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Evaluation of hyperelastic models for unidirectional short fibre reinforced
materials using a representative volume element with refined bouary
conditions

N. Goldberg, H. Donner, J. lhlemann

The simulation of a short fibre reinforced structure by meaithe FEM requires the knowledge of the material
behaviour at every Gauss point. In order to obtain such imfation, a representative volume element (RVE)
containing unidirectional short fibres is analysed in theggnted work. In order to cover the complete anisotropic
effect of the fibres, deformations with different angleshtftbre direction have to be conducted. In contrast to
other works, this task is tackled using the application afiguic boundary conditions to the RVE in tensorial
form, which enables a simple access to consider varying hgtes with one and the same RVE. As the RVE'’s
average response represents the homogenised behavioumatescopic material point, the material models’
parameters can be identified by fitting them to stress-siraives obtained from simulations with the RVE. The
findings of these analyses are used to assess the appligalfiieveral hyperelastic models describing transversal
isotropic materials under consideration of large deforioas. For example it is shown, that the formulation of
mixed invariants with the isochoric right Cauchy-Greengenis insufficient to reproduce the RVE’s behaviour
at purely volumetric deformations. Both the modelling amel talculations are carried out with the commercial
FEM software BAQUS. Insight s given to the implementation of the boundary doms as well as the underlying
constitutive equations.

1 Introduction

Despite showing homogeneous properties on the macrosscglie, short fibre reinforced materials are made up of
heterogeneities on a microscopic scale. In order to adelyusinulate such materials using the FEM, a continuum
mechanical model for every Gauss point is required. Suchdehshould include the characteristics of the material
behaviour at the macroscopic scale, meaning it has to représe features of a matrix material with fibres. The

investigation of those features can be done taking advartfg representative volume element (RVE).

The RVE contains a representative amount of heterogesétiert fibres) whose local responses to external loads
or displacements differ from the RVE’s response. Howeves,averaging of these local responses over the RVE
provides a homogeneous response, which equals the globadatéristics of the RVE. The RVE's size plays a
significant role. On the one hand it has to be larger than tterdigeneous structures it contains in order to include
a sufficient amount of them. On the other hand it must be smalligh to be treated as an infinite point on the
macroscopic scale. The Hill condition (Hill, 1963) evakmthe RVE'’s size in such a manner. This criterion
reaches back to 1963 and proposes the equivalence betwedeftirmation energy on the macro scale and the
overall deformation energy of the RVE. Later on the conditizas extended to a similar equivalence between the
stress power on micro and macro scaleligg, 2013).

One of the main characteristics of the short fibre reinforoaterial is its anisotropy induced by the high length-to-
width-ratio of the fibres. In order to cover these anisottdpatures, the RVE has to be investigated under different
angles between the fibres’ direction and the direction ofettternal load and displacement. Several approaches
to achieve this task can be found in the literature. ldeallRVE would model the micro structure in complete
accordance to the real material. Due to limitations in thelelilng and calculation capacities, the RVE usually
contains only a discretisation of the actual topology. Alwstablished way of doing this is the use of two- (2D)
or three-dimensional (3D) finite element models. The palilims (Xia et al., 2003; Chen and Liu, 2004; Abadi,
2012) deal with RVEs consisting of a single fibre surroundgdnatrix material whereas (Shan and Gokhale,
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2002; Gonalez and LLorca, 2007) are focused on 2D RVEs with multiplesb The paper (Wang et al., 2011)
deals with a voxel-based approach to model RVEs with shdiidycal inclusions randomly distributed in the
3D space. In (Glge et al., 2012) spheric particles in cubic and spheric RMEsonsidered. Another approach
was advocated by (Reese, 2003) where fibres were discréysetire elements. Up to the authors’ knowledge,
all approaches in the literature require the modelling ¢fialty rotated fibres in order to capture the anisotropic
properties.

In the present work, a RVE, which allows the consideratiomattiple fibre angles, is introduced. The RVE excels
with its simpleness and flexibility. Special consideratisrgiven to the choice of the boundary conditions and
their implementation into the FEM softwareBAQus. The RVE is subjected to several deformations in order to
generate synthetic reference values and demonstrate this BNisotropic properties. The synthetic data are taken
to identify the material parameters of several hyperelastiterial models. The comparison of the data obtained
by the RVE and the predicted data by the material model wigntified parameters is then used to assess the
applicability of the constitutive assumptions of the matenodels.

1.1 Notation

The present paper makes use of a coordinate-free tensdionotdhe number of bars under the tensor symbol
represents the tensor’s order, i.e. vectors read for examphd second-order tensafs. The tensor’s coeffi-
cients are related to orthonormal base vectors, E.g= X,e, ® e,. The base vectorsa\a Xv.z refer to the
global coordinate system whereas base vectors, corresgpiadthe local coordinate system (see section 3), are
distinguished by a different index;|,_, 2.3 The treatment of the indices corresponds to the Einsteimsation
convention. The tensor product is symbohsed ®Y. The operator” describes a single contraction between base
vectors. Multiple dots mean multiple contractions such tha

(ea®@ep)-(ec®eq) = (ep-ec)ea ®eqd=0pca®eq

(f/a Y §b) o (§c Y §d) = (Qb : gc)(ga : §d) = Opedad ) @)

whered is the Kronecker delta. is the second-order idenditiy tensor. The Frobenius norra nsorX is

~ A
denoted by| X||. Tensors in the reference configuration réadThe material time derivativé is defined by

= Xab@a ® eb ) 2)

