined through Aa = a.A” for all vectors a

Plastic Deformations of Single Crystals In 1934, Orowanl (1934), [Polanyi (1934) and [Taylor (1934) found

that the plastic deformation of most crystalline solids is realized by the movement of linear lattice imperfections,
denominated as edge dislocations. On the crystal scale, the effect of collective dislocation movement manifests
as crystallographic slip or glide, by the slipping of crystallographic planes parallel to each other. The direction of
dislocation movement, which coincides for edge dislocations with the slip direction, is given by the dislocation
Burgers vector. The latter is perpendicular to the edge dislocation. By this, the slip direction and the edge direction
constitute a slip system: The edge direction of the dislocation spans together with the slip direction d the shear
plane n. Both d and n need to be normalized, i.e. |d| = |n| = 1. This leads to the definition of the slip system
tensor

M =d®n, (D

which is a crucial geometric information for the modelling of crystal plasticity. It can be used to calculate the shear
stress acting inside the shear plane in direction of d by projecting the stress vector

t=T-n )
with the Cauchy stresses 1" into the shear direction d, i.e.
T=t-d=T--M. 3)

If the slip system activity depends only on the resolved shear stress 7, one speaks about the Schmid law
; ,[1926: Boas and Schmid, [1933). This simplification works well in many crystals but
is only a poor approximation for BCC crystals (Stein et all,[1973; [Seeger, [2001).
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In the commonly used multiplicative crystal plasticity framework, the deformation gradient is decomposed into an
elastic and a plastic part,

F=F.F,. @)

Mostly, the stresses 1" are only a function of F',. With the product rule, the velocity gradient is then given by
L=FF'=F.F,' +F.F,F,'F_, (5)
L=L.+L, Le=FF.', L,=F.LyuF.,", (6)

where the abbreviation Lo = Fp F, ! is introduced. The rate of plastic deformation corresponds to the superpo-
sition of the slip rates of the active slip systems,

L, = Z YiM o;. (7
=1

Here, n denotes the number of active slip systems, Mo; = do; ® no;, and dg; and n; are the i*" normalized slip
system vectors in an undeformed reference lattice. To relate the constant reference lattice to the stress state, one
has to map dy; and ng; to the current placement. With the interpretation of dy; as a tangent vector and ng; as a
gradient vector (see, e.g., )), this mapping is given by

d; ~

di = —=—, d; = F.dy;, (3
|d;|

n; = |Zl|7 n; = F. "ng; = ng F, . 9

By this, &i - n; = 0 holds. However, Eli and n,; are in general not of unit length, and require a normalization,
which may be dropped only if the elastic strains are small. The initial values of F'¢ and F';, are given by relating
the reference lattice to the initial placement. In the initial placement, one knows the orientation of the vectors d;,
n;. With the constant reference lattice dy;, n;, one can determine up to a lattice symmetry transformation the

initial F', by eq. @). L, is given by egs. (@) to @),

Ly = F()_(fidoi ®no))Fo ' = 4id; @ 1. (10)

i=1 i=1

Elasto-plasticity is considered to be integrable only by implicit time stepping schemes, since it is impossible to
satisfy the consistency condition in ideal elastoplasticity by an explicit scheme. The consistency condition ensures
that during plastic deformation the stress state remains on the yield surface. One can choose whether the evolution
of F'. or F';, should be tracked, and obtain the other one from the multiplicative split,

F.F;'=L-L,, F,=F]'F (11)
FyF ' = Ly, F.=FF,". (12)

In the numerical time integration, both variants have their advantages. In monotonic processes, one may expect

F',, to saturate, allowing for larger time steps. But, since F', lives partially in the current placement, one has to

integrate the rigid body spin, for which preferably an exact update algorithm is constructed (see, e.g.,
)). This is not necessary if F'j, is integrated (see, e.g., m M)).

