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Evaluation of hyperelastic models for unidirectional short fibre reinforced
materials using a representative volume element with refined boundary
conditions

N. Goldberg, H. Donner, J. Ihlemann

The simulation of a short fibre reinforced structure by meansof the FEM requires the knowledge of the material
behaviour at every Gauss point. In order to obtain such information, a representative volume element (RVE)
containing unidirectional short fibres is analysed in the presented work. In order to cover the complete anisotropic
effect of the fibres, deformations with different angles to the fibre direction have to be conducted. In contrast to
other works, this task is tackled using the application of periodic boundary conditions to the RVE in tensorial
form, which enables a simple access to consider varying fibreangles with one and the same RVE. As the RVE’s
average response represents the homogenised behaviour at amacroscopic material point, the material models’
parameters can be identified by fitting them to stress-straincurves obtained from simulations with the RVE. The
findings of these analyses are used to assess the applicability of several hyperelastic models describing transversal
isotropic materials under consideration of large deformations. For example it is shown, that the formulation of
mixed invariants with the isochoric right Cauchy-Green tensor is insufficient to reproduce the RVE’s behaviour
at purely volumetric deformations. Both the modelling and the calculations are carried out with the commercial
FEM software ABAQUS. Insight is given to the implementation of the boundary conditions as well as the underlying
constitutive equations.

1 Introduction

Despite showing homogeneous properties on the macroscopicscale, short fibre reinforced materials are made up of
heterogeneities on a microscopic scale. In order to adequately simulate such materials using the FEM, a continuum
mechanical model for every Gauss point is required. Such a model should include the characteristics of the material
behaviour at the macroscopic scale, meaning it has to represent the features of a matrix material with fibres. The
investigation of those features can be done taking advantage of a representative volume element (RVE).

The RVE contains a representative amount of heterogeneities (short fibres) whose local responses to external loads
or displacements differ from the RVE’s response. However, the averaging of these local responses over the RVE
provides a homogeneous response, which equals the global characteristics of the RVE. The RVE’s size plays a
significant role. On the one hand it has to be larger than the heterogeneous structures it contains in order to include
a sufficient amount of them. On the other hand it must be small enough to be treated as an infinite point on the
macroscopic scale. The Hill condition (Hill, 1963) evaluates the RVE’s size in such a manner. This criterion
reaches back to 1963 and proposes the equivalence between the deformation energy on the macro scale and the
overall deformation energy of the RVE. Later on the condition was extended to a similar equivalence between the
stress power on micro and macro scale (Glüge, 2013).

One of the main characteristics of the short fibre reinforcedmaterial is its anisotropy induced by the high length-to-
width-ratio of the fibres. In order to cover these anisotropic features, the RVE has to be investigated under different
angles between the fibres’ direction and the direction of theexternal load and displacement. Several approaches
to achieve this task can be found in the literature. Ideally,a RVE would model the micro structure in complete
accordance to the real material. Due to limitations in the modelling and calculation capacities, the RVE usually
contains only a discretisation of the actual topology. A well established way of doing this is the use of two- (2D)
or three-dimensional (3D) finite element models. The publications (Xia et al., 2003; Chen and Liu, 2004; Abadi,
2012) deal with RVEs consisting of a single fibre surrounded by matrix material whereas (Shan and Gokhale,
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2002; Gonźalez and LLorca, 2007) are focused on 2D RVEs with multiple fibres. The paper (Wang et al., 2011)
deals with a voxel-based approach to model RVEs with short cylindrical inclusions randomly distributed in the
3D space. In (Gl̈uge et al., 2012) spheric particles in cubic and spheric RVEsare considered. Another approach
was advocated by (Reese, 2003) where fibres were discretisedby wire elements. Up to the authors’ knowledge,
all approaches in the literature require the modelling of actually rotated fibres in order to capture the anisotropic
properties.

In the present work, a RVE, which allows the consideration ofmultiple fibre angles, is introduced. The RVE excels
with its simpleness and flexibility. Special considerationis given to the choice of the boundary conditions and
their implementation into the FEM software ABAQUS. The RVE is subjected to several deformations in order to
generate synthetic reference values and demonstrate the RVE’s anisotropic properties. The synthetic data are taken
to identify the material parameters of several hyperelastic material models. The comparison of the data obtained
by the RVE and the predicted data by the material model with identified parameters is then used to assess the
applicability of the constitutive assumptions of the material models.

1.1 Notation

The present paper makes use of a coordinate-free tensor notation. The number of bars under the tensor symbol
represents the tensor’s order, i.e. vectors read for example r and second-order tensorsX. The tensor’s coeffi-
cients are related to orthonormal base vectors, e.g.X = Xabea ⊗ eb. The base vectorsea|a=X,Y,Z refer to the
global coordinate system whereas base vectors, corresponding to the local coordinate system (see section 3), are
distinguished by a different indexei|i=1,2,3. The treatment of the indices corresponds to the Einstein summation
convention. The tensor product is symbolised by ’⊗’. The operator ’·’ describes a single contraction between base
vectors. Multiple dots mean multiple contractions such that

(ea ⊗ eb) · (ec ⊗ ed) = (eb · ec)ea ⊗ ed = δbcea ⊗ ed ,

(ea ⊗ eb) ·· (ec ⊗ ed) = (eb · ec)(ea · ed) = δbcδad ,
(1)

whereδ is the Kronecker delta.I is the second-order idenditiy tensor. The Frobenius norm ofa tensorX is

denoted by‖X‖. Tensors in the reference configuration readX̃. The material time derivative
△