[l

*
with fixed base vectors. Averaged macroscale values ardideles X. Furthermore, a symmetry operator for
fourth-order tensors is introduced as follows

1
K5 = 1 (Kadeb + Kaach + Kadve + Kdabe) €a ® €p @ €. @ eq 3)
The deviator of a second-order tensor reads

X=Xyl

[I><
=

(4)

Wl =

1.2 List of symbols

K, current, reference and intermediate configurations
deformation gradient, right Cauchy-Green tensor
fibre orientation in reference configuration
structural tensor

Ji,J2,J3 invariants ofC

Iy, I5, Jy, Js  mixed invariants ol and A

Iy 23
ey =>

1 energy density
o, T, T Cauchy stress tensor, first and second Piola-Kirchhoféstiensors
C,M Eulerian and Lagrangian stiffness tensors
%E stiffness tensor required byBAQus
G,K,Er shear modulus, bulk modulus and Young’s modulus of fibre émntiaterial model
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Ar  stretch of fibre
fwor  fibre volume fraction
dg,  Minimum distance between fibres
FPD average number of fibres per spatial direction
x length-to-width-ratio of single fibre
l1,15,13  pilot nodes’ distance to local origin

u  displacement vector
x, Az position vector, difference of two position vectors
H,F,T averaged values of: displacement gradient, deformatiadignt and first Piola-Kirchhoff

stress tensors
a1,a9,a;; scalar factors for linear constraints irBAQuUS
¢ fibre angle
P, stress power
v;  coefficient of velocity
V  reference volume
ny,n; number of elements per fibre in transversal and longitudiirattion
A,k stretch and shear
GrIGr shear modulus of matrix/fibre in the RVE
K/ Kr bulk modulus of matrix/fibre in the RVE

2 Material model

This section presents several phenomenological mateddketa which are used to describe transversal isotropic
materials under consideration of large deformations. hiqadar, the kinematic foundations as well as the con-
tinuum mechanical framework are introduced. The materiadl@s are implemented inBAQUS via the User
Subroutine UMAT

2.1 Kinematics

F

Figure 1. Commutative diagram.

Figure 1 illustrates the underlying kinematics. The deformaticsdgent/” maps vectors from the reference con-
figurationfé to the current configuratioit. £ can be split into its purely volumetric paf§/3:1 with J3 = det I
and its isochoric patj This procedure is also referred to as Flory split (Flory610

F=J3'1'F = E=J"F (5)
— A
F maps vectors from the reference configuration to the intdiate configuratioriC. The right Cauchy-Green
tensor of the isochoric deformation is referred tcgas

T . J’2/3 T .

,2/,
= J3 =J; ’

Q

(6)

Q)
Iy
Iy

Iy

2.2 Continuum mechanics framework

In order to postulate an isotropic energy densitffree energy per unit of volume), some invariants are intoedl
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1
(Cc-n*-c*-1) | @)
J3 =det F

The invariantsJ; with ¢ = 1,2, 3 correspond to the isotropic part of the material model. No&t the Flory split
is used, i.e. the invariants are applied to the purely votumand the isochoric parts respectively. In order to
consider the anisotropic part, the rank 1 structural tefcfo{Schibder and Neff, 2003)) is introduced

A=aw®a . (8)

The vectora describes the orientation of the fibres in the reference gordtion. In accordance to the concept
of the integrity bases (the reader is referred to (Smith51®pencer, 1961; Spencer and Rivlin, 1958, 1962;
Spencer, 1965)), mixed invariants are formulated. Folhgnthe argumentation presented in (Sansour, 2008) and
(Helfenstein et al., 2010), the mixed invariaiis /5 are introduced

Ii=C- A , 9)

=04 . (10)

In contrast to this, some authors (Holzapfel and Gassef,;280driyana et al., 2010) define the mixed invariants
using the isochoric part of the deformation

11)
(12)

N
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Assuming decoupled effects of the isotropic-isochorig, iotropic-volumetric and the anisotropic parts of the
energy densityy reads in general

1/) = wisochoric(le JZ) + /(/)volumetric(JS) + "/]anisotropic (147 IE)) ) (13)

and
1/) = u}isochoric(Jla JZ) + wvolumetric(JS) + ’(/}anisotropic(Jéla JS) ) (14)
respectively. The Clausius-Planck inequality for hypesgt materials without change of temperature reduces to
the identity
YAN .
,I..g_z/):o . (15)

The insertion of the energy density Eq. (13) or Eq. (14) injo &5) yields the equation for the stress tensor in the
reference configuration

T=255 . (16)

Here, the derivative is understood as a derivative witheesip a symmetric tensor (cf., for example, (Shutov and
KreiBig, 2008)). The first Piola-Kirchhoff stress tensbras well as the Cauchy stress tengocan be obtained
with the help of the following relations

T=T- ET ; a7
1 ~
o=—F-T-FT . (18)
= Jgf = =
The Lagrangian stiffness tensor reads
9%y
M =4 1
= ococC (19)

According to (Ihlemann, 2014), the commercial FEM softwAe\Qus requires the stiffness tensor

iy:i(

k= (F@FT)™ . M - (ET®E)S“> +2(c® I)™ 7 (20)
3= 3 - - - - -

which can be computed using the Lagrangian stiffness telsor
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2.3 Concrete ansatz for the free energy density

2.3.1 Energy density with mixed invariant I,

To be definite, the following ansatz fgris considered

G

w= SO -9 G- 2 (s 22 3) @1

6 VL

where( is the shear modulugy is the bulk modulus and'z is the fibre’s Young’s modulus. Eq. (21) corresponds
to an extension of the NeoHooke law and can be found, for elgrp(Guo et al., 2007). Using Eq. (16), the
second Piola-Kirchhoff tensor reads

