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Implementation of the strongly pronounced non-linear viscoelasticity of
an incompressible filled rubber

T. Scheffer, F. Goldschmidt, S. Diebels

Filled rubber materials regularly show a pronounced non-linear viscoelasticity with very long relaxation times.
In this contribution, a phenomenological description for an incompressible carbon black-filled EPDM (ethylene
propylene diene monomer) is given, which also shows the abovementioned characteristic behaviour. In order to
represent the non-linear viscoelastic material, the relaxation times of the model are chosen not as constant mate-
rial parameters but as process-dependent functions.
This contribution presents two different realisations of the model’s implementation. At first, this work provides an
implementation of the material model, which is able to describe complex geometries and loading conditions. In
this realisation, the three-dimensional model is implemented in the open source finite element library deal.II for
finite deformations. Hence, real applications can be represented. In an alternative numerical solution, the model
is reduced to the single case of uniaxial tension. The model is simplified to scalar equations, which are quite easy
to handle for the implementation. This procedure provides a more simple identification process, but it presents the
problem that the model character is extremely restricted for the individual case of uniaxial tension.
For the numerical realisation, at first, special attention has to be turned on the determination of the inelastic part
of the kinematics. A detailed evaluation of the necessary evolution equations is provided in this contribution. Fi-
nally, the results of the different implementations are compared with respect to different loading conditions, like
relaxation tests or cyclic loading.

1 Introduction

Filled rubber as a construction material is of great interest for a wide field of industrial sections such as the au-
tomotive industry. Since there are so many combinations of different natural rubbers, various filler materials and
their concentrations, a huge range of properties, which are important for the specific application, can be achieved.
Hence, the resulting wide range of possible applications causes a high interest in the research of these materials.
Only a few papers dealing with this topic should be named exemplarily, e. g. Besdo and Ihlemann (2003); Dan-
nenberg (1975); Hartmann et al. (2003); Keck (1998); Lion (1996, 2004); Miehe and Keck (2000).
Usually, the behaviour of highly filled elastomers is complex to describe due to its time- and process-dependence.
It it caused by the complex behaviour of rubber matrix materials as well as of the interaction of filler particles
with themselves and with the matrix material. Characteristic for the complex behaviour of filled elastomers is the
existence of very long relaxation times ranging from several hours to several days even. This effect can be seen in
relaxation experiments for varying deformation levels. The appearance of these long relaxation times also results
in a hysteresis loop for cyclic loading conditions, which can still be seen in the experiment when using the slowest
possible machine speeds. This effect is modelled by Kaliske and Rothert (1998) and Lion (2000) with a plasticity
theory, whereas a non-linear viscoelastic model with sufficiently large relaxation times is also able to describe the
observed material behaviour as can be seen in Koprowski-Theiß et al. (2011a) or Scheffer et al. (2013).
The investigated incompressible carbon black-filled EPDM shows exactly these characteristic effects and is de-
scribed in a purely phenomenological way. The step-by-step development of the macroscopic model of this mate-
rial is provided in another article by Scheffer et al. (2013) for finite deformations, at first, starting with the basic
elasticity. Furthermore, the inclusion of the viscoelasticity for moderate strain rates in cyclic tests and the relax-
ation behaviour in the material model is described.
As a first numerical method, the original model in its formulation according to large deformations, which provides
the complete three-dimensional information without any simplification, is implemented. The presented numerical
treatment is realised in an open source finite element library calleddeal.II, cf. Bangerth et al. (2007, 2013). It
allows complete insight and intervention in the model’s structure, whereby the simulation of this quite complex
model is time-consuming especially according to parameter identification. In order to simplify the simulation and
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to shorten time, the material model can be specified for the uniaxial tension test allowing the simplification to
scalar equations but also limiting the range of the material model’s potential to a very special case, in this case,
the behaviour of the material with respect to uniaxial deformation. However, in real industrial applications, the
deformation of a system assembly usually is multiaxial. The deformation values, their direction and the defor-
mation rates of an assembly can vary a lot from one material point to the other due to multiple external forces
as well as due to its geometry; the material behaviour of filled rubber is usually sensitive on all these points. In
order to describe such multiaxial loadings, Johlitz and Diebels (2011) or Seibert et al. (2014) have considered that
experimental multiaxial data has to be made available to identify the model parameters.

2 Material description of a carbon black-filled EPDM

2.1 Samples and experimental device

For filled rubber materials, the bulk modulus usually is several orders higher than the shear modulus, besides it
has a porous structure. In the case of the presented contribution, the investigated material is an incompressible and
isotropic EPDM (ethylene propylene diene monomer). It is commercially available and die-cut directly out of a
car door gasket consisting of an incompressible part and the foamed part, which is structurally compressible. The
pure solid part as well as the foamed part of the assembly consist of the same matrix material. This article only
deals with the solid material without pores. For the description of the porous part, the reader is referred to the
work of Koprowski-Theiß et al. (2011b, 2012a,b). The current description is accomplished with respect to uniaxial
tension data. In the parameter identification strain rates in the order of10−3 s−1 to 10−1 s−1 are taken into account,
whereby the provided model in the following shall also be applicable to represent the material behaviour in a larger
range.