X is defined by

△

X =
.
Xabea ⊗ eb , (2)

with fixed base vectors. Averaged macroscale values are labelled as
∗
X. Furthermore, a symmetry operator for

fourth-order tensors is introduced as follows

KS24 =
1

4
(Kadcb +Kdacb +Kadbc +Kdabc) ea ⊗ eb ⊗ ec ⊗ ed (3)

The deviator of a second-order tensor reads

XD = X − 1

3
( I ··X) I . (4)

1.2 List of symbols

K, K̃,
∧
K current, reference and intermediate configurations

F , C deformation gradient, right Cauchy-Green tensor
ã fibre orientation in reference configuration
Ã structural tensor

J1, J2, J3 invariants ofC
I4, I5, J4, J5 mixed invariants ofC andÃ

ψ energy density
σ, T , T̃ Cauchy stress tensor, first and second Piola-Kirchhoff stress tensors
C,M Eulerian and Lagrangian stiffness tensors
1
J3

k∗ stiffness tensor required by ABAQUS

G,K,EF shear modulus, bulk modulus and Young’s modulus of fibre in the material model
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λF stretch of fibre
fvol fibre volume fraction
dfib minimum distance between fibres

FPD average number of fibres per spatial direction
χ length-to-width-ratio of single fibre

l1, l2, l3 pilot nodes’ distance to local origin
u displacement vector

x, ∆x position vector, difference of two position vectors
∗
H,

∗
F ,

∗
T averaged values of: displacement gradient, deformation gradient and first Piola-Kirchhoff

stress tensors
a1, a2, aij scalar factors for linear constraints in ABAQUS

ϕ fibre angle
Ps stress power
vi coefficient of velocity
Ṽ reference volume

n⊥, n‖ number of elements per fibre in transversal and longitudinaldirection
λ, κ stretch and shear

GM /GF shear modulus of matrix/fibre in the RVE
KM /KF bulk modulus of matrix/fibre in the RVE

2 Material model

This section presents several phenomenological material models which are used to describe transversal isotropic
materials under consideration of large deformations. In particular, the kinematic foundations as well as the con-
tinuum mechanical framework are introduced. The material models are implemented in ABAQUS via theUser
Subroutine UMAT.

2.1 Kinematics

Figure 1. Commutative diagram.

Figure 1 illustrates the underlying kinematics. The deformation gradientF maps vectors from the reference con-

figurationK̃ to the current configurationK. F can be split into its purely volumetric partJ
1/3
3 I with J3 = detF

and its isochoric partF . This procedure is also referred to as Flory split (Flory, 1961)

F = J
1/3
3 I · F → F = J

1/3
3 F . (5)

F maps vectors from the reference configuration to the intermediate configuration
∧
K. The right Cauchy-Green

tensor of the isochoric deformation is referred to asC

C = F T · F = J
2/3

3 FT · F = J
2/3

3 C . (6)

2.2 Continuum mechanics framework

In order to postulate an isotropic energy densityψ (free energy per unit of volume), some invariants are introduced
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J1 = C ·· I ,

J2 =
1

2

(
(C ·· I)2 − C2 ·· I

)
,

J3 = detF .

(7)

The invariantsJi with i = 1, 2, 3 correspond to the isotropic part of the material model. Notethat the Flory split
is used, i.e. the invariants are applied to the purely volumetric and the isochoric parts respectively. In order to
consider the anisotropic part, the rank 1 structural tensor(cf. (Schr̈oder and Neff, 2003)) is introduced

Ã = ã ⊗ ã . (8)

The vectorã describes the orientation of the fibres in the reference configuration. In accordance to the concept
of the integrity bases (the reader is referred to (Smith, 1965; Spencer, 1961; Spencer and Rivlin, 1958, 1962;
Spencer, 1965)), mixed invariants are formulated. Following the argumentation presented in (Sansour, 2008) and
(Helfenstein et al., 2010), the mixed invariantsI4, I5 are introduced

I4 = C ·· Ã , (9)

I5 = C2 ·· Ã . (10)

In contrast to this, some authors (Holzapfel and Gasser, 2001; Andriyana et al., 2010) define the mixed invariants
using the isochoric part of the deformation

J4 = C ·· Ã , (11)

J5 = C2 ·· Ã . (12)

Assuming decoupled effects of the isotropic-isochoric, the isotropic-volumetric and the anisotropic parts of the
energy density,ψ reads in general

ψ = ψisochoric(J1, J2) + ψvolumetric(J3) + ψanisotropic(I4, I5) , (13)

and
ψ = ψisochoric(J1, J2) + ψvolumetric(J3) + ψanisotropic(J4, J5) , (14)

respectively. The Clausius-Planck inequality for hyperelastic materials without change of temperature reduces to
the identity

1

2
T̃ ··

△

C −
.
ψ = 0 . (15)

The insertion of the energy density Eq. (13) or Eq. (14) into Eq. (15) yields the equation for the stress tensor in the
reference configuration

T̃ = 2
∂ψ

∂C
. (16)

Here, the derivative is understood as a derivative with respect to a symmetric tensor (cf., for example, (Shutov and
Kreißig, 2008)). The first Piola-Kirchhoff stress tensorT as well as the Cauchy stress tensorσ can be obtained
with the help of the following relations

T = T̃ · FT , (17)

σ =
1

J3
F · T̃ · FT . (18)

The Lagrangian stiffness tensor reads

M = 4
∂2ψ

∂C∂C
. (19)

According to (Ihlemann, 2014), the commercial FEM softwareABAQUS requires the stiffness tensor

1

J3
k∗ =

1

J3

((
F ⊗ FT

)S24 ··M ··
(
FT ⊗ F

)S24

)
+ 2

(
σ ⊗ I

)S24

, (20)

which can be computed using the Lagrangian stiffness tensorM .