:{G§D+KJ3(J3—1)£}~Q’1+%EF {1-n"}1 . (22)

I

According to Eg. (19), the Lagrangian stiffness tensor fned by

2 ey 1 04
y=2e{-n et et o D pag e Ct (O e e

1 24
+2K {2J3<J3 ~1)C 0~ Js(Js 1) (€ e o)’ } (23)
R TY
2.3.2 Energy density with mixed invariant.J,
Similarly to Eq. (21) .- can be reformulated with the mixed invariahtinstead ofl,
G K Ep 2
=— (1 =3+ = -1+ —= 4+ — -3 . 24
b= G019+ G017+ (1 2 - 3) (2

Thus, the anisotropic part is only defined using the isochuart of the deformation. The second Piola-Kirchhoff
stress tensor then reads

IsY

~ — 1 3/ ~ D _
T={GCP+Kn(h-01}-C'+Be{1-0} (A.C) -c* . (25)
The Lagrangian stiffness tensor follows with

2 —2/3 _ _ 1 _ _ — - 24
M:3G{—J3/(1@01+01®I)+3J101®C1+J1(01®01)S }

+ 2K {;Jg(Jg —DNCl'eCt - Ji(Js-1)(C® Cl)S“}

1 - s
301®A+A®Cl)+J3/A®A} (26)

2.3.3 Convex combination according to the fibre volume fradgbn

Another ansatz for the energy density stems from the coneexbmnation of the single parts according to the
fibre volume fraction. Such an assumptions can be foundx@amele, in (Sansour, 2008) and is usually applied
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to materials with endless fibres. However, some authorsdi{#ana et al., 2010)) make use of it for short fibre
reinforced materials too. The corresponding relationsead

11)3 = (1 - fvol)wmatrix + fvolql)ﬁbre y (27)
1/)3 = (1 - fvol) {G2]V[(J1 — 3) —+ %(JB _ 1)2}
(28)
GF KF 2 EF 2
+fv01{2(J1 =3+ (= 1)+ oF (14+m3>} ,

where0 < f,o, < 1 stands for the fibre volume fraction. The equations for thesstand the stiffness correspond
to Eq. (22) and Eqg. (23) and only differ in the scalar factdrs f,.) in front of the material parametets,;, K,
andf,o infrontof Gp, K, Ep.

3 Modelling

In this section, a representative volume element (RVE) d¢fcatdibre reinforced material is introduced. The RVE
contains several unidirectional fibres which are randonyrithuted in the matrix material. The RVE’s shape is
restrained to a very simple geometry, i.e. a cuboid. Thi®lls discretised by identical finite elements, which
allow a very fast and simple meshing of the RVE during the F&Epeprocessing. This rough approximation of
the fibre’s geometry is sufficient to cover the global charastics of the RVE, however, local effects like failure
cannot be considered in a proper way. Several parametetsecadjusted in order to represent a broad variety of
materials (se@able2).

Table 2. Parameters for the modelling of the RVE.

Description symbol

fibre volume fraction fvol

minimum distance between fibres dgy,

fibres per spatial direction FPD
length-to-width-ratio X

According to these parameters, a base model is generatedballe model remains unchanged in the following.
Further modifications with respect to, for example, the deg@f the discretisation or the boundary conditions, are
done to copies of the base model, the so called computatioielsor hus, different simulations based on the same
fibre distribution are available and offer reliable compani. Figure 2 shows different computation models. Note,
that their shape resembles a long cuboid more than a regubar chis originates from the consideration of the
parameteFPD (average amount of fibres per spatial direction) in comimnawith the high length-to-width-ratio

of the fibres. The parametéPD is required for a stochastically equivalent variation & BVE's size in section

5.

N

N

NN

NN
W

(a) coarse mesh (b) fine mesh

Figure 2. Computation models with different meshes builbfithe same base model.

Each computation model contains an additional local coatéi system with three auxiliary nodes, the pilot nodes
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Py, P, P; (seeFigure 3). Those nodes are used to determine the average displaicgradient and first Piola-
Kirchhoff stress tensor as explained in section 4. The pitates’ distances to the local coordinate system'’s origin
are described b¥j, I5, I3 and can be chosen arbitrarily. In this work they are séf te [, = I3 = 1mm.

Figure 3. lllustration of the additional pilot nodes. Therakents and nodes of the RVE are defined in the global
coordinate system (base vectars|,_ y y ;). The pilot nodes lie in an external, local coordinate sys(base
vectorse;|,_; , 3).

4 Boundary conditions

Before the RVE is subjected to external loads or displacésneanditions on its boundary have to be defined. The
purpose of the RVE is the determination of effective materiaperties. Therefore, the application of homoge-
neous boundary conditions appears suitable. There existadeconcepts for homogeneous boundary conditions
in the literature (see (Lee, 1993) and references withirl).ofithem fulfill the Hill condition (Hill, 1963) per se
and independently from the RVE’s size.

4.1 Periodic boundary conditions

This work focuses solely on periodic boundary conditiorBEIP PBC offer a compromise between homogeneous

traction and homogeneous strain boundary conditions. Témyire pairs of points, with position vectorsanda:
The PBC couple the displacements of those pairs of points

h-d=H-@-3) (29)

with u being the displacement vector aéo: 1:; — I the average displacement gradient (cf. (@ et al., 2012;
Gluge, 2013)). Thus, the PBC are also referred to as coupletraamts.Figure 4 illustrates the principle of PBC.