2.2 Material model

The procedure for the development of the material model for the EPDM is purely phenomenological describing
the behaviour that can be seen in the experiments and the observed effects within. There are many articles dealing
with the topic of finite viscoelasticity. Hence, it is not possible to name all of them, nevertheless some of them shall
be quoted exemplarily in this contribution, e. g. Amin et al. (2006, 2010); Haupt (2000); Haupt and Lion (2002);
Laiarinandrasana et al. (2003); Lion (2000); Reese (2000); Reese and Govindjee (1998); Sedlan (2001).
According to the investigated material, this contribution only provides the resulting material model. For details of
the modelling process, the reader is referred to another article of Scheffer et al. (2013). Only a brief summary of
the results is provided in the following section.
The composition of the material model is based on a rheological interpretation. The rheological model contains a
spring, which is arranged in parallel toj = 1 . . .n Maxwell elements with each of the Maxwell elements consisting
of a spring connected in series to a dashpot, cf. Fig. 1. Herein, the single spring represents the equilibrium stiffness,

μ

μ1
e μ2

e μn
e

η1 η2 ηn

Figure 1: Rheological model of the viscoelastic behaviour withn Maxwell elements.

whereas the Maxwell elements describe the viscoelastic effects. For the kinematical consideration of finite strains,
a multiplicative split of the deformation gradientF into an elastic partFj

e and an inelastic partFj
i

F = Fj
e ∙ F

j
i (1)

is executed for each Maxwell elementj = 1...n. For every single branch of the rheological model, an additional
fictitious intermediate configuration has to be introduced, which has been used by Kröner (1959) and Lee (1969)
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in plasticity theory at first. For more details of the theory, see e. g. Johlitz (2009); Koprowski-Theiß (2011); Lion
(1996, 2000); Sedlan (2001). Additionally, an overview of several hyperelastic models for rubber-like materials is
given in the work of Marckmann and Verron (2006), which promotes the approach by a phenomenological strategy
formulated by a polynomial series, introduced by Rivlin and Saunders (1951)

ρ0 Ψ =
N,M∑

k,l=0

ckl (I − 3)k (II − 3)l . (2)

Therein, the order of the first and second invariant parts of the corresponding deformation tensor, e. g. the left
Cauchy-Green deformation tensorB, is varied with respect to the experimental observations to be represented. In
case ofB, the corresponding invariants are

IB = trB = B : I ,

IIB =
1
2

(
(B : I)2 − BT : B

)
.

(3)

An important requirement to be satisfied is the Clausius-Planck inequality

p I : D + T : D − ρ Ψ̇ ≥ 0 , (4)

in whichp stands for the Lagrangian multiplier, representing the incompressibility,D for the deformation velocity,
andI for the2nd rank identity tensor. As introduced later, the process variables for the given material model are

S =
{
B, Bj

e, D
}

. (5)

In this set of variables the left Cauchy-Green deformation tensorB = F ∙ FT represents the strain of the single
equilibrium spring andBj

e = Fj
e ∙(F

j
e)

T the elastic deformation of the spring in thejth Maxwell element. Further-
more, in the introduced model, the stress depends on the deformation velocityD. Taking into account the principle
of equipresence (cf. Truesdell and Toupin (1960); Truesdell and Noll (2004)), at first, it has to be observed, ifD
has any influence on the evaluation of the Clausius-Planck inequality. The derivation ofΨ results in

Ψ̇(B, Bj
e,D) =

∂Ψ(B, Bj
e,D)

∂B
: Ḃ +

n∑

j=1

∂Ψ(B, Bj
e,D)

∂Bj
e

: Ḃj
e +

∂Ψ(B, Bj
e,D)

∂D
: Ḋ . (6)

SinceḊ is no process variable
∂Ψ(B, Bj

e,D)
∂D

: Ḋ (7)

vanishes according to the considerations of de Boer and Ehlers (1986) and Bowen (1976). The free energy does not
depend on the deformation velocityD. So, in the following, the free energy functionΨ is split into an equilibrium
andn non-equilibrium parts

Ψ = Ψeq (B) +
n∑

j=1

Ψj
neq (Bj

e) , (8)

only depending onB andBj
e. This corresponds to the addiditive composition of the stresses in the branches of the

rheological model (cf. Fig. 1)