83



2.3 Concrete ansatz for the free energy density

2.3.1 Energy density with mixed invariantI4

To be definite, the following ansatz forψ is considered

ψ1 =
G

2
(J1 − 3) +

K

2
(J3 − 1)2 +

EF

6

(
I4 +

2√
I4

− 3

)
, (21)

whereG is the shear modulus,K is the bulk modulus andEF is the fibre’s Young’s modulus. Eq. (21) corresponds
to an extension of the NeoHooke law and can be found, for example, in (Guo et al., 2007). Using Eq. (16), the
second Piola-Kirchhoff tensor reads

T̃ =
{
GCD +KJ3(J3 − 1) I

}
· C 1 +

1

3
EF

{
1− I

3/2
4

}
Ã . (22)

According to Eq. (19), the Lagrangian stiffness tensor is defined by

M =
2

3
G

{
−J−2/3

3 ( I ⊗ C 1 + C 1 ⊗ I) +
1

3
J1C

1 ⊗ C 1 + J1
(
C 1 ⊗ C 1

)S24

}

+ 2K

{
1

2
J3(J3 − 1)C 1 ⊗ C 1 − J3(J3 − 1)

(
C 1 ⊗ C 1

)S24

}

+ EF I
−5/2
4 Ã ⊗ Ã .

(23)

2.3.2 Energy density with mixed invariantJ4

Similarly to Eq. (21),ψ2 can be reformulated with the mixed invariantJ4 instead ofI4

ψ2 =
G

2
(J1 − 3) +

K

2
(J3 − 1)2 +

EF

6

(
J4 +

2√
J4

− 3

)
. (24)

Thus, the anisotropic part is only defined using the isochoric part of the deformation. The second Piola-Kirchhoff
stress tensor then reads

T̃ =
{
GCD +KJ3(J3 − 1) I

}
· C 1 +

1

3
EF

{
1− J

3/2
4

}(
Ã · C

)D

· C 1 . (25)

The Lagrangian stiffness tensor follows with

M =
2

3
G

{
−J−2/3

3 ( I ⊗ C 1 + C 1 ⊗ I) +
1

3
J1C

1 ⊗ C 1 + J1
(
C 1 ⊗ C 1

)S24

}

+ 2K

{
1

2
J3(J3 − 1)C 1 ⊗ C 1 − J3(J3 − 1)

(
C 1 ⊗ C 1

)S24

}

+ EFJ
−5/2
4

{
1

9
J2
4C

1 ⊗ C 1 − 1

3
(C 1 ⊗ Ã + Ã ⊗ C 1) + J

−4/3
3 Ã ⊗ Ã

}

+
2

3
EF (1− J

−3/2
4 )

{
1

9
J4C

1 ⊗ C 1 − 1

3
J

−2/3
3 (C 1 ⊗ Ã + Ã ⊗ C 1)

+
1

3
J4

(
C 1 ⊗ C 1

)S24

}
.

(26)

2.3.3 Convex combination according to the fibre volume fraction

Another ansatz for the energy density stems from the convex combination of the single parts according to the
fibre volume fraction. Such an assumptions can be found, for example, in (Sansour, 2008) and is usually applied
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to materials with endless fibres. However, some authors ((Andriyana et al., 2010)) make use of it for short fibre
reinforced materials too. The corresponding relation reads

ψ3 = (1− fvol)ψmatrix + fvolψfibre , (27)

ψ3 = (1− fvol)

{
GM

2
(J1 − 3) +

KM

2
(J3 − 1)2

}

+ fvol

{
GF

2
(J1 − 3) +

KF

2
(J3 − 1)2 +

EF

6

(
I4 +

2√
I4

− 3

)}
,

(28)

where0 ≤ fvol ≤ 1 stands for the fibre volume fraction. The equations for the stress and the stiffness correspond
to Eq. (22) and Eq. (23) and only differ in the scalar factors(1−fvol) in front of the material parametersGM ,KM

andfvol in front ofGF ,KF , EF .

3 Modelling

In this section, a representative volume element (RVE) of a short fibre reinforced material is introduced. The RVE
contains several unidirectional fibres which are randomly distributed in the matrix material. The RVE’s shape is
restrained to a very simple geometry, i.e. a cuboid. This cuboid is discretised by identical finite elements, which
allow a very fast and simple meshing of the RVE during the FEM’s preprocessing. This rough approximation of
the fibre’s geometry is sufficient to cover the global characteristics of the RVE, however, local effects like failure
cannot be considered in a proper way. Several parameters canbe adjusted in order to represent a broad variety of
materials (seeTable2).

Table 2. Parameters for the modelling of the RVE.

Description symbol

fibre volume fraction fvol
minimum distance between fibres dfib

fibres per spatial direction FPD
length-to-width-ratio χ

According to these parameters, a base model is generated. The base model remains unchanged in the following.
Further modifications with respect to, for example, the degree of the discretisation or the boundary conditions, are
done to copies of the base model, the so called computation models. Thus, different simulations based on the same
fibre distribution are available and offer reliable comparison.Figure 2 shows different computation models. Note,
that their shape resembles a long cuboid more than a regular cube. This originates from the consideration of the
parameterFPD (average amount of fibres per spatial direction) in combination with the high length-to-width-ratio
of the fibres. The parameterFPD is required for a stochastically equivalent variation of the RVE’s size in section
5.