Q?T?
X

”3@ '—ai;t

Q
TR

Figure 4. Principle of periodic boundary conditions. Thepificements of the right edgé)(are coupled to the

displacements of the left edgé)( As an average and therefore constant displacement gtaslienposed on the
entire surface, the displacement differedce between right and left edge is constant for every pair of{3oin

In consideration of the periodicity, fibres, which pierce tioundary surface, continue at the opposite surface (see
Figure 10).
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4.2 Implementation in ABAQUS

As already mentioned, PBC are coupled constraints betwaienqf points. BAQUS offers the implementation of
such constraints in the form &QUATIONSsee (Dassault Sy&tnes Simulia Corp., 2011), section 33.2.1), which
linearly relate the displacements of nodes. In order to destnate the applicability of those to the PBC, Eq. (29)
is reformed. Firstly, some abbreviations are introduced

J—

2
U T-z=A

-A

>

IS~
IS

(30)
(1)

1)

A

IS
[Inef
1)

ABAQuUSsdemands explicit equations for the displacements cosffigjevhich is why Eq. (31) is written in notation
with coordinates

Auce, = Hije; ® ej - AT qe, : (32)

Note that the coefficients aku and Az refer to the global coordinate system whereas the coeft®it! refer
to the local coordinate system. In order to obtain the equodtr the single coefficients aku, the base vectors
are contracted with each other

Auce. = HijAT4(¢j - ea)ei | e (33)
Auy = HijATole; - ea)lei-e) - (34)

On the left hand side of Eq. (34) there are the degrees ofdra€d®OF) of the two nodes, which are to be coupled.
On the right side there is the distance between those twdguirthe reference configuratiohz , which is a

constant value. The scalafs; - e,) and(e; - e;) are constant too and relate the directions of both the global
and the local coordinate system (deéigure 3). The only unknown values are the coefficients of the awerag

displacement gradied{;;. Those are determined by

Hy=— . (35)

Thus, all necessary values are known and a system of linemtieqs can be formulated. BAQUS generally
requires equations in the form

1 2 N

a1u1+a2u1+~~~+a1\;u1:0 s
1 2 N

a1l + asts + -+ +anyug =0 R (36)
1 2 N

aiuz +asuz +---+ayuz =0 ,

wherea; are scalar factors andy is the number of involved DOF. The average displacementigmads defined
by three pilot nodes with three DOF each. Together with theD@F from the two nodes to be coupled, Eq. (34)
yields a total number of DORY = 11. Hence, the equation for eagle [X,Y, Z] reads

1 2 Py Py P3
a1up + asup  Fa11u1 taipui Fa13u g
Py Ps P3
Fas1u 2 Fag2u 2 +a3u 2 (37)
P P> P3
+aziusz “+azpus +azzuz =0 ;
with
1 &1 2
ar =1, ax=-1, a;= 7 g (Ta —Ta)(ej - €a)(€i - €1)
T a=x

4.3 Consideration of tilted fibres

Eq. (34) holds for arbitrary base vectarsande;. Therefore the local coordinate system does not need to be
aligned parallel to the global coordinate system. None#®lthe rotation of the local coordinates system bears
some consequences as it changes the physical meaning déftivendtion. Whereas the direction of the fibres

stays constant (parallel to base veatg), the deformation (applied with the help gL-j) points in the direction
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corresponding to the local coordinate system. The loca lastore; is set to lie parallel to the global base vector
ex, i.e. (e; - ex) = 1. Thatis why from now on a rotation of the local coordinatetegsabout the X-axis is
referred to as fibre angle = <(ez; e3). Stresses and strains are evaluated in the rotated localinate system.
Thus, an easy way to consider tilted fibres is provided Egere 5).

=

Figure 5. Left: Only the local coordinate system, and thesapplied deformation, is rotated irBAQuUS . The
RVE and the fibres remain the same. Right: This is equivatedeformations with rotated fibres.

4.4 Average strain and stress

The examination of the average strain and stress is donethdthelp of the average deformation gradiénand
the average first Piola-Kirchhoff stress tengor Both quantities are chosen due to their easy determination

because they are power conjugate. With

F=H+I (38)
and Eq. (35) the deformation gradient can be directly rdl&tethe pilot nodes’ displacements. Furthermore the
time derivative ofé is given by

£ 8 a %
F=H+1=H (39)
- Aﬁ 7Pj a
Hy=" (40)

P;
with v'; being the coefficient of the velocity at pilot node;. The stress poweP; is defined as integral over the
volumeV in the reference configuration

A A
VAN N~ * * ~ *
Ps:/g“gdv:/g"gdv:vg"gzv inji . (41)

Eq. (41) provides the definition of a stress tenibaccording to Eqg. (42). Note that the stress power becomes a
sum of nodal forces multiplied with corresponding nodabegies (see Eq. (43))

T,-j:ﬂT . (42)

p;
Here( ; are the coefficients of the nodal forces at the pilot nédelnserting Eq. (40) and Eq. (42) into Eq. (41)

results into
P; Pj P
o5 Qi vy & By
P,=V = 7 =Q; U . (43)
With Eq. (35), Eq. (38) and Eq. (42) a full set of average b(amatondmons can be prescribed, be it for deforma-

tion or stress. In order to achieve a static equmbrlumernoeﬁ‘lmentST” or F” must be defined. Furthermore,
three of the following deformations must be prescribed bteotto avoid rigid body rotations

Fi3 or Fo )
F*'lg or lj;gl s (44)

¢ *
F23 or F32
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5 Generation of synthetic data

The RVE introduced in section 3 is now used to generate stiottxperimental data. Therefore, the PBC together

with different combinations of stress and deformation lutarg conditions’;; and F';;) are applied. First, some
investigations concerning the average stress as well aotivergence are presented.