T = Teq (B) +
n∑

j=1

Tj
neq (Bj

e) . (9)

The Clausius-Planck inequality (4) results in


T + p I − 2 J−1 ρ0 B ∙
∂Ψeq

∂B
−

n∑

j=1

2 J−1 ρ0 Bj
e ∙

∂Ψj
neq

∂Bj
e



 : D

+
n∑

j=1

(

2 J−1 ρ0

∂Ψj
neq

∂Bj
e

)

: Fj
e ∙

4
Γ j

i ∙ (F
j
e)

T ≥ 0 ,

(10)

with the inelastic deformation rate of the intermediate configuration
4
Γ j

i . The material is considered incompressible,
soJ = detF equals1. The first summand of this inequality can be evaluated with respect to Coleman and Noll
(1963) leading to the constitutive relation for the Cauchy stressT

T = − p I + 2 ρ0 B
∂Ψeq

∂B
+

4∑

j=1

2 ρ0 Bj
e ∙

∂Ψj
neq

∂Bj
e

. (11)
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The basis of the material model is represented by the equilibrium stress in the single spring. A big problem, which
occurs during the experiment, is that the way to reach the equilibrium stress is quite complex due to the long relax-
ation times of several hours or even more, which are characterisitical for different filled rubber materials. Classical
methods like cyclic deformations up to a maximum deformation with very slow strain rates or stepwise relaxation
tests for different strain levels are not reliable for these materials. An alternative experimental process has to be
developed. Sedlan (2001) has observed that a cyclic pretreatment around the middle strain of interest results in
a decrease of the resulting hysteresis loops until a stationary condition is achieved. A subsequent relaxation test
reaches the equilibrium stress in a short time of only some minutes leading to faster and effectively reproduceable
experiments, shown in the investigations of Scheffer et al. (2013). The resulting basic elasticity shows a charac-
teristicS-shaped stress-strain relation and is represented by a Yeoh-approach, provided by Yeoh (1993) and Yeoh
and Fleming (1997)

ρ0 Ψeq(IB) = c10 (IB − 3) + c20 (IB − 3)2 + c30 (IB − 3)3 . (12)

In order to represent the non-linear viscoelasticity, four Maxwell elements are necessary. The specific free energy
for these elements is formulated in relation to the invariant of the elastic left Cauchy-Green deformationBj

e for
each Maxwell element’s spring. For the first element, the free energy is chosen as

ρ0 Ψ1
neq(IB1

e
) = c301 (IB1

e
− 3)3 . (13)

and, for the remaining three Maxwell elements, a Neo-Hookean approach

ρ0 Ψj
neq(IBj

e
) = c10j (IBj

e
− 3) ; j = 2 . . . 4 (14)

is chosen. With the free energies of the non-equlibrium parts, the resulting constitutive equation forT is given by

T = −p I + 2
[
c10 + 2 c20 (IB − 3) + 3 c30 (IB − 3)2

]
B

+ 6 c301 (IB1
e
− 3)2 B1

e +
4∑

j=2

2 c10j Bj
e ,

(15)

including both the equilibrium part of the Cauchy stress as well as the overstress. The remaining part of the
Clausius-Planck inequality (10)

n∑

j=1

(

2 ρ0

∂Ψj
neq

∂Bj
e

)

: Fj
e ∙

4
Γ j

i ∙ (F
j
e)

T ≥ 0

n∑

j=1

[

2 ρ0

(
∂Ψj

neq

∂IBj
e

dIBj
e

dBj
e

+
∂Ψj

neq

∂IIBj
e

dIIBj
e

dBj
e

)]

: Fj
e ∙

4
Γ j

i ∙ (F
j
e)

T ≥ 0

(16)

is used for the evaluation of the inelastic deformation rates in then Maxwell elements, referring to the conclusions
made in Johlitz (2009); Lion (2000) and Sedlan (2001). In the following, this contribution provides the devel-
opment of the evolution equations in a general form for incompressible materials, according to the free energy
approaches with respect to the formulation (2). It is not restricted to a specific model approach. The derivation
of the kinematical evolution equations for the Maxwell elements is a major point in this article. It is given in a
formulation, which is in such a general form, that different approaches for the specific free energy can be taken
into account. Applying the derivatives of the invariants, in this case, for the example ofBj

e

dIBj
e

dBj
e

= I ,

dIIBj
e

dBj
e

= IBj
e
I − (Bj

e)
T .