(a) coarse mesh (b) fine mesh

Figure 2. Computation models with different meshes built from the same base model.

Each computation model contains an additional local coordinate system with three auxiliary nodes, the pilot nodes
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P1, P2, P3 (seeFigure 3). Those nodes are used to determine the average displacement gradient and first Piola-
Kirchhoff stress tensor as explained in section 4. The pilotnodes’ distances to the local coordinate system’s origin
are described byl1, l2, l3 and can be chosen arbitrarily. In this work they are set tol1 = l2 = l3 = 1mm.

Figure 3. Illustration of the additional pilot nodes. The elements and nodes of the RVE are defined in the global
coordinate system (base vectorsea|a=X,Y,Z). The pilot nodes lie in an external, local coordinate system (base
vectorsei|i=1,2,3).

4 Boundary conditions

Before the RVE is subjected to external loads or displacements, conditions on its boundary have to be defined. The
purpose of the RVE is the determination of effective material properties. Therefore, the application of homoge-
neous boundary conditions appears suitable. There exist several concepts for homogeneous boundary conditions
in the literature (see (Lee, 1993) and references within). All of them fulfill the Hill condition (Hill, 1963) per se
and independently from the RVE’s size.

4.1 Periodic boundary conditions

This work focuses solely on periodic boundary conditions (PBC). PBC offer a compromise between homogeneous

traction and homogeneous strain boundary conditions. Theyrequire pairs of points, with position vectors
1

x̃ and
2

x̃ .
The PBC couple the displacements of those pairs of points

1
u − 2

u =
∗
H · (

1

x̃ −
2

x̃) , (29)

with u being the displacement vector and
∗
H =

∗
F − I the average displacement gradient (cf. (Glüge et al., 2012;

Glüge, 2013)). Thus, the PBC are also referred to as coupled constraints.Figure4 illustrates the principle of PBC.

Figure 4. Principle of periodic boundary conditions. The displacements of the right edge (
1
u) are coupled to the

displacements of the left edge (
2
u). As an average and therefore constant displacement gradient is imposed on the

entire surface, the displacement difference∆u between right and left edge is constant for every pair of points.

In consideration of the periodicity, fibres, which pierce the boundary surface, continue at the opposite surface (see
Figure10).
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4.2 Implementation in ABAQUS

As already mentioned, PBC are coupled constraints between pairs of points. ABAQUS offers the implementation of
such constraints in the form ofEQUATIONS(see (Dassault Systèmes Simulia Corp., 2011), section 33.2.1), which
linearly relate the displacements of nodes. In order to demonstrate the applicability of those to the PBC, Eq. (29)
is reformed. Firstly, some abbreviations are introduced

1
u − 2

u = ∆u ;
1

x̃ −
2

x̃ = ∆x̃ , (30)

∆u =
∗
H ·∆x̃ . (31)

ABAQUS demands explicit equations for the displacements coefficients, which is why Eq. (31) is written in notation
with coordinates

∆ucec =
∗
Hijei ⊗ ej ·∆x̃aea . (32)

Note that the coefficients of∆u and∆x̃ refer to the global coordinate system whereas the coefficients of
∗
H refer

to the local coordinate system. In order to obtain the equation for the single coefficients of∆u, the base vectors
are contracted with each other

∆ucec =
∗
Hij∆x̃a(ej · ea)ei | · eb , (33)

∆ub =
∗
Hij∆x̃a(ej · ea)(ei · eb) . (34)

On the left hand side of Eq. (34) there are the degrees of freedom (DOF) of the two nodes, which are to be coupled.
On the right side there is the distance between those two points in the reference configuration∆x̃a which is a
constant value. The scalars(ej · ea) and (ei · eb) are constant too and relate the directions of both the global
and the local coordinate system (seeFigure 3). The only unknown values are the coefficients of the average

displacement gradient
∗
Hij . Those are determined by

∗
Hij =

Pj

u i

lj
. (35)

Thus, all necessary values are known and a system of linear equations can be formulated. ABAQUS generally
requires equations in the form

a1
1
u1 + a2

2
u1 + · · ·+ aN

N
u 1 = 0 ,

a1
1
u2 + a2

2
u2 + · · ·+ aN

N
u 2 = 0 ,

a1
1
u3 + a2

2
u3 + · · ·+ aN

N
u 3 = 0 ,

(36)

whereai are scalar factors andN is the number of involved DOF. The average displacement gradient is defined
by three pilot nodes with three DOF each. Together with the two DOF from the two nodes to be coupled, Eq. (34)
yields a total number of DOF,N = 11. Hence, the equation for eachb ∈ [X,Y, Z] reads

a1
1
ub + a2

2
ub +a11

P1

u 1 +a12
P2

u 1 +a13
P3

u 1

+a21
P1

u 2 +a22
P2

u 2 +a23
P3

u 2

+a31
P1

u 3 +a32
P2

u 3 +a33
P3

u 3 = 0 ,

(37)

with

a1 = 1, a2 = −1, aij = − 1

lj

Z∑

a=X

(
1

x̃a −
2

x̃a)(ej · ea)(ei · eb) .

4.3 Consideration of tilted fibres

Eq. (34) holds for arbitrary base vectorsei and ej . Therefore the local coordinate system does not need to be
aligned parallel to the global coordinate system. Nonetheless, the rotation of the local coordinates system bears
some consequences as it changes the physical meaning of the deformation. Whereas the direction of the fibres

stays constant (parallel to base vectoreZ), the deformation (applied with the help of
∗
Hij) points in the direction
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corresponding to the local coordinate system. The local base vectore1 is set to lie parallel to the global base vector
eX , i.e. (e1 · eX) = 1. That is why from now on a rotation of the local coordinate system about the X-axis is
referred to as fibre angleϕ = ∢(eZ ; e3). Stresses and strains are evaluated in the rotated local coordinate system.
Thus, an easy way to consider tilted fibres is provided (seeFigure5).