5.1 \Verification of the average stress

In order to verify Eq. (42), a RVE made up of 25% fibres is sulgj@¢o uniaxial tension with a stretch af= 1.5

in the direction of fibres, i.eo = 0°. Then the resulting homogenous Cauchy stress is calculesied both
Eq. (42) together with Eq. (18) and the average over all Gpasg (GP) valuesFigure 6 shows the comparison
of both methods. Both curves are almost identical and tbezéndicate the correctness of Eq. (42).

20 4
15 |
—— Pilot
S 10 .
© e Gausspoint
5 4
0 -
1 1.1 1.2 1.3 1.4 1.5
AL

Figure 6. Verification of average stress obtained by evalgahe pilot's nodal forces. The results are compared
to the stress values, which were received by averaging al§Spoints.

5.2 Convergence

Here, the influence of the RVE’s size and mesh density is exaani Toward this end, the norm of the Eulerian
stiffness is chosen as a measure for comparison. The stffiieelates the Cauchy stressand the linearised

lin

strain 3
o=C-F . (45)
The coefficients follow with 5
o
Ciipl = —2 46
Jkl agkl ( )

5.2.1 Size of the RVE

The parametefPD determines the average number of fibres per spatial direatid hence allows a stochastically
equivalent variation of the RVE’s size. Itis increased frbrio 4 whereas all other parameters are kept constant.
For each value dfPD ten computation models are created. Thus, there resultiferess tensors for ten different
fibre distributions. Those ten stiffness tensors are aeetam order to compare the averaged stiffness tensors of
each value oFPD, the relative norm of the difference tensor is computed. Mbst accurate result is assumed for
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the highest number of fibres and therefore biggest RVE. Tihemndative nornﬂAé‘,elH reads

IAC ]| = == 100% , i=1234 . (47)

As the mean value of the stiffness tensors does not deliweindormation about the fluctuations, the coefficient
of variation is additionally computed and can be foundamle3. Figure 7 shows the course of the relative norm
over the parametd¥PD. The relative norm of the difference between the stiffnessars is already very small
for FPD = 1. The corresponding coefficient of variation is also alreaelyy small with only 1.3%. Due to the
fact that an increase &fPD results in a significant increase of the computation tiMi&,D = 1 is chosen in the
following simulations.

Table 3. Coefficient of variation of stiffness tensor’s
norm for different values ofPD.

1.5-1074 |
FPD COV [%]
= 1 1.3415
R 107 2 0.2577
3 3 0.1840
- 4 0.1148

5-107° |

1 15 2 25 3 35 4
FPD [

Figure 7. Relative norm of stiffness over paramé&teb.

5.2.2 Mesh density

A similar comparison is done for the mesh density, meanigrethe relative norm of the difference of the stiffness
tensors will be examined for different mesh densities. Tini® only one base model but different computation
models with different meshes come into operation. The mesiity is influenced by the number of elements per
fibre in transversal(, ) and longitudinal f ) direction. Additionally, the computation time is recoddeecause
an increase of the element number significantly affectsithalation time. Similarly to the relative norm of the

stiffness difference, a relative measure of tii?pg; is calculated. Here the model with the fewest elements id use
as a reference

P
trel = i (48)
t

In contrast to the analysis of the RVE's size, the convergeneasures depend on two instead of one parameters.
This is why both measures are plotted over several gairsn). Figure 8 illustrates the influence of the mesh
density on the convergence and the computation time. Thehgreeveal the significant influence of the mesh
density on the convergence. The coarsest mesh (not plaitetid purpose of clarity) results in a norm of the
stiffness approximately 70% higher than the converged dime difference of the stiffness decreases with finer
meshes. Apparently, the lack of a sufficient number of elémeauses a stiffening of the simulated material. The
flat slope of the surface plot at high valuesrof andn, indicates almost converged material behaviour. It can
be seen that the number of elements in transversal direglys a minor role. The same can be observed for the
ratio

e

ny
More important is the absolute number of elements as welhasntumber of elements in longitudinal direction.
The plot of the computation time displays an opposite tr&¥ith increasing numbers of elements, the needed time
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2,000
1,600 |
1,200 |
800 |
400

Figure 8. Relative norm of the stiffness difference (leftlaelative computation time (right) for different com-
binations of element numbers per fibre in transversal angitiedinal direction. The transparent planes mark the
acceptable values. The dashed lines belong to the meshidsmgiich correspond to these values.

for the computation increases too. A relative differencéhefstiffness tensors 6f% is considered as converged.
All combinations ofn andn to the right of the dashed line in the left graph fulfill thisneergence criterion.
However, more accurate results require higher computéitiees. The combinations of, andn to the left of
the dashed line in the right graph need less than 400% of timpetation time of the coarsest mesh. A good
compromise between accuracy and low computation time cdouel atn; = 4 andn| = 16. Such a RVE can
be seen irFigure 9.

Figure 9. Complete RVE for the simulations.

Figure 10. Front view of patterns reveal the periodicity.
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5.3 Synthetic experimental data

In the following, four different simulations with the RVEdm Figure 9 are performed. Thus, the RVE’s capability
to consider different fibre angles is demonstrated. Theesponding experimental parameters can be found in
Table4. The boundary conditions are listedTiable5.