(17)

Eq. (16) results in

n∑

j=1

[

2 ρ0

(
∂Ψj

neq

∂IBj
e

Cj
e +

∂Ψj
neq

∂IIBj
e

(
IBj

e
Cj

e − Cj
e ∙ C

j
e

)
)]

︸ ︷︷ ︸
LHS

:
4
Γ j

i ≥ 0 , (18)

with the elastic right Cauchy-Green deformation tensorCj
e = (Fj

e)
T ∙ Fj

e. With the incompressibility condition

detF = detFe = detFi = 1 , (19)
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it can be shown that

tr(
4
Γ j

i ) = 0 . (20)

Hence, the evolution equation for
4
Γ j

i has to show a deviatoric form. In addition, the left-hand side (LHS) of the
product in the inequaltity (18) has to be deviatoric, too. As considered in Haupt (2000), this inequality is fulfilled

for isotropic behaviour in the case that the inelastic deformation rate
4
Γ j

i is proportional to the left-hand side (LHS)
of the product. Therefore, a proportionality factorηj is introduced representing the viscosity of thejth Maxwell
element

ηj
4
Γ j

i =

[

LHS −
1
3

tr(LHS) I

]

4
Γ j

i =
1
ηj

[

LHS −
1
3

tr(LHS) I

]

.

(21)

The transport of the inelastic deformation rate
4
Γ j

i of the inelastic intermediate configuration to the reference
configuration is executed using thepull backoperation

Ėj
i =

1
2
Ċj

i = (Fj
i )

T ∙
4
Γ j

i ∙ F
j
i ⇔

4
Γ j

i =
1
2

(Fj
i )

−T ∙ Ċj
i ∙ (F

j
i )

−1 . (22)

The evaluation of the left-hand side (LHS) in (18) with (21) & (22) provides an evolution equation for the inelastic
left Cauchy-Green deformation tensorCj

i

Ċj
i =

2
ηj

[

2 ρ0

∂Ψj
neq

∂IBj
e

C + 2 ρ0

∂Ψj
neq

∂IIBj
e

(
tr(Bj

e)C − (Fj
i )

T ∙ (Cj
e ∙ C

j
e) ∙ F

j
i

)

−
1
3
tr

(

2 ρ0

∂Ψj
neq

∂IBj
e

Cj
e + 2 ρ0

∂Ψj
neq

∂IIBj
e

(
tr(Bj

e)C
j
e − Cj

e ∙ C
j
e

)
)

Cj
i

]

,

(23)

which is reformulated with respect to the upcoming numerical implementation into

Ċj
i =

2
ηj

[

2 ρ0

∂Ψj
neq

∂IBj
e

C + 2 ρ0

∂Ψj
neq

∂IIBj
e

(
tr(C ∙ (Cj

i )
−1)C − C ∙ (Cj

i )
−1 ∙ C

)

−
1
3
tr

(

2 ρ0

∂Ψj
neq

∂IBj
e

C ∙ (Cj
i )

−1 + 2 ρ0

∂Ψj
neq

∂IIBj
e

(
tr(C ∙ (Cj

i )
−1)C ∙ (Cj

i )
−1 − (Cj

i )
−1 ∙ C ∙ (Cj

i )
−1 ∙ C

)
)

Cj
i

]

.

(24)
This provides the formulation of the evolution equation with respect to approaches based on polynomial series
according to Eq. (2). The mathematical development of this formulation was kept general for alternative model
approaches than in our case. In these considerations, there is no dependence on the second invariantIIBj

e
, so that

the evolution equation is reduced to

Ċj
i =

4
ηj

ρ0

∂Ψj
neq

∂IBj
e

[

C −
1
3

tr
(
C ∙ (Cj

i )
−1
)

Cj
i

]

. (25)

Taking into account the free energies in (13) and (14), the evolution equation for the first Maxwell element is

Ċ1
i =

12
r1

(IB1
e
− 3)2

[

C −
1
3

tr
(
C ∙ (C1

i )
−1
)

C1
i

]

(26)

and for the remaining three Maxwell elementsj = 2...4

Ċj
i =

4
rj

[

C −
1
3

tr
(
C ∙ (Cj

i )
−1
)

Cj
i

]

j = 2...4 (27)

is obtained. In this equation, the parameter relaxation timerj is introduced with

rj =
ηj

cklj
. (28)

The pronounced non-linear behaviour, which can be seen under complicated conditions, is described by the usage
of strain-dependent and strain rate-dependent relaxation times according to the work of Koprowski-Theiß (2011)

122



and Scheffer et al. (2013). Alternatively, the scaling of the viscosities is another possibility, cf. Rendek and Lion
(2010). The norms of the inelastic Cauchy Green tensor||C4

i || and the deformation velocity||D|| are present in
the expressions of the relaxation timesrj . They are chosen as

r1 = r11,

r2 = r21 + r22 exp(−k21 ||D||),

r3 = r31 + r32 exp(−k31 ||D||) + r33 exp(−k32 ||D||),

r4 = r41 + (r42 + r43 exp(−k41 ||D||)) (||C4
i || −

√
3).