Figure 5. Left: Only the local coordinate system, and thus the applied deformation, is rotated in ABAQUS . The
RVE and the fibres remain the same. Right: This is equivalent to deformations with rotated fibres.

4.4 Average strain and stress

The examination of the average strain and stress is done withthe help of the average deformation gradient
∗
F and

the average first Piola-Kirchhoff stress tensor
∗
T . Both quantities are chosen due to their easy determinationand

because they are power conjugate. With
∗
F =

∗
H + I , (38)

and Eq. (35) the deformation gradient can be directly related to the pilot nodes’ displacements. Furthermore the

time derivative of
∗
F is given by

△
∗
F =

△
∗
H +

△

I =

△
∗
H , (39)

△
∗
Hij =

Pj

v i

lj
, (40)

with
Pj

v i being the coefficienti of the velocity at pilot nodePj . The stress powerPs is defined as integral over the
volumeṼ in the reference configuration

Ps =

∫
T ··

△

FdṼ =

∫
T ··

△

HdṼ = Ṽ
∗
T ··

△
∗
H = Ṽ

∗
T ij

△
∗
Hji . (41)

Eq. (41) provides the definition of a stress tensor
∗
T according to Eq. (42). Note that the stress power becomes a

sum of nodal forces multiplied with corresponding nodal velocities (see Eq. (43))

∗
T ij =

Pi

Q j · li
Ṽ

. (42)

Here
Pi

Q j are the coefficients of the nodal forces at the pilot nodePi. Inserting Eq. (40) and Eq. (42) into Eq. (41)
results into

Ps = Ṽ ·
Pi

Q j · li
Ṽ

·
Pj

v i

lj
=

Pi

Q j ·
Pj

v i . (43)

With Eq. (35), Eq. (38) and Eq. (42) a full set of average boundary conditions can be prescribed, be it for deforma-

tion or stress. In order to achieve a static equilibrium, nine coefficients
∗
T ij or

∗
F ij must be defined. Furthermore,

three of the following deformations must be prescribed in order to avoid rigid body rotations
∗
F 12 or

∗
F 21 ,

∗
F 13 or

∗
F 31 ,

∗
F 23 or

∗
F 32 .

(44)

88



5 Generation of synthetic data

The RVE introduced in section 3 is now used to generate synthetic experimental data. Therefore, the PBC together

with different combinations of stress and deformation boundary conditions (
∗
T ij and

∗
F ij) are applied. First, some

investigations concerning the average stress as well as theconvergence are presented.

5.1 Verification of the average stress

In order to verify Eq. (42), a RVE made up of 25% fibres is subjected to uniaxial tension with a stretch ofλ = 1.5
in the direction of fibres, i.e.ϕ = 0◦. Then the resulting homogenous Cauchy stress is calculatedusing both
Eq. (42) together with Eq. (18) and the average over all Gausspoint (GP) values.Figure 6 shows the comparison
of both methods. Both curves are almost identical and therefore indicate the correctness of Eq. (42).

1 1.1 1.2 1.3 1.4 1.5
0

5

10

15

20

λ [-]

σ
3
3 Pilot

Gausspoint

Figure 6. Verification of average stress obtained by evaluating the pilot’s nodal forces. The results are compared
to the stress values, which were received by averaging all Gauss points.

5.2 Convergence

Here, the influence of the RVE’s size and mesh density is examined. Toward this end, the norm of the Eulerian
stiffness is chosen as a measure for comparison. The stiffnessC relates the Cauchy stressσ and the linearised

strain
lin
ε

σ = C ·· linε . (45)

The coefficients follow with

Cijkl =
∂σij

∂εkl
. (46)

5.2.1 Size of the RVE

The parameterFPD determines the average number of fibres per spatial direction and hence allows a stochastically
equivalent variation of the RVE’s size. It is increased from1 to 4 whereas all other parameters are kept constant.
For each value ofFPD ten computation models are created. Thus, there result ten stiffness tensors for ten different
fibre distributions. Those ten stiffness tensors are averaged. In order to compare the averaged stiffness tensors of
each value ofFPD, the relative norm of the difference tensor is computed. Themost accurate result is assumed for
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the highest number of fibres and therefore biggest RVE. Then the relative norm‖∆
i
Crel‖ reads

‖∆
i
Crel‖ =

‖
i
C −

4

C‖

‖
4

C‖
· 100% , i = 1, 2, 3, 4 . (47)

As the mean value of the stiffness tensors does not deliver any information about the fluctuations, the coefficient
of variation is additionally computed and can be found inTable3. Figure 7 shows the course of the relative norm
over the parameterFPD. The relative norm of the difference between the stiffness tensors is already very small
for FPD = 1. The corresponding coefficient of variation is also alreadyvery small with only 1.34%. Due to the
fact that an increase ofFPD results in a significant increase of the computation time,FPD = 1 is chosen in the
following simulations.

1 1.5 2 2.5 3 3.5 4
0

5 · 10−5

1 · 10−4

1.5 · 10−4

FPD [-]
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Figure 7. Relative norm of stiffness over parameterFPD.

Table 3. Coefficient of variation of stiffness tensor’s
norm for different values ofFPD.