Table 4. Parameter setup of the simulations.

Parameter Value(s)

fvol 25%

X 20

FPD 1

© {0°,15°,30°, 45°,60°, 75°,90°}

Material Type Parameter

fibre NeoHooké Ci;g=25 , D;=0.018467
matrix NeoHooké Cijpo=1 , D; =02

Table 5. Boundary conditions of the four simulations.

Simulation Boundary Condition Limits

-7*:11:0 1}?12:0 1*?13:0_
Sim. 1 tension/compression For=0 To=0 Fay3=0 A €[0.818,1.2]
_f?31=0 Z:;3220 I*t33=>\_
-fjn:l 11512:0 5'13:0_
Sim. 2 simple shear Fo1=0 Foo=1 Fo3=x k € [-0.2,0.2]
_f?31=0 Z;3220 Z::33:1_

-an:A 1;?12:0 5'13:0
Sim. 3 purely volumetric deformation | fy; =0 Fao =\ Fa3 =0| A€ [0.818,1.2]
_f’;31=0 ;’3220 ;’332)\
-an:l 1312:0 Z313:0
Sim. 4 confined compression For=0 Fa=1 Fy3=0 A € [0.818,1.0]
_1{’2312O i‘:32=0 ;’332)\

Figure 11 shows the course of3 over the stretch\ in a tension/compression test. It can be seen that an ircreas
of fibre anglep results into a decrease of the stiffness. The curves of fimgeeay < 30° exhibit a kink at smalll
stretches\ < 0.9. This behaviour stems from the RVE’s ability to answer wititkling, due to an unsymmetrical
fibre distribution. Because of the periodic boundary caodg, the homogenised material behaviour inherits the
same tendency to buckling. However, in a real material theeepatterns with different fibre distributions and
therefore tendencies to different sideways motions, wbarhpensate each other. That is why the RVE’s buckling
is a structural instability effect. Note, that there areemaburs (cf. Miehe et al. (2002)) to incorporate the stmadtu
instabilities as material instabilities.

1Those are parameters required bga®us . They correspond t6'19 = % andD; = %
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(a) Cauchy stress (b) buckling

Figure 11. Cauchy stress over strain during tension/cosse (a) and buckling of the RVE at valugs< 0.9

(b).

The evaluation of simple shear (deigure 12(a)) reveals a clear anisotropic impact by the fibres. Tiesscurves
grow linearly and in some cases non linearly. This fact dates with the different deformations the fibres exhibit
at the single fibre angles and valuesxof The material response far = 0°,90° is the same at both directions
of shear. In contrast to this, with = 15°,30°,45°, the fibres experience lengthening at positive values of
and shortening at negative values+of Thus, a shear anisotropy is visible. However, that is netahse for

p = 60°,75°. The confined compression results ($&gure 12(b)) resemble tension/compression witk< 1.0
but exhibit a higher stiffness since the RVE’s volume is &ddally changed.

—o—p=0°
—m— = 15°

——p =0°
——p = 15°

—e—p = 30° —e—p = 30°
—— = 45° ——p = 45°
—o—p = 60° —— = 60°
-o-p=T5° -o-p=T75°
-@-p = 90° - - =90°
02 —01 0 0.1 0.2 T 085 0.9 0.95 1
% [ AL
(a) simple shear (b) confined compression

Figure 12. Cauchy stress over strain during simple shean@yonfined compression (b).

Lastly, the stresses of purely volumetric deformation fiedent fibre angles are comparedrigure 13. Similarly

to tension/compression, the stresg decreases with growing fibre angles ($égure 13(a)). In accordance to
the boundary conditions, which prohibit shear deformattbiere are shear stresses (Baure 13(b)), meaning

a purely volumetric deformation induces a non-hydroststiiess tensor. The shear stresses align symmetrically
aroundyp = 45° and vanish ap = 0°,90°.
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(a) normal stress (b) shear stress

Figure 13. Cauchy stress over strain during purely voluimdgformation.

6 Parameter identification

In this section, the material parametéfsk, Er from the three energy densities Eq. (21), Eq. (24) and EQ. (28
are fitted to the synthetic data obtained in the previous@edEirst, the methodology of the identification will be
shortly explained. Then the predictions of the hyperatasthdels with the identified parameters will be compared
to the data obtained by the RVE.

6.1 The optimisation procedure

The optimisation is performed with the help ofAvLAB using the built-in functioisgnonlin During each itera-
tion, MATLAB invokes ABAQUS with a new set of material parameterss#Qus then computes the values of the
target function at a single Gauss point using the correspgrisbundary conditions. Subsequently, the residuum
vector is defined by the difference of the target values aadsymthetic data. The starting parameters as well as
the parameters of the RVE materials can be fourithinle6.

Table 6. Initial parameters (left), shear and bulk moduligboes and matrix in the RVE (right).