(29)

The parameterr41 is determined as0.1 s, or at least it has to be restricted being bigger than0 s, to guarantee that
the relaxation time does not vanish for static processes, in which the norm ofCi equals

√
3. Otherwise, problems

occur in the evaluation of the evolution equation (27), because it becomes singular.

3 Numerical realisation

The non-linear desccription in the given model and the consideration of large deformations some numerical utili-
ties. The main focus of this contribution is the following comparison of two different realisations of the introduced
model by numerical methods. Both provide advantages and disadvantages according to computational time and
generality of the used formulation. The highest generality is given by the consideration of the complete three-
dimensional model, provided in the last section. Its realisation is given in section 3.1. Subsequently, a reduction to
special loading conditions, here for uniaxial tension, and the procedure for this realisation are given in 3.2. It has
a higher performance with respect to computational time and can be used, if only restricted experimental data is
available. Moreover, it is useful to get first information of the model’s character and of the material parameters.

3.1 FEM implementation

For the simulation of the mechanical behaviour of real structural components with complex geometries loaded
under difficult conditions, the three-dimensional character of the model for large deformations is elementary. For
the realisation, the finite element method (FEM) is necessary. According to the FEM, the whole Cauchy stress
tensorT has to be computed in each timestept.
The starting point of the FEM calculation is the momentum balance

ρẍ = div T + ρb , respectively div T = 0 (30)

in the absence of body forcesb and acceleration̈x. After the multiplication with a test functionδu and integration
by parts, this results in the so-called weak form

∫

Ω

∇δu : T dΩ +
∫

Γ

t ∙ δu dΓ = 0 (31)

of the momentum balance. To ensure the claimed incompressibility of the material, a secondary condition with an
additional degree of freedom (DOF)δp has to be introduced

∫

Ω

δp (detF − 1) dΩ = 0 . (32)

For numerical reasons, Taylor-Hood finite elements with quadratic shape functions for the displacementu and
linear functions for the pressurep have to be chosen.
To compare the results of the FEM calculation to those of the uniaxial reduction and the experiments, only Dirichlet
boundary conditions are considered. The Neumann boundary term over the surfaceΓ vanishes. Due to the fact
that the used constitutive equation (11) is strongly non-linear, an iterative method has to be accomplished to solve

f(u, p) =
∫

Ω

∇δu : T dΩ +
∫

Ω

δp (detF − 1) dΩ = 0 (33)
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in every timestep. For the evaluation, functionsu(x) andp(x) have to be found for which this statement is true for
all test functionsδu andδp. According to numerics, the approximations

uh,i(x) =
∑

j

Ujϕj(x) with i = 1, 2, 3

and ph(x) =
∑

j

Pjψj(x)
(34)

are made, whereUj andPj are the degrees of freedom of the problem,ϕj(x) andψj(x) are the shape func-
tions. In the following all discrete DOFsUj andPj are summed up in the vector̃u for reasons of clarity and
comprehensibility. Eq. (33) in combination with the approximations (34) results in

fh(ũ) =
∫

Ω

∇δuh : T dΩ +
∫

Ω

δph (detF − 1) dΩ = 0 . (35)

For the implementation, the integral overΩ = ∪Ωk is split into integrals over alll cells

∫

Ω

∇δu : T dΩ +
∫

Ω

δp (detF − 1) dΩ =
l∑

k=1

∫

Ωk

∇δu : T dΩe +
l∑

k=1

∫

Ωk

δp (detF − 1) dΩe . (36)

On each cell, its contribution is approximated by quadrature
∫

Ωk

∇δu : T dΩe +
∫

Ωk

δp (detF − 1) dΩe =
∑

q

∇δu : T(xk
q )wk

q +
∑

q

δp
(
detF(xk

q ) − 1
)
wk

q (37)

wherexk
q is theqth quadrature point of cellk andwk

q is the corresponding weight. Regarding Eq. (37) the stress-
strain relation has to be evaluated at the integration points. A Taylor expansion yields a linear set of equations for
all DOFs

K ∙ Δũ = −f(ũ) (38)

with the tangential stiffness matrix

K =
df(ũ)
dũ

=













∂f1

∂ũ1
. . .

∂f1

∂ũn
∂f2

∂ũ1
. . .

∂f2

∂ũn
...

...
...

∂fn

∂ũ1
. . .