FPD COV [%]

1 1.3415
2 0.2577
3 0.1840
4 0.1148

5.2.2 Mesh density

A similar comparison is done for the mesh density, meaning again the relative norm of the difference of the stiffness
tensors will be examined for different mesh densities. Thistime only one base model but different computation
models with different meshes come into operation. The mesh density is influenced by the number of elements per
fibre in transversal (n⊥) and longitudinal (n‖) direction. Additionally, the computation time is recorded because
an increase of the element number significantly affects the simulation time. Similarly to the relative norm of the

stiffness difference, a relative measure of time
i
t rel is calculated. Here the model with the fewest elements is used

as a reference
i
t rel =

i
t

min

t
. (48)

In contrast to the analysis of the RVE’s size, the convergence measures depend on two instead of one parameters.
This is why both measures are plotted over several pairs(n⊥, n‖). Figure 8 illustrates the influence of the mesh
density on the convergence and the computation time. The graphs reveal the significant influence of the mesh
density on the convergence. The coarsest mesh (not plotted for the purpose of clarity) results in a norm of the
stiffness approximately 70% higher than the converged one.The difference of the stiffness decreases with finer
meshes. Apparently, the lack of a sufficient number of elements causes a stiffening of the simulated material. The
flat slope of the surface plot at high values ofn⊥ andn‖ indicates almost converged material behaviour. It can
be seen that the number of elements in transversal directionplays a minor role. The same can be observed for the
ratio n‖

n⊥
.

More important is the absolute number of elements as well as the number of elements in longitudinal direction.
The plot of the computation time displays an opposite trend.With increasing numbers of elements, the needed time
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Figure 8. Relative norm of the stiffness difference (left) and relative computation time (right) for different com-
binations of element numbers per fibre in transversal and longitudinal direction. The transparent planes mark the
acceptable values. The dashed lines belong to the mesh densities which correspond to these values.

for the computation increases too. A relative difference ofthe stiffness tensors of5% is considered as converged.
All combinations ofn⊥ andn‖ to the right of the dashed line in the left graph fulfill this convergence criterion.
However, more accurate results require higher computationtimes. The combinations ofn⊥ andn‖ to the left of
the dashed line in the right graph need less than 400% of the computation time of the coarsest mesh. A good
compromise between accuracy and low computation time can befound atn⊥ = 4 andn‖ = 16. Such a RVE can
be seen inFigure 9.

Figure 9. Complete RVE for the simulations.

Figure 10. Front view of patterns reveal the periodicity.
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5.3 Synthetic experimental data

In the following, four different simulations with the RVE fromFigure9 are performed. Thus, the RVE’s capability
to consider different fibre angles is demonstrated. The corresponding experimental parameters can be found in
Table4. The boundary conditions are listed inTable5.

Table 4. Parameter setup of the simulations.

Parameter Value(s)

fvol 25%
χ 20
FPD 1
ϕ {0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦}
Material Type Parameter

fibre NeoHooke1 C10 = 25 , D1 = 0.018467
matrix NeoHooke1 C10 = 1 , D1 = 0.2

Table 5. Boundary conditions of the four simulations.

Simulation Boundary Condition Limits

Sim. 1, tension/compression




∗
T 11 = 0

∗
F 12 = 0

∗
F 13 = 0

∗
F 21 = 0

∗
T 22 = 0

∗
F 23 = 0

∗
F 31 = 0

∗
F 32 = 0

∗
F 33 = λ


 λ ∈ [0.818, 1.2]

Sim. 2, simple shear




∗
F 11 = 1

∗
F 12 = 0

∗
F 13 = 0

∗
F 21 = 0

∗
F 22 = 1

∗
F 23 = κ

∗
F 31 = 0

∗
F 32 = 0

∗
F 33 = 1


 κ ∈ [−0.2, 0.2]

Sim. 3, purely volumetric deformation




∗
F 11 = λ

∗
F 12 = 0

∗
F 13 = 0

∗
F 21 = 0

∗
F 22 = λ

∗
F 23 = 0

∗
F 31 = 0

∗
F 32 = 0

∗
F 33 = λ


 λ ∈ [0.818, 1.2]

Sim. 4, confined compression




∗
F 11 = 1

∗
F 12 = 0

∗
F 13 = 0

∗
F 21 = 0

∗
F 22 = 1

∗
F 23 = 0

∗
F 31 = 0

∗
F 32 = 0

∗
F 33 = λ


 λ ∈ [0.818, 1.0]

Figure 11 shows the course ofσ33 over the stretchλ in a tension/compression test. It can be seen that an increase
of fibre angleϕ results into a decrease of the stiffness. The curves of fibre anglesϕ ≤ 30◦ exhibit a kink at small
stretchesλ ≤ 0.9. This behaviour stems from the RVE’s ability to answer with buckling, due to an unsymmetrical
fibre distribution. Because of the periodic boundary conditions, the homogenised material behaviour inherits the
same tendency to buckling. However, in a real material thereare patterns with different fibre distributions and
therefore tendencies to different sideways motions, whichcompensate each other. That is why the RVE’s buckling
is a structural instability effect. Note, that there are endeavours (cf. Miehe et al. (2002)) to incorporate the structural
instabilities as material instabilities.

1Those are parameters required by ABAQUS . They correspond toC10 =
G

2
andD1 =

2

K
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Figure 11. Cauchy stress over strain during tension/compression (a) and buckling of the RVE at valuesλ ≤ 0.9
(b).