G [GPa] K [GPa] Ey[GPa] Gr[GPa] Kp[GPa] Gy [GPa] K [GPa]
1 1 1 50 108 2 10

6.2 Comparison ofy; and ),

The energy densities,; and, are fitted to the data from purely volumetric deformationtds points out the
differences between both energy densiti@able 7 shows the identified material parameters. It can be seén tha
the shear modulus of both energy densities cannot be detednais the residuum’s derivative with respect to the

shear modulus equals zero 5
r
G =0 (49)
with r being the residuum. This is expected due to the hydrostatic bf the corresponding deformation gradient
F. The bulk moduli are similar with only 0.8 [MPa] deviationh& main difference can be observed at the fibre’s
Young's modulus. WhereaB of ¢, has no influence, the value &fy for the first energy density is changed
significantly. The reason behind this lies in the invaridnt C' always equald when the deformation gradient

has a hydrostatic form. In such case,
J4 =1 y "/}aniso,Q =0 ) g = _pi y (50)
with the hydrostatic pressuge However, the dependency of the stress tensor on the fibte @rfggure 13 shows

orve # —pl . (51)
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Figure 14 reveals the physical meaning of the differences betweemdq),. Figure 14(a) as well agigure 14(c)
show thaty; catches the anisotropic influence of the fibres. There is @ ggoeement fol > 1 and slight
deviations for\ < 1. Figure 14(b) andFigure 14(d), however, demonstrate the energy density’s indegesel
from the fibre angle as the curves of the single fibre angleslaigentical and there are no shear stresses. Here,
only the isotropic part is fitted to the data, meaning theltiegumaterial parameters accord to the best compromise
between all the fibre angles. Note that the same behavioubeatserved for almost incompressible fibre and
matrix materials.

This comparison points out thétte invariant.J, is not suited to represent the anisotropy in case of a purely
volumetric deformationsThat is why only the invariank, is used in the following.

Table 7. Identified material parameters after fitting to theadrom purely volumetric deformation using bdth
andJ,.

v G[GPa] K [GPa] FEr|[GPa]

U1 - 13.2759  24.5004
o - 15.4082 -

10 ,.’;,
/:‘// — Iy =0
5 gens ---I; ©=30°
73 Iy ¢=45°
5 0 L =90
© _a ) ¢ RVE ¢=0° ©
. i g e RVE ¢ =30°
Tt = RVE ¢=45°
. 4 RVE ¢=90°
_ |’
108
0.9 1 11 12 0.9 1 1.1 1.2
A AL
(@) o33, 91 (b) o33, 92
| =]
1 g8 ! g °
R ]
04 el —1I p=0° 0 <] —Js p=0°
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-4 ---Iy p=230° a Se- i @ =30°
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© o o RVE ¢=0° S ¢ RVE ¢=0°
-2 B e RVE ¢ =30° o e RVE ¢ =30°
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(€) 023, 91 (d) 023,92

Figure 14. Comparison of material model’s behaviour wittadeom the RVE (25% fibres) obtained during purely
volumetric deformation. The diagrams show the longitudgieess as well as the shear stress over the volume
stretch for two different energy densities.

6.3 Minimal set of experiments

The identification of material parameters is an expensidetiame consuming process. Naturally, the experimental
effort should be reduced to a minimum. That is why in this iseca minimal set of data for the identification

is presented. Each set of data represents a real experideethe comparison of Eq. (21) and Eg. (24) showed,
a purely volumetric deformation is not suited to identifg tbhear modulus. In contrast, a purely isochoric de-
formation would not be influenced by the bulk modulus. Thudeast two simulations are necessary. In order
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to cover the shear modulus and the fibre’s Young’s modulestahsion/compression simulation is chosen. The
anisotropy is caught by two different values of the fibre angk. 0°,90°. Those are favourable because they do
not need special consideration at the fixation of the spetiniea real experiment, as no shear deformations are
expected. The data for stretch values: 0.9 are ignored because the material model is not supposed sideon
the RVE'’s structural instability. The bulk modulus coulddmrered by the purely volumetric deformation but the
related experiment would be very difficult to realise in pi@e That is why a confined compression with the only
fibre anglepy = 0° is chosen. The minimal set of experiments can be sedalife8. The identification delivers
the values inTable9. This time the resulting material behaviour is comparetth Wwie synthetic data of all four
simulations inFigure 15. For the purpose of clarity, only four different fibre agghre presented. Although, only
three sets of data are used for the identification, the n@teondel is capable of representing the RVE’s behaviour.
The only differences can be seenkigure 15(a) andFigure 15(d) for A\ < 0.9 as well as inFigure 15(c) for

A < 1. The latter indicates effects of the short fibres which artecowered by the energy density. However, it
shall be emphasised again, that the material parameteonbréitted to two simulations with only two different
fibre angles, but this is sufficient to describe the matergildviour for arbitrary loading conditions in general
simulations.

Table 8. Minimal set of experiments Table 9. Identified material parameters using the
Simulation Fibre angle minimal set of simulations.
tension/compression  0°, 90° G[GPa] K[GPa] Er[GPa]
confined compression 0° 3.8511  13.7987  20.5426
6
4 ®
o ® —GP p=0°
] =]
2 ° ;Ba ---GP p=230°
< ._'. g ® GP ¢ =45°
3 9 o ---GP p=90°
© .y ¢ RVE ¢=
L o RVE ¢=30°
—2g !.(.»' m RVE ¢ =45°
s+ RVE ¢=090°
74 . °
—6
0.9 1 11 1.2 0.2 —0.1 0 0.1 0.2
A s [}
(a) tension/compression (b) simple shear
0
& ;’: E’e:'
9 ‘A::',‘/ —GP p=0° —GP o=
& /("./" S GPop=30° ---GP ¢ =30°
I GP ¢ =45° GP ¢ =45°
PRV SN LY -—-GP ¢ =90° -—-GP p=90°
€ Lut e ¢ RVE o= ¢ RVE ¢=0°
o e RVE ¢ =30° e RVE ¢ =30°
67 3 s RVE ¢ =45° s RVE ¢ =45°
..‘ s RVE ¢ =90° 4 RVE ¢=90°
*
-8
0.85 0.9 0.95 1 0.9 1 11 1.2
A AL
(c) purely volumetric deformation (d) confined compression

Figure 15. Comparison of material model's behaviour (Gaumst, GP) with data from the RVE (25% fibres).
The material parameters are fitted to the minimal set of éxyats.