Due to the orthogonality of the pairs (d;, n;) and (do;, no;), the tensors M; and M (; and hence L and L, are
deviatoric, which reflects the volume preservation under a shear deformation. A decomposition of L into its
symmetric and antimetric part

1

D, =sym(Lyo) = 5(LlDO + LI{O) (13)
1

W o = skw(Lyo) = 5(LlDO - L) (14)

is physically meaningful, since Dy is interpretable as the rate of plastic deformation, while W,y represents
the lattice spin due to crystallographic slip. To realize an arbitrary isochoric deformation rate Dy, which has 5
independent components, at least 5 linearly independent symmetric contributions sym (M, ) are required. Mostly,
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Figure 1: Left: (111){110} and (111){112} slip systems in a cubic lattice, sharing a common slip direction.
Right: Possible glide mechanisms in a hexagonal lattice. The (1210){0001} slip systems have a common shear
plane (card glide mechanism), the (0001){1010} slip systems have a common slip direction (pencil glide) and the
(1210){1010} slip systems share a common plane of shear (second pencil glide).

second pencil glide

{110} and {112}-planes containing the same (111} direction \

more than 5 linearly independent slip system tensors are available, which leaves the combination of slip rates
accommodating the plastic strain undetermined, in the first place. To identify the active set of slip systems, different
methods have been proposed, summarized by lvan Houtte (1988); [Kocks (1998); Schurig (2006). Mostly, the slip
system activity is uniquely related to the stress state by employing a rate-dependent rather than an ideal plastic
behaviour in conjunction with the Schmid law. This is mostly done by Hutchinsons , ) celebrated
flow rule

n
Ti

¥i = Yosgn (7;) (15)

Terit

with the strain rate sensitivity n, the critical shear stress 7.,it, and a reference shear rate +y. The two latter param-
eters are redundant.

2 Slip Mechanisms with Constant Shear Direction or Constant Shear Plane Normal

In some materials, various slip directions are aligned parallel to a common shear plane, or a specific slip direction
lies inside of several possible shear planes. Such characteristics can be found in bundle-structured (common slip
direction) or in plate-structured (common shear plane) materials m, m). Examples are the hexagonal
close packed (HCP) crystal lattice, semi-crystalline polymers and the body-centered cubic (BCC) lattice. Although
the BCC lattice does not display a bundle- or a plate-like structure, it contains a slip direction with a large num-
ber of corresponding slip plane normals. These slip systems are (111){110} (3 planes per common slip direction),
(111){112} (3 planes per common slip direction) and (111){123} (6 planes per common slip direction). Assuming
that all these slip systems are potentially active under similar conditions, it may be convenient to replace the collec-
tive of slip systems by a slip mechanism with a continuously adjustable slip plane. We can thus drop the indexing
of the individual slip systems. In case of a common slip direction, one speaks about the pencil glide mechanism

), while a set of slip systems having a common shear plane may be approximated by the
card deck glide mechanism.

2.1 Card Deck Glide

In case of card deck glide, the shear plane normal is kept fixed, and d is determined such that one considers the
most critical out of the infinitely many slip systems. If the Schmid law is presumed, one may obtain d by projecting
the traction vector ¢ = T - n into the plane n,

d=(T-n)-(I-non). (16)
The norm of d gives the resolved shear stress, which is needed anyway for the normalization of d

T = |cAl\7 d:&/T. o))
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Then Ly, is given by
L, =4(rd®mn. (18)

Only in case that n is an eigenvector of T’, the slip direction is evaluated to d = 0. Then, the Schmid stress results
to be zero, d is undefined, and no card glide is observed. Otherwise, the slip direction is uniquely determined by

eq. (T6).

2.2 Pencil Glide

In case of pencil glide, the normalized shear direction is kept fixed, and n is determined such that one considers
the most critical out of the infinitely many slip system. The slip system with orientation n has the resolved shear
stress

nm=(d-T-I-d®d)) n=n-n, (19)

T(n)=d-T
(T-d)-(I-dod). (20)

n
As d and consequently 7 is fixed, we maximize this scalar product by aligning n parallel to 72. The resulting shear
stress is then

7 =|nl. @1

Again, the slip plane normal is uniquely determined if d is not an eigenvector of T'.

2.3 Example Application

In case of only one slip mechanism and a constant stress state, the ODE for F'}, (eq.[12}) is met by
Fy(t) = (I+~(t)My)F,(0). (22)

Then, only ~(t) needs to be determined consistently. An example is the card glide mechanism in hexagonal
lattices. In magnesium at room temperature, only basal glide in the systems (1120){0001} may occur, which
allows to reduce the overall slip system activity to only one card glide mechanism. But even if more than one glide
mechanism needs to be considered, the system of nonlinear equations to be solved is simplified, since the unknown
shear directions (card %) and the unknown shear plane normals (pencil glide) are determined uniquely by the

stress state , ).