The evaluation of simple shear (seeFigure12(a)) reveals a clear anisotropic impact by the fibres. The stress curves
grow linearly and in some cases non linearly. This fact correlates with the different deformations the fibres exhibit
at the single fibre angles and values ofκ. The material response forϕ = 0◦, 90◦ is the same at both directions
of shear. In contrast to this, withϕ = 15◦, 30◦, 45◦, the fibres experience lengthening at positive values ofκ

and shortening at negative values ofκ. Thus, a shear anisotropy is visible. However, that is not the case for
ϕ = 60◦, 75◦. The confined compression results (seeFigure 12(b)) resemble tension/compression withλ ≤ 1.0
but exhibit a higher stiffness since the RVE’s volume is additionally changed.
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Figure 12. Cauchy stress over strain during simple shear (a)and confined compression (b).

Lastly, the stresses of purely volumetric deformation at different fibre angles are compared inFigure13. Similarly
to tension/compression, the stressσ33 decreases with growing fibre angles (seeFigure 13(a)). In accordance to
the boundary conditions, which prohibit shear deformation, there are shear stresses (seeFigure 13(b)), meaning
a purely volumetric deformation induces a non-hydrostaticstress tensor. The shear stresses align symmetrically
aroundϕ = 45◦ and vanish atϕ = 0◦, 90◦.
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Figure 13. Cauchy stress over strain during purely volumetric deformation.

6 Parameter identification

In this section, the material parametersG,K,EF from the three energy densities Eq. (21), Eq. (24) and Eq. (28)
are fitted to the synthetic data obtained in the previous section. First, the methodology of the identification will be
shortly explained. Then the predictions of the hyperelastic models with the identified parameters will be compared
to the data obtained by the RVE.

6.1 The optimisation procedure

The optimisation is performed with the help of MATLAB using the built-in functionlsqnonlin. During each itera-
tion, MATLAB invokes ABAQUS with a new set of material parameters. ABAQUS then computes the values of the
target function at a single Gauss point using the corresponding boundary conditions. Subsequently, the residuum
vector is defined by the difference of the target values and the synthetic data. The starting parameters as well as
the parameters of the RVE materials can be found inTable6.

Table 6. Initial parameters (left), shear and bulk modulus of fibres and matrix in the RVE (right).

G [GPa] K [GPa] EF [GPa] GF [GPa] KF [GPa] GM [GPa] KM [GPa]

1 1 1 50 108 2 10

6.2 Comparison ofψ1 andψ2

The energy densitiesψ1 andψ2 are fitted to the data from purely volumetric deformation as this points out the
differences between both energy densities.Table7 shows the identified material parameters. It can be seen that
the shear modulus of both energy densities cannot be determined as the residuum’s derivative with respect to the
shear modulus equals zero

∂r

∂G
= 0 , (49)

with r being the residuum. This is expected due to the hydrostatic form of the corresponding deformation gradient
F . The bulk moduli are similar with only 0.8 [MPa] deviation. The main difference can be observed at the fibre’s
Young’s modulus. WhereasEF of ψ2 has no influence, the value ofEF for the first energy density is changed
significantly. The reason behind this lies in the invariantJ4. C always equalsI when the deformation gradient
has a hydrostatic form. In such case,

J4 = 1 , ψaniso,2 = 0 , σ = −pI , (50)

with the hydrostatic pressurep. However, the dependency of the stress tensor on the fibre angle in Figure13 shows

σRVE 6= −pI . (51)
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Figure14 reveals the physical meaning of the differences betweenψ1 andψ2. Figure14(a) as well asFigure14(c)
show thatψ1 catches the anisotropic influence of the fibres. There is a good agreement forλ > 1 and slight
deviations forλ < 1. Figure 14(b) andFigure 14(d), however, demonstrate the energy density’s independence
from the fibre angle as the curves of the single fibre angles areall identical and there are no shear stresses. Here,
only the isotropic part is fitted to the data, meaning the resulting material parameters accord to the best compromise
between all the fibre angles. Note that the same behaviour canbe observed for almost incompressible fibre and
matrix materials.

This comparison points out thatthe invariantJ4 is not suited to represent the anisotropy in case of a purely
volumetric deformations. That is why only the invariantI4 is used in the following.

Table 7. Identified material parameters after fitting to the data from purely volumetric deformation using bothI4
andJ4.

ψ G [GPa] K [GPa] EF [GPa]

ψ1 - 13.2759 24.5004
ψ2 - 15.4082 -
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Figure 14. Comparison of material model’s behaviour with data from the RVE (25% fibres) obtained during purely
volumetric deformation. The diagrams show the longitudinal stress as well as the shear stress over the volume
stretch for two different energy densities.

6.3 Minimal set of experiments

The identification of material parameters is an expensive and time consuming process. Naturally, the experimental
effort should be reduced to a minimum. That is why in this section a minimal set of data for the identification
is presented. Each set of data represents a real experiment.As the comparison of Eq. (21) and Eq. (24) showed,
a purely volumetric deformation is not suited to identify the shear modulus. In contrast, a purely isochoric de-
formation would not be influenced by the bulk modulus. Thus, at least two simulations are necessary. In order
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to cover the shear modulus and the fibre’s Young’s modulus, the tension/compression simulation is chosen. The
anisotropy is caught by two different values of the fibre angle, i.e.0◦, 90◦. Those are favourable because they do
not need special consideration at the fixation of the specimens in a real experiment, as no shear deformations are
expected. The data for stretch valuesλ < 0.9 are ignored because the material model is not supposed to consider
the RVE’s structural instability. The bulk modulus could becovered by the purely volumetric deformation but the
related experiment would be very difficult to realise in practice. That is why a confined compression with the only
fibre angleϕ = 0◦ is chosen. The minimal set of experiments can be seen inTable8. The identification delivers
the values inTable9. This time the resulting material behaviour is compared with the synthetic data of all four
simulations inFigure 15. For the purpose of clarity, only four different fibre angles are presented. Although, only
three sets of data are used for the identification, the material model is capable of representing the RVE’s behaviour.
The only differences can be seen inFigure 15(a) andFigure 15(d) for λ < 0.9 as well as inFigure 15(c) for
λ < 1. The latter indicates effects of the short fibres which are not covered by the energy densityψ1. However, it
shall be emphasised again, that the material parameters areonly fitted to two simulations with only two different
fibre angles, but this is sufficient to describe the material behaviour for arbitrary loading conditions in general
simulations.