6.4 Convex combination

Energy density; corresponds to a convex combination with respect to the fibkeme fractionf,.;. Eq. (28)
allows a direct consideration of the amount of fibres. Onerpretation of this ansatz states that one and the same
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set of parameter§'y;, K, Gr, Kr, Er applies to RVEs with the same matrix and fibre materials bifereint
values of f,,;. This approach is tested with the help of three RVEs comgjsdf 10%, 20% and 25% fibres
respectively. The identification of the material paranetequires data from RVEs with at least two different
values off,,;. Otherwise, the parametefs,; andG ¢ as well asKy; and Kz could not be distinguished. Here,
the valuesf,,; = 10% and f,,; = 25% are used for the identification. The material parameterptienised
adopting the minimal set of experiments (Jedle8). The identified parameters can be foundable10. Using
these parameters together with,, = 20%, Eq. (28) is supposed to predict the behaviour of the RVE lwhic
contains 20% fibres.

Table 10. Identified material parameters using a convex auatibn of energy densities.

Gy [GPa] K [GPa] Gr [GPa] Kp [GPa] Er [GPa]

start value 1 1 1 1 1
identified value 1.8723 9.8631 10.0289 24.0770 79.4441

Figure 16 compares the identified material model with the controERVhe values at the Gauss points reveal a
good correspondence to the data obtained by the RVE. Alththegshort fibres and the matrix material experience
different deformations, in contrast to endlessfibre-@micéd materials, the deviations between the RVE data and
the predicted values of the identified material model arellsnidence, Eq. (28) seems to be suitable for the
consideration of variable fibre volume fraction.

o 0
*
3 AT
4 ATE
o gt cyaeR
o ,,9’ —GP p=0° 4,‘:.“. —GP =0
9 9 92 @B - GP =30 —2 argE e ---GP o =30°
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3 A ~—-GP  p=90° a P I R ---GP =090°
s 0 o ¢ RVE ¢=0° S _,tom® e 4 ¢ RVE ¢=0°
a2 e RVE ¢=30° 0% 6 o e RVE ¢ =30°
_o lm 0% ® = RVE ¢ =45° e ® 7 = RVE ¢=45°
to © § s RVE ¢ =90° e o 4 RVE ¢ =90°
° 3 *
-6
4 . (] 5 ®
0.9 1 1.1 1.2 0.85 0.9 0.95 1
AH AL
(a) tension/compression (b) confined compression

Figure 16. Comparison of material model’'s behaviour (Gaasst, GP) with data from a RVE containird)%
fibres. The material parameters are obtained fiaie10.

7 Conclusion

Three different hyperelastic models to describe trans¥ésestropic behaviour of short fibre reinforced materials
were discussed. The constitutive equations are designedrfye deformations and make use of invariants of
the right Cauchy-Green tensor as well as the structurabter@e material models were fitted to synthetic data
obtained with the help of a representative volume elemefiEJRThe RVE contains unidirectional fibres which are
randomly distributed according to several parameterstigdibre volume fraction or the minimal distance between
the fibres. The concept of computation models derived fraarstime base model enables a good comparison of
different simulations with the same fibre distribution. Tka to the refined modelling of the RVE, the effective
stress is accurately predicted as long as there are suffelEements, mainly in longitudinal direction.

Periodic boundary conditions (PBC) were applied to the RgEhay fulfill the Hill condition per se and do not
cause any artificial stiffening or softening. The tensdieamulation of the PBC allows deformations aslant to the
fibres. Thus, one and the same model can be used for diffebeatdngles. Thanks to three auxiliary nodes, the
average strain and stress can be directly evaluated. Tlessey relations for the implementation of the PBC into
ABAQUS were provided.

Four simulations with the RVE revealed its anisotropic mies. The fibre angle has a significant impact on
the stiffness at the tension/compression as well as thermahfiompression. Deformations in the area of big
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compression lead to a structural instability of the RVE. €ffect of the lengthening and shortening of the fibres
during simple shear can be clearly seen.

The parameters of the three material models were fitted teythihetic experimental data. It could be pointed out
that the mixed invariant for the isochoric right Cauchy-&réensor ignores purely volumetric deformations. As a
consequence, the mixed invariants should be only useddaight Cauchy-Green tensor of the entire deformation.
It could be also concluded that a set of only three experimésmt tension/compression at fibre angfle90° and
confined compression at fibre an@l®g is sufficient to identify material parameters, which cother whole span

of fibre angles as well as several experiments, e.g. simmgarsind purely volumetric deformation. This set
of experiments was carefully chosen with respect to itstiraloility. The comparison of the RVEs with different
amount of fibres revealed that a convex combination of theggrdensity according to Eq. (28) seems to be capable
of interpolating the stress response between differenegadf f,,; and a constant set of material parameters.

The present paper introduced a method to consider tiltedsfitvhich allows simulations with one and the same
RVE under different fibre angles. This method is universalbplicable as long as the RVE fulfills the PBC’s
requirements such as opposing points. In this work, canistt relations for hyperelastic materials were analysed.
However, the use of the#Qus User Subroutine UMAENables the implementation of arbitrary material models
as long as the required values of stress and stiffness carobieled. Thus, in further research, more complicated
effects like viscosity as well as plasticity will be considd. Furthermore, comparisons of data obtained by the
RVE with data from real experiments will be object of resbarc
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