∂fn

∂ũn













or Kij =
∂fi(ũ)
∂ũj

. (39)

Eq. (38) is solved iteratively and by updating the solutionũn+1 = ũn + Δũ at the end of each step. TheL2-norm
of the right-hand side of Eq. (38) serves as measurement for the solution’s quality. Since the derivative is not easy
to obtain, the so-callednumerical tangentis used. Therefore, the differential quotient is replaced by the difference
quotient

Kij =
∂fi(ũ)
∂ũj

=
fi(ũj) − fi(ũ)

εα
(40)

with εα ≈ δ0(1 + |ũj |) and ũj = ũ + εαej , (41)

in which δ0 in the variationεα is the square root of the tolerance of the used floating-point data type, cf. Pang
(2006).
To consider the viscoelastic behaviour of the material, the used evolution equations have to be solved. Because
of the non-linearity of Eq. (26) and (27), a local formulation at every integration point for every Maxwell element
has to be used. For means of time discretisation, the Backward Euler method is reasonable. The non-linearity is
considered by executing Newton’s method again. Thus the rate of the inelastic right Cauchy-Green deformation
tensor can be written as

Ċj
i (tn+1) ≈

Cj
i (tn+1) − Cj

i (tn)
Δt

. (42)

This can be rewritten as the function

g(Cj
i (tn+1)) =

Cj
i (tn+1) − Cj

i (tn)
Δt

− Ċj
i (tn+1)

!
= 0

(43)
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for the calculation of the inelastic Cauchy-Green deformation tensorCj
i (tn+1) in the(n + 1)th timestep. Another

Taylor expansion is performed

g(Cj
i (tn+1)) +

∂g(Cj
i (tn+1))

∂Cj
i (tn+1)

: Δ (Cj
i (tn+1)) ≈ 0 , (44)

so that another set of equations is obtained

g(Cj
i (tn+1)) +

4

L : Δ (Cj
i (tn+1)) ≈ 0 , (45)

and in analogy to Eq. (40) the differential quotient is replaced by the difference quotient

Δg =
g(Cj

i (tn+1)op) − g(Cj
i (tn+1))

εβ
, (46)

in whichCj
i (tn+1)op is the inelastic part of the right Cauchy-Green deformation tensorCj

i (tn+1) at timesteptn+1

and the current iteration step of the local Newton method, whoseopth componentCj
i (tn+1)op has been modified

by the variationεβ

Cj
i (tn+1)op = Cj

i (tn+1) + εβ δokδpl ek ⊗ el (47)

with
εβ = δ0

(
1 + |Cj

i (tn+1)op|
)

. (48)

This results in a rank four local tangential matrix with the components

4

L =̂ Lqrop =
g(Cj

i (tn+1)op)qr − g(Cj
i (tn+1))qr

εβ
. (49)

This equation set can be solved and the tensor can be updated by

Δ(Cj
i (tn+1)) = Cj

i (tn+1)
k+1 − Cj

i (tn+1)
k . (50)

As the tolerance for the local Newton iteration, the Frobenius-Norm ofg(Cj
i (tn+1)) is chosen, with

||A|| =
√

A : A =

√√
√
√

m∑

i=1

n∑

j=1

(aij)2 . (51)

The presented relation set is realised in the open source FE librarydeal.II, cf. Bangerth et al. (2007, 2013).
This results in a complex simulation process, which is very time-consuming because of the non-linearities in the
material’s description. The strong coupling of the relaxation times in addition to this numerical effort yield a
complex parameter identification process. Therefore, an alternative implementation method that is more effective
in terms of parameter identification is introduced in the following .

3.2 Uniaxial reduction

In order to reduce the numerical effort, the introduced relations of the material model are reduced for the special
case of the uniaxial tension test as also executed by Johlitz et al. (2010). The constitutive relation (15) for the
Cauchy stressT is evaluated for the case that the material is stretched withλ in the1-direction. In this case, the
transversal direction is stress-free

T22 = T33 = 0 (52)

and the Lagrangian parameterp results in

p =
[
2 c10 + 4 c20 (tr(B) − 3) + 6 c30 (tr(B) − 3)2

]
B22

+ 6 c301 (tr(B1
e) − 3)2 B1

e22
+

4∑

j=2

2 c10j Bj
e22

.
(53)
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A scalar-valued equation is obtained providing information that corresponds to the uniaxial experimental data

T11 =
[
2 c10 + 4 c20 (tr(B) − 3) + 6 c30 (tr(B) − 3)2

]
(B11 − B22)

+ 6 c301 (tr(B1
e) − 3)2 (B1

e11
− B1

e22
) +

4∑

j=2

2 c10j (Bj
e11

− Bj
e22

)

=

[

2 c10 + 4 c20

(

λ2 +
2
λ
− 3

)

+ 6 c30

(

λ2 +
2
λ
− 3

)2
] (

λ2 −
1
λ

)

+ 6 c301

(

(λ1
e)

2 +
2
λ1

e

− 3

)2 (

(λ1
e)

2 −
1
λ1

e

)

+
4∑

j=2

2 c10j

(

(λj
e)

2 −
1

λj
e

)

(54)

The relation of the stretches

λ = λj
e λj

i ⇔ λj
e =

λ

λj
i

(55)

allows the reformulation of Eq. (54) as a function ofλ andλj
i

T11 =

[

2 c10 + 4 c20

(

λ2 +
2
λ
− 3

)

+ 6 c30

(

λ2 +
2
λ
− 3

)2
] (

λ2 −
1
λ

)

+ 6 c301

(
λ2

(λ1
i )

2
+

2 λ1
i

λ
− 3

)2 (
λ2

(λ1
i )

2
−

λ1
i

λ

)

+
4∑

j=2

2 c10j

(
λ2

(λj
i )

2
−

λj
i

λ

)

.