Both mechanisms have proved to be useful approximations, see, e.g. Park et all (1996); Raabe (1997); [Cai et all
(2009); Gliige et all (2010). One advantage of these approximations is that the number of slip systems is reduced,
and the numerical time integration is simplified considerably. Then, the slip direction (card glide) or slip plane
normal (pencil glide) may be assumed to be incrementwise constant.

3 Slip Mechanism with Constant Plane of Shear

Another possible slip system alignment of a set of slip systems is inside a common plane of shear k, which is
spanned by d and n, not to be confused with the shear plane n. Such a slip mechanism may be found in bundle-
structured materials. Here, it is referred to as the second pencil glide mechanism. For example, the prismatic slip
systems in a hep lattice given by (1210){1010} have a common plane of shear k = d x n, namely the {0001}
plane (see Fig. [[). Another example is the transverse slip in semi-crystalline polymers, where polymeric chains

glide along each other either parallel or transverse (G’Sell and Dahourl, [1994).

Suppose that, for a given stress state 7', a common plane of shear k and a relation between the Schmid stress and
the slip rate %/(7), the plastic deformation rate has to be determined. All potential slip and shear plane directions
lie inside the plane k. Therefore, a projection of d or n into the common plane of shear does not alter d or n at
all, and we may expand the calculation of the Schmid stress according to
7T=d-T-n=d-Pp -T- -Ppn, (23)
T
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with the projector
P =T-kok (24)

Dealing with T* = P TP}, instead of T allows a direct calculation of the maximum shear stresses acting
inside the potential slip systems, since T represents a plane stress state. With a zero eigenvalue 7% = 0 in the
eigendirection of k, the remaining eigenvalues 73" and 75 are the roots of a quadratic equation. After obtaining
Tf:2 with the ordering 77" > 7% and the normalized eigenvectors ¢1, t2, one is able to compute the maximum shear
stress by

1 * *
Tmax = §(T1 - T2 ) (25)

The planes of maximum shear stress are aligned 45° of the principal stress axes. The two slip systems with extremal
positive resolved shear stresses are given by

M1:’U1®’02 (26)

My =vy,®v, = M} (27)
1

vy = —(t1 +t 28

1 \/5(1 2) ( )
1

vy = —(t1 — t2). 29

2 \/5(1 2) ( )

Due to the symmetry of T, the maximum shear stress is encountered simultaneously in the two slip systems M
and M 5. Using the projector representation

T*:Tl*tl ®t1+T2*t2®t2, (30)

one can review easily that
1
Tmaxzi(Tl*—TQ*):T*--Ml:T*--M2:7'1:7'2. 31

It is interesting to note that in the viscoplastic case, the plastic deformation rates are equal in both slip systems
because of 71 = 15. Together with My = M f, it is to conclude that there is no plastic spin in the viscoplastic
case. In case of ideal plasticity, the plastic spin is undetermined. If hardening is added, the < and 7» are related
by the consistency condition. Presuming v = 41 = 2, one obtains

L, = 4(M, + M) (32)
1 1

=% <2(t1 +t2) ® (t —t2)+§(t1 —t2) @ (t1 +t2)> (33)

:’V(t1 ®t —t2®t2). (34)

Therefore, the overall deformation rate results to be symmetric, coaxial to T™, and deviatoric. One notes that, since
L, is symmetric, the second pencil glide mechanism does not induce a lattice spin, unlike the card glide and the
pencil glide mechanism. Since Ly, is coaxial to T, one may rewrite the second pencil glide mechanism similar to
the Prandtl-Reuss relation, i.e. like

L,=4N. (35)

To determine the normalized flow direction N = N /|| IN||, one has to project T firstly to T"*, and then take the
deviatoric part only on the remaining two-dimensional eigenspace with nonzero eigenvalues. This is achieved by

- 1
N=T"—- (P, --T"P 36
5 (P T7) Py, (36)
1
— Tt @b+ Th @t — S(T7 + T)(h Ot + 1 9 b) 37)
1 1
:i(Tl**Tz*)tl ®t1+§(T§*Tf)t2®t27 (38)

which is seen easily by using the projector representation of T™ and Py, = t; ® t; + t2 ® to. Inserting T =
P} TPy, into eq. (36) allows with Py, - Py, = P}, to summarize to