Table 8. Minimal set of experiments

Simulation Fibre angle

tension/compression 0◦, 90◦

confined compression 0◦

Table 9. Identified material parameters using the
minimal set of simulations.

G [GPa] K [GPa] EF [GPa]

3.8511 13.7987 20.5426
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Figure 15. Comparison of material model’s behaviour (Gausspoint, GP) with data from the RVE (25% fibres).
The material parameters are fitted to the minimal set of experiments.

6.4 Convex combination

Energy densityψ3 corresponds to a convex combination with respect to the fibrevolume fractionfvol. Eq. (28)
allows a direct consideration of the amount of fibres. One interpretation of this ansatz states that one and the same
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set of parametersGM ,KM , GF ,KF , EF applies to RVEs with the same matrix and fibre materials but different
values offvol. This approach is tested with the help of three RVEs consisting of 10%, 20% and 25% fibres
respectively. The identification of the material parameters requires data from RVEs with at least two different
values offvol. Otherwise, the parametersGM andGF as well asKM andKF could not be distinguished. Here,
the valuesfvol = 10% andfvol = 25% are used for the identification. The material parameters areoptimised
adopting the minimal set of experiments (seeTable8). The identified parameters can be found inTable10. Using
these parameters together withfvol = 20%, Eq. (28) is supposed to predict the behaviour of the RVE which
contains 20% fibres.

Table 10. Identified material parameters using a convex combination of energy densities.

GM [GPa] KM [GPa] GF [GPa] KF [GPa] EF [GPa]

start value 1 1 1 1 1
identified value 1.8723 9.8631 10.0289 24.0770 79.4441

Figure 16 compares the identified material model with the control RVE. The values at the Gauss points reveal a
good correspondence to the data obtained by the RVE. Although the short fibres and the matrix material experience
different deformations, in contrast to endlessfibre-reinforced materials, the deviations between the RVE data and
the predicted values of the identified material model are small. Hence, Eq. (28) seems to be suitable for the
consideration of variable fibre volume fraction.
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Figure 16. Comparison of material model’s behaviour (Gausspoint, GP) with data from a RVE containing20%
fibres. The material parameters are obtained fromTable10.

7 Conclusion

Three different hyperelastic models to describe transversal isotropic behaviour of short fibre reinforced materials
were discussed. The constitutive equations are designed for large deformations and make use of invariants of
the right Cauchy-Green tensor as well as the structural tensor. The material models were fitted to synthetic data
obtained with the help of a representative volume element (RVE). The RVE contains unidirectional fibres which are
randomly distributed according to several parameters likethe fibre volume fraction or the minimal distance between
the fibres. The concept of computation models derived from the same base model enables a good comparison of
different simulations with the same fibre distribution. Thanks to the refined modelling of the RVE, the effective
stress is accurately predicted as long as there are sufficient elements, mainly in longitudinal direction.

Periodic boundary conditions (PBC) were applied to the RVE as they fulfill the Hill condition per se and do not
cause any artificial stiffening or softening. The tensorialformulation of the PBC allows deformations aslant to the
fibres. Thus, one and the same model can be used for different fibre angles. Thanks to three auxiliary nodes, the
average strain and stress can be directly evaluated. The necessary relations for the implementation of the PBC into
ABAQUS were provided.

Four simulations with the RVE revealed its anisotropic properties. The fibre angle has a significant impact on
the stiffness at the tension/compression as well as the confined compression. Deformations in the area of big
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compression lead to a structural instability of the RVE. Theeffect of the lengthening and shortening of the fibres
during simple shear can be clearly seen.

The parameters of the three material models were fitted to thesynthetic experimental data. It could be pointed out
that the mixed invariant for the isochoric right Cauchy-Green tensor ignores purely volumetric deformations. As a
consequence, the mixed invariants should be only used for the right Cauchy-Green tensor of the entire deformation.
It could be also concluded that a set of only three experiments, i.e. tension/compression at fibre angle0◦, 90◦ and
confined compression at fibre angle0◦, is sufficient to identify material parameters, which coverthe whole span
of fibre angles as well as several experiments, e.g. simple shear and purely volumetric deformation. This set
of experiments was carefully chosen with respect to its practicability. The comparison of the RVEs with different
amount of fibres revealed that a convex combination of the energy density according to Eq. (28) seems to be capable
of interpolating the stress response between different values offvol and a constant set of material parameters.

The present paper introduced a method to consider tilted fibres which allows simulations with one and the same
RVE under different fibre angles. This method is universallyapplicable as long as the RVE fulfills the PBC’s
requirements such as opposing points. In this work, constitutive relations for hyperelastic materials were analysed.
However, the use of the ABAQUS User Subroutine UMATenables the implementation of arbitrary material models
as long as the required values of stress and stiffness can be provided. Thus, in further research, more complicated
effects like viscosity as well as plasticity will be considered. Furthermore, comparisons of data obtained by the
RVE with data from real experiments will be object of research.
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