(56)

The evolution equations for the inelastic deformations in the different Maxwell elements also have to be specified
with respect to the uniaxial case. This procedure is accomplished in detail once for the first Maxwell element with

Ċ1
i =

12
r1

(IB1
e
− 3)2

[

C −
1
3

tr
(
C ∙ (C1

i )
−1
)

C1
i

]

, (57)

which denotes for the uniaxial case

Ċ1
i =

d
dt

C1
i =̂











2 λ1
i λ̇1

i 0 0

0 −
λ̇1

i

(λ1
i )

2
0

0 0 −
λ̇1

i

(λ1
i )

2











=
12

(
λ2

(λ1
i )

2
+

2 λ1
i

λ
− 3

)2

r1


















λ2 0 0

0
1
λ

0

0 0
1
λ









−
1
3

λ3 + 2 (λ1
i )

3

(λ1
i )

2 λ










(λ1
i )

2 0 0

0
1
λ1

i

0

0 0
1
λ1

i



















.

(58)
These equations must be identical. Thus, the evolution equation for the first component remains

2 λ1
i λ̇1

i =
12

(
λ2

(λ1
i )

2
+

2 λ1
i

λ
− 3

)2

r1

[

λ2 −
1
3

λ3 + 2 (λ1
i )

3

λ

]

⇔ λ̇1
i =

4
r1

(
λ2

(λ1
i )

2
+

2 λ1
i

λ
− 3

)2 (
λ2

λ1
i

−
(λ1

i )
2

λ

)

.

(59)

This non-linear equation can be solved by means of a Backward Euler scheme in the time with the differential
quotient

λ̇1
i ≈

λ1
i (tn+1) − λ1

i (tn)
Δt

=
4
r1

(
λ2(tn+1)
λ1

i (tn+1)2
+

2 λ1
i (tn+1)

λ(tn+1)
− 3

)2 (
λ(tn+1)2

λ1
i (tn+1)

−
λ1

i (tn+1)2

λ(tn+1)

)

. (60)
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In this equation,Δt is the time step between time iterationtn andtn+1. The developed non-linear equation (60) is
rewritten as a function off((λj

i )
k(tn+1))

f((λ1
i )

k(tn+1)) = λ1
i (tn+1) − λ1

i (tn)Δt

−
4Δt

r1

(
λ(tn+1)2

λ1
i (tn+1)2

+
2 λ1

i (tn+1)
λ(tn+1)

− 3

)2 (
λ(tn+1)2

λ1
i (tn+1)

−
λ1

i (tn+1)2

λ(tn+1)

)

= 0 ,

(61)

and formally linearised for the Newton procedure

f((λ1
i )

k(tn+1)) +
∂f((λ1

i )
k(tn+1))

∂(λ1
i )

k(tn+1)

(
(λ1

i )
k+1(tn+1) − (λ1

i )
k(tn+1)

)
= 0 , (62)

in which the derivative of the function represents the tangent stiffnessK1
T

K1
T =

∂f((λ1
i )

k(tn+1))
∂(λ1

i )
k(tn+1)

= 1 +
4Δt

r1

(
λ2

λ1
i

−
(λ1

i )
2

λ

) (
4 λ4

(λ1
i )

5
+

4 λ

(λ1
i )

2
−

8 λ1
i

λ2
−

12 λ2

(λ1
i )

3
+

12
λ

)

+
4Δt

r1

(
λ2

(λ1
i )

2
+

2 λ1
i

λ
− 3

)2 (
λ2

(λ1
i )

2
−

2 λ1
i

λ

)

.