. 1
N=Pj-T Py~ (P TPy, (39)
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The difference Ny — Ny of the two nonzero eigenvalues Ny = (T} — T5) and Ny = (T — T7) results in
Ny — Ny =T —T5. (40)
Comparing with eq. (23) and taking into account that Ny = —Ns, we can determine the maximum Schmid stress
by
Tmax — Nl 41)
which can be reduced with || N|| = v/2N; to
IN|
Tmax = . 42)
V2
By noting that a normalization of N gives the flow direction
o N 1
N/||IN|| :E(tl @t —ta ®ta), (43)
we are able to summarize the flow rule (eq. B4) as
(N N < 1
Ly=+4 ("2 Y N=P,TP, - ~(P;. - -T)Py. (44)
b ( V2 )N kTP — 5 (Pg k

This reformulation has the advantage that it does not require an explicit determination of the eigenvalues and
eigendirections.

4 Transformation of k&

Since a clear interpretation as tangent and gradient vectors for d and n is given, the treatment of the card glide
and the pencil glide mechanism differs only slightly: Calculate d = F.do/|F.do| orn = F;  ng/|F; "ng| and
apply the equations given in Section 2.1] or 2.2 to obtain 7, the missing slip system vector 1 or d, +, and finally
L. Then integrate

FF;'=L-L, (45)
or
F,F,' =F.L,F;". (46)

In case of the second pencil glide mechanism, the question of how kg should be transformed to k arises. One can
easily see that there exists no linear transformation similar to d and n that ensures k- d = 0 and k - n = 0 at the
same time. Therefore, one might think of taking k = d x m after obtaining d and n by eq. @). This is as well
problematic, since inside the common plane of shear kg, any perpendicular pair v, voo constitutes a valid slip
system. Hence one can take either dy = v1p, g = v2g or dy = vop, Mg = V19, Which results up to the sense of
direction in the same kg, but in distinct k.

As it is the case for d and n, one has to think about the physical interpretation of kg to determine whether kg
should be transformed as a gradient or a tangent vector.

Transformation as a Gradient Vector k = F_ " ko/|F, " ko| : The common plane of shear is given by the
deformed reference cross-section of the bundle. This interpretation is reasonable if the slip mechanism involves
discrete points on the bundles, as it is the case for dislocation movement. The lattice sites that are passed by the
dislocation are attached to the lattice.

Transformation as a Tangent Vector k = F.k/|F.ko| : The common plane of shear is given by the cross-
section of the deformed bundle. This interpretation is reasonable if the slip mechanism does not depend on discrete
points on the bundles, i.e., if the bundles can be regarded as continuous and, with reference to the deformation
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Figure 2: Left: Undeformed bundle, with k(. Right: Deformed bundle with F'.k( being the cross-section normal
of the deformed bundle and F'; 'k the normal vector of the deformed reference cross-section.

mechanism, free of distinguished points along the bundle axis.

Therefore, depending on the modeling scale, one will chose k = F'_ Tk if the underlying deformation mech-
anism can be linked to the atomic scale, and k = F' .k if the bundles are regarded as continuous and without
discrete connections among them. After obtaining k, the treatment given in Section 3] can be applied, which yields
the plastic velocity gradient Ly, and therefore an evolution equation for F', or F',, (eqs. @3] and B6).

5 Summary

Besides the well known card and pencil glide mechanisms, a third glide mechanism for slip systems that are
aligned inside a common plane of shear exists. This second pencil glide mechanism may prove to be useful in
bundle-like structures. Possible applications are the transverse slipping of chains in polymeric crystals and the
prismatic slip systems in hexagonal lattices. Unlike the card and pencil glide mechanisms, the second pencil
glide does not induce a lattice spin. Instead, inside the common plane of shear, the plastic deformation behaves
isotropically, which allows to obtain a flow rule similar to the Prandtl-Reuss equation. In case of non-negligible
elastic deformations, the plane of shear normal k is transformed as a gradient vector if the underlying deformation
mechanism is linked to discrete connections between the bundles, and like a tangent vector if no such distinguished
connections prevail.
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Kalisch and the unknown reviewer.
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