(63)

In order to shorten the notation of Eq. (63), the term(tn+1) is omitted. All the stretchesλ andλ1
i have to be

evaluated with respect to the time step(tn+1). The indexk within the equation stands for the iteration index in the
Newton method. The increment of the update is computed to

Δλ1
i (tn+1) = (λ1

i )
k+1(tn+1) − (λ1

i )
k(tn+1) = −

f((λj
i )

k(tn+1))
K1

T

, (64)

which results in
(λ1

i )
k+1(tn+1) = (λ1

i )
k(tn+1) + Δλ1

i (tn+1) . (65)

The procedure for the other Maxwell elements (j = 2...4) has to be executed analogously. The resulting equations
for these elements are

λ̇j
i =

4
3 rj

(
λ2

λj
i

−
(λj

i )
2

λ

)

f((λj
i )

k(tn+1)) = (λj
i )

k(tn+1) − λj
i (tn) −

4Δt

3 rj

[
λ2(tn+1)

(λj
i )

k(tn+1)
−

(((λj
i )

k(tn+1)))2

λ(tn+1)

]

= 0

Kj
T = 1 +

4Δt

3 rj

[
λ2(tn+1)

((λj
i )

k(tn+1))2
+

2 (λj
i )

k(tn+1)
λ(tn+1)

]

.

(66)

In addition, attention has to be paid to the non-linearities of the relaxation times for this scalar realisation. There-
fore, the norm of the deformation velocity||D|| is reduced to

||D|| =

√
3
2

λ̇

λ
(67)

and according to the fourth relaxation time,||C4
i || is

||C4
i || =

√

(λ4
i )

4 +
2

(λ4
i )

2
(68)

for the observed uniaxial case. The residue of the functionf((λj
i )

k(tn+1)) as the tolerance of the Newton scheme
is chosen as10−8 for all evolution equations. This procedure with the presented equations is implemented in
MatlabR©, which also provides the tools for the parameter identification, in this case by a genetic algorithm.
The parameter identification delivers the following values for the basic elasticity (Table 1) and the viscoelastic
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Table 1: Identified parameters with respect to the basic elasticity.

c10 c20 c30

[MPa] [MPa] [MPa]

0.2 −0.052 0.017

Table 2: Identified parameters with respect to the viscoelasticity.

c301 0.002MPa c102 0.057MPa
rI 106 s r21 40.0 s

r22 4000.0 s
k21 1014 s

c103 0.061MPa c104 3.0MPa
r31 23 s r41 0.1 s
r32 529 s r42 0.22 s
k31 32.08 s r43 20.74 s
r33 400000 s k41 131.82 s
k32 1014 s

parameters (Table 2), respectively. Details of the identification can be found in Koprowski-Theiß et al. (2011b).
Thec20-parameter has to be negative in the present case to represent the characterisiticS-shaped basic elasticity
with the initial decrease and subsequent increase of the material’s stiffness for increasing deformations, according
to the work of Yeoh and Fleming (1997) and Dhondt (2004). For the uniaxial deformations, Drucker stability
is still fulfilled for λ ∈ ]0; ∞[ (cf. Drucker (1957)). The numerical effort compared to the three-dimensional
implementation in section 3.1 is significantly higher. In this case, an equation set has to be solved contrary to the
single equation for the1-direction. Furthermore, the global Newton scheme does not have to be applied for the
scalar solution.

4 Results

The given numerical realisations with respect to the presented non-linear material model are now compared ac-
cording to the experimental results. For the cyclic tests for different strain rates, the data set is restricted to one and
a half loading cycles for reasons of clarity. The numerical results for both implementations match perfectly, see
Fig. 2.
The results for the relaxation test match as well, in this case for the example of a relaxation experiment over6000 s
for λ = 1.6, see Fig. 3.

5 Conclusions

In this contribution, a non-linear viscoelastic material model representing the mechanical behaviour of a carbon
black-filled EPDM is introduced. A major point in the material model is the representation of the non-linearities
by non-linear relaxation times. The resulting complexity of the model itself yields high computational effort. Two
different strategies in the numerical realisation are provided. At first, the implementation in the open source FE li-
brarydeal.II was presented. Because of its complex equation setup, it is not very effective due to the hig amount of
computational time, whereby the numerical potential with respect to multiaxiality is provided completely. For rea-
sons of effectivity in the parameter identification, as another numerical solution, the model has been implemented
for the restricted case of uniaxial tension. This restriction denotes a strict limitation of the model neglecting all
other conditions but the simple uniaxial case.
These results and the advantages and disadvantages in numerics are very important with respect to future work.
Therein more complex loading conditions or real assemblies shall be investigated. The necessity of a multiaxial
observation is illustrated in Johlitz and Diebels (2011) and Seibert et al. (2014). Therefor, the complete three-
dimensional information is necessary, and the given FEM-solution has to be executed with an inverse identification
process to get the model parameters. However, as a first step, uniaxial tests and the uniaxial reduction of the model
can provide first ideas of the model’s structure and the parameter range.
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Figure 2: Cyclic tests with different strain rates: a) 0.00273 s−1 , b) 0.0273 s−1, c) 0.273 s−1; comparison of the
experiment and the numerical results.

Figure 3: Relaxation experiment forλ = 1.6; experiment and numerical results